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Living beings modulate the impedance of their joints to interact proficiently, robustly, and
safely with the environment. These observations inspired the design of soft articulated
robots with the development of Variable Impedance and Variable Stiffness Actuators.
However, designing them remains a challenging task due to their mechanical complexity,
encumbrance, and weight, but also due to the different specifications that the wide range
of applications requires. For instance, as prostheses or parts of humanoid systems, there
is currently a need for multi-degree-of-freedom joints that have abilities similar to those of
human articulations. Toward this goal, we propose a new compact and configurable
design for a two-degree-of-freedom variable stiffness joint that can match the passive
behavior of a human wrist and ankle. Using only three motors, this joint can control its
equilibrium orientation around two perpendicular axes and its overall stiffness as a one-
dimensional parameter, like the co-contraction of human muscles. The kinematic
architecture builds upon a state-of-the-art rigid parallel mechanism with the addition of
nonlinear elastic elements to allow the control of the stiffness. The mechanical parameters
of the proposed system can be optimized to match desired passive compliant behaviors
and to fit various applications (e.g., prosthetic wrists or ankles, artificial wrists, etc.). After
describing the joint structure, we detail the kinetostatic analysis to derive the compliant
behavior as a function of the design parameters and to prove the variable stiffness ability of
the system. Besides, we provide sets of design parameters to match the passive
compliance of either a human wrist or ankle. Moreover, to show the versatility of the
proposed joint architecture and as guidelines for the future designer, we describe the
influence of the main design parameters on the system stiffness characteristic and show
the potential of the design for more complex applications.
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1 INTRODUCTION

In the last years, articulated soft robots inspired by the
musculoskeletal system of vertebrate animals received
increased attention from researchers, since they represent
promising solutions to enhance the interactions of robots with
unknown and dynamic environments, i.e., the real world (Albu-
Schaeffer et al., 2008). In line with this, Variable Impedance
Actuators and the subgroup of Variable Stiffness Actuators
(VSAs) were widely investigated recently (Vanderborght et al.,
2013).

Variable Stiffness Actuators usually rely on two main
approaches to modulate the stiffness. In the first one, the
stiffness is controlled using software together with a
mechanism with fixed impedance properties. In the other one,
the stiffness is modulated through a mechanical reconfiguration
of the system (Vanderborght et al., 2013). Some literature refers to
the first approach as active VSA and the second one as passive
VSA (Vanderborght et al., 2013). However, to avoid confusion
possibly induced by the notion of passivity, we will refer to the
first approach as software-controlled VSA and to the second one
as physically compliant VSA. Software-controlled VSAs allow the
design of lightweight devices that can in theory simulate any
desired stiffness behavior. However, this apparent stiffness
emulated by the system relies on an accurate sensing strategy
and control computations, and it has been shown that even if the
impacts are detected timely, the motors could not be able to react
fast enough by solely an impedance control and that the system
should therefore be considered as stiff during the impacts
(Haddadin et al., 2007). To address these limitations,
physically compliant VSAs have been developed with an
inherent compliance. They can present several advantages such
as shock absorptions, better performances in cyclic or explosive
tasks (Albu-Schaeffer et al., 2008;Wolf et al., 2016), and a possible
embodiment of specific behavior to improve the control strategies
(Visser et al., 2011).

As VSAs are inspired by musculoskeletal systems, their
applications as prostheses or part of humanoid devices would
seem straightforward. Even though there are some advantages in
using VSAs compared to stiff actuators, finding concrete use-
cases of VSAs is an on-going research topic and requires attention
(Sensinger and ff. Weir, 2008; Blank et al., 2014; Stillfried et al.,
2018).

To test hypotheses in this objective, we need multi-degree-of-
freedom (DoF) joints that show abilities similar to those of a
human joint, such as the same functional range of motion, a
variable stiffness mechanism, the overall shape and mass, and so
on. Integrating an inherent compliance inside these systems
enables us to test both the variable stiffness ability but also the
capabilities due to the compliance, such as the possibility of
exploiting the natural dynamic of the system (e.g., the resonance
frequency) (Stillfried et al., 2018). Besides, artificial wrists can
benefit from a compliant architecture to enhance their
manipulation abilities in tight or cluttered spaces (Negrello
et al., 2019). Moreover, the availability of various levels of
stiffness can enhance the performances in activities of daily
living in prosthetic applications (Kanitz et al., 2018). However,

the mechanical complexity of such mechanisms increases and
constitutes a challenge.

Up to now, most of the proposed physically compliant VSAs
have only 1 DoF in position (Vanderborght et al., 2009;
Vanderborght et al., 2013; Petit et al., 2015; Lemerle et al.,
2019). The classical approach to get multi DoF physically
compliant VSAs is to put in series several 1-DoF VSAs, such
as the solutions proposed in the DLR Hand Arm System
(Grebenstein et al., 2011; Romano et al., 2014; Savin et al.,
2019). This approach uses the design of serial manipulators
(SMs) that are easier to model and control compared to the
parallel manipulators (PMs). The latter, on the other hand, allow
more compact designs and have better performances in terms of
output torques than SMs for the same motor sizes. Nevertheless,
the performances of PMs are very sensitive to their geometric
parameters (Siciliano and Khatib, 2007). Alternative works
explored the independent setup approach, consisting mainly of
a serial arrangement of position motor units with several DoF in
position (using either SMs or PMs) and an additional motor unit
dedicated solely to the control of the stiffness (Weckx et al., 2014;
Barrett et al., 2017; Tan et al., 2017; Rodriguez-Cianca et al.,
2019). Finally, other works draw inspiration from the
antagonistic arrangements of the musculoskeletal system
(Koganezawa, 2017; Stoeffler et al., 2018; Malosio et al., 2019).
In the last category, several antagonistic motors are used jointly to
control the stiffness and the position of the joint. Theses
architectures are solely based on PMs. For more details on the
classification and principle of work of VSAs, the reader is invited
to refer to (Vanderborght et al., 2013; Wolf et al., 2016).

One limitation of physically compliant VSAs is that one
mechanical implementation corresponds to one embedded
passive behavior. Although there are devices that are human-
like in terms of shapes and dimensions, and are able to perform
activities of daily living (ADL) (Grebenstein et al., 2011; Weckx
et al., 2014; Koganezawa, 2017; Stoeffler et al., 2018; Rodriguez-
Cianca et al., 2019), there is, for now, no multi-DoF VSA
embedding a compliant behavior that matches human joints.
It is worth mentioning that there are alternatives to design
compact 2 DoF joints with inherent compliance (not
necessarily with variable stiffness in the following examples).
A first concept is to design an underactuated mechanism (Casini
et al., 2017). Its main drawback could be its limited dexterity to do
all the desired tasks. Another approach is to have a switchable
stiffness to get lightweight and compact devices (Montagnani
et al., 2013). This type of solution could be suitable when
lightweight systems are needed. However, they do not allow
for a continuous and smooth control of the stiffness.
Therefore, they lose some advantages of such abilities, e.g.,
during explosive or cyclic tasks, when a VSA performs better
than a fixed compliant mechanism (Garabini et al., 2011). An
additional idea is to use tendon driven mechanisms with
compliant pneumatic actuation (Toedtheide and Haddadin,
2018). Then, this system could be lightweight and somehow
compact if the remote actuation units are excluded. Yet, this is
not fully satisfying in terms of compactness if we consider them,
especially when they are pneumatic actuation units. Therefore, all
of these approaches do not fully satisfy the criteria of compactness
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and variable stiffness ability as well as doing various types of tasks.
We address this limitation in the following work.

In general, the qualitative representation of the mechanical
impedance of human joints is made using stiffness (or
compliance) ellipsoids (Mussa-Ivaldi et al., 1985). To
modulate the stiffness ellipsoids of the end effector during
tasks, it appears that the limb geometry and posture have a
large impact on its shape and orientation, whereas the voluntary
co-contraction of the participating muscles affects mainly the
size of the ellipsoids (Milner, 2002; Perreault et al., 2002). To
quantify the mechanical impedance properties of multi-DoF
human joints, the traditional approach consists in applying
position or force perturbations to the joint of interest and
measuring the displacement force or position responses
(Mussa-Ivaldi et al., 1985). Yet, this process is complex and
long. Investigations are made to simplify and speed up the
procedure (Masia et al., 2012; Masia and Squeri, 2015). The
measurements usually concern the endpoint impedance
(Mussa-Ivaldi et al., 1985; Masia et al., 2012). Yet, there is
mechanical impedance data of specific human joints, such as the
wrist (Formica et al., 2012; Pando et al., 2014) or the ankle
(Kearney et al., 1997; Lee et al., 2014). There is, for now, no data
on the mechanical impedance of more complex joints such as
the shoulder or hip. Yet, efforts are made toward this direction
with the design of low inertia shoulder exoskeleton to measure
neuromuscular properties (Hunt and Lee, 2019).

The observations on how human beings modulate the stiffness
ellipsoids were successfully exploited to implement a
teleimpedance controller to generate human-like motions and
desired task space impedance (Ajoudani et al., 2018). Similarly,
these observations could be used to reduce the mechanical
complexity of human-like VSAs. Indeed, if the human-like
compliant behavior is directly implemented in the mechanism,
only one additional actuator is ideally required to modulate the
overall size of the stiffness ellipsoid, in analogy to the voluntary
co-contraction of human muscles. As a matter of fact, from the
study of tendon mechanisms (e.g., the Salisbury Hand), we know
that to control N DoF in position only N+1 actuators are
required. There is then an internal tension that can be used to
modulate the stiffness. This was shown for a grasping hand in
Mason and Salisbury (1985).

In this work, we propose the concept and modeling of a
configurable architecture of a physically compliant 2 DoF VSA
that can match the passive behavior of either a human wrist or a
human ankle. This joint can control its orientations around 2
perpendicular axes and its overall stiffness as a one-dimensional
parameter similar to the co-contraction of human muscles. It is
based on a state-of-the-art parallel manipulator that we modified
to implement an inherent compliance with a compact
architecture. Hence, the variable stiffness (VS) ability of the
system relies on the antagonistic arrangement of nonlinear
elastic actuators (Vanderborght et al., 2013; Wolf et al., 2016).
The compact architecture of the system is based on the PM
architecture with the minimum number of required motors to get
a VSA for 2 DoF in position (i.e., 3). Thanks to its kinematics, the
proposed system could be used as a wrist or ankle joint. It can also
be part of more complex joints such as the hip or shoulder joint.

Indeed, these joints are represented with 3 DoF as ball-and-socket
joints and one of their three rotations is around a longitudinal
axis of the body segment attached to the joint (Wilhelms and
Gelder, 2001). Therefore, we can design them with a hybrid
architecture of a PM with 2 DoF in series with a 1 DoF rotator,
like for instance the humeral rotator proposed in Mazzotti et al.,
(2015), which can be integrated with a 2 DoF shoulder joint
presented in Troncossi et al., (2009). A similar idea could be
proposed for a hip joint with a femoral rotator. Therefore, our
proposed system could also be used as part of these more complex
joints. Figure 1 shows the general principles of the system and
some of its potential applications.

FIGURE 1 | The proposed 2-DOF variable stiffness joint allows shaping
the stiffness (or compliance) ellipsoid at different postures in the design phase,
while the volume can be varied in real-time to make the overall behavior stiffer
or softer. The kinematics of the 2-DOF VS joint can be used for the
design of wrists and ankles of human-like bionic systems (in orange). In
principle, this joint can also be used as part of more complex designs for a
shoulder or hip human-like joint (in yellow).
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Besides the general description of the proposed system in
Section 2.1, the main contributions of this paper are: (i) to prove
the human-like VS ability of the system with a compact architecture
(Section 4.1), (ii) to study the effect of themain design parameters of
the system on its passive compliance to provide general guidelines
(Section 4.2), and (iii) to provide sets of design parameters to match
the passive compliance of a human wrist or ankle based on an
optimization process (Section 4.3). Other contributions of this paper
include improvements on the kinematic analysis of the rigid
structure (used as a basis of our mechanical architecture) done in
Sofka et al., (2006a) and the kinetostatic analysis of our proposed
compliant structure (Section 3).

The paper is organized as in the following: Section 2 details the
design concept of the proposed system and the methodology of its
study. It includes, in particular, a description of its general
architecture and its main design parameters. Section 3
provides the model and the kinetostatic analysis of the system.
Section 4 gives the main results of the current study that are then
discussed in Section 5. Finally, Section 6 summarizes the main
contributions and concludes the article.

2 DESIGN CONCEPT AND METHODOLOGY

2.1 General Architecture of the System
Based on the state of the art of compact 2 DoF in orientation
joints based on PMs (refer to (Bajaj et al., 2019) for a quite
extended list), we selected the kinematic architecture of the
Omni-Wrist III, designed by Rosheim and Sauter (2002) and
studied by Sofka et al., (2006a) and Sofka et al., (2006b). This
design has several advantages such as 180° hemispherical
singularity free movement (Rosheim and Sauter, 2002). In
theory, only two legs are needed to actuate the system but the
main version has 4 legs. Its general architecture is shown in
Figure 2A. In our design, we propose to use a 3–legs configuration

with nonlinear elastic elements added in the serial arrangement of
each leg. Figure 2B presents its general architecture. The system is
a PM composed of a fixed frame (in dark gray on the scheme) and a
moving platform (in light gray), i.e., the end effector, linked
together with three independent and identical kinematic serial
chains, called respectively leg A (in blue), leg B (in green) and leg C
(in red). Each leg is composed of the serial arrangement of one
motor (Mp), one nonlinear elastic element (Sp), and one kinematic
chain (KCp). The kinematic chains, based on the geometry
proposed in Rosheim and Sauter (2002), are composed of 3
linkages each connected together and to the end effector by a
succession of 4 noncoplanar revolute joints. Based on themodeling
of Sofka et al., these KCs are parametrized by α, which is the
angular deviation of the link 2 (in red), and by a characteristic
length d (Sofka et al., 2006a). Figure 2C shows the main structure
of one KC with its parameters.

2.2 Variable Stiffness Ability
As it is common in VSA with antagonistic architecture, to get the
variable stiffness ability, the stiffness characteristic of the elastic
element has to be nonlinear. There are many ways to design
nonlinear springs, to cite a few, the physical implementation can
rely on tendons and linear springs (Catalano et al., 2011), on a
combination of belts and linear springs (Lemerle et al., 2019), on a
combination of torsional spring with guide shafts with varying
radius (Koganezawa et al., 2005; Koganezawa, 2017), or on
hydraulic or pneumatic solutions (Stoeffler et al., 2018).

Nevertheless, nonlinear stiffness alone is not sufficient to grant
the variable stiffness control of the system, which is equivalent to
prove that we can control independently the equilibrium
orientations of the system and its overall stiffness along one
dimension. To prove this analytically, the kinetostatic analysis of
the system is first presented in Section 3. Then, the final
arguments to show the VS control of the proposed system are
given in Section 4.1.

FIGURE 2 | (A) is the classic architecture of theOmni-Wrist III (Rosheim andSauter, 2002) is composed of 4 legs linking a fixed frame and amoving platform. Each actuated
leg is composed of the serial arrangement of onemotor (M*) and one kinematic chain (KC*). Each non-actuated leg is composed of one kinematic chain (KC*) (B)Represents the
architecture of the proposed system.Weuse a configurationwith 3 legsonly. In each leg,weaddelastic elements (S*) between themotor (M*) and the kinematic chain (KC*). (C)
shows the details of one kinematic chain (each KCs are identical). It is composed of 3 linkages (1, 2 and 3) and 4 noncoplanar revolute joints (I, II, III, IV). The joint IV is linked to
the end effector and the joint I is linked either to the output of the motor in the Omni-Wrist III or to the output of the elastic element in our proposed architecture.
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In addition, we would like to show the effects of the modulation
of the stiffness on the overall compliance of the system. To
represent them graphically, we need to derive a model of the
system (done in Section 3) and to model the elastic elements. In
this study, we make the deliberate choice of adopting a hyperbolic
sine spring, whose mechanical characteristics have the form

fS* � 2K* sinh(δ*/δ0*), (1)

where fS* stands for the force exerting by the spring,K* for the spring
constant, δ* the deflection of the spring, and δ0* a characteristic
deflection of the spring. This choice is motivated by the fact that
springs with a similar characteristic have been successfully used in
other actuators (Catalano et al., 2011; Lemerle et al., 2019), and
recent works suggested that this type of elastic behavior replicate
several attributes of an antagonistic pair of muscles driving a joint
(Garabini et al., 2017). This restricts the conclusions drawn in the
next sections to be exact only when dealing with this specific kind of
springs. Nevertheless, it is expected to observe similar trends in all
springs with similar stress-stiffening characteristics.

For the sake of clarity, the detailed graphical representation
methodology is described after the complete analysis of the
system in Section 3.8. The effects of the modulation of the
stiffness are shown in Section 4.1.

2.3 General Design Guidelines
As previously described, there are various ways to implement the
nonlinear elastic elements. In a first approach, we leave this choice to
the designer to focus on the design of the KCs and their arrangement.
Therefore, as general design guidelines, we study the effects of the
purely geometric parameters (simply referred to as geometric
parameters) on the compliance of the proposed system. To do this
study, the compliance of the system should bemodeled as a function of
these geometric parameters. This is done in Section 3. The first step in
themodeling is to define the geometric parameters. They correspond to
the parameters of the KCs α and d (Sofka et al., 2006a), and the angular
arrangement of the first joint of each leg around the basis, namely ηA,
ηB, ηC (refer to the parametrization of the system in Section 3.1 for the
exact definitions of these parameters). The angular positions of each leg
are defined according to the scheme shown in Figure 3.

In the case of a fixed distribution of the legs around the basis, α
and d are not enough to modulate the compliant behavior of the
system (refer to Section 4.2 for more details). That is why we need
to extend the modeling done in Sofka et al. (2006a) by adding the
angular positions of the legs.

Moreover, to study separately the effects on the compliance due to
the kinematic architecture from the effects due to the internal variation
of the compliance of the elastic elements, the compliance characteristic
of each leg is modeled as a constant. Concretely, to study the impact of
the angular position of the legs, two types of configuration are
simulated. Firstly the leg A is considered as fixed with ηA � 0 and
the couple (ηB, ηC) is varying symmetrically, with ηB in {π/4,π/3,π/2,
2π/3, 3π/4} and ηC � −ηB. Secondly, the legs A and C are fixed,
respectively equal toπ/4 and−π/4 and ηB is varying in the set {−3π/4,
−2π/3, −π/2, −π/3, π/3, π/2, 2π/3, 3π/4, π}. To study the impact of
the angular deviation of the middle link of each leg α, this angle is
varying in the set {π/6, π/4, π/3, 5π/12}. Finally, to study the impact
of the characteristic length d of each leg, this length is varying in the set
{25 mm, 50 mm, 75 mm, and 100 mm}. All the simulations and
computations are performed using MATLAB. The results are shown
in Section 4.2.

2.4 Design Parameters to Match
Compliance of Human Wrist and Ankle
One of themain goals of this study is to show that we can implement
passive compliant behaviors of human joints. In this work, we focus
on two different human joints: the wrist and the ankle. To find the
appropriate sets of design parameters to match their passive
compliant behavior, we derived an optimization process. In the
first step in Section 2.4.1, we need to define the behaviors we would
like to embed based on the mechanical impedance data of human
joints. Then, in Section 2.4.2 we define the design parameters of the
proposed architecture. Finally, to derive the cost function of the
minimization algorithm, we need to characterize the compliance of
the system as a function of the design parameters. This is done in
Section 3 and the cost function is defined in Eq. 58. Results of the
optimization process are shown in Section 4.3.

2.4.1 Parameters of Human Wrist and Human Ankle
Based on the state-of-the-art, we selected the biomechanical data
of a human wrist presented in Pando et al. (2014) and of a human
ankle presented in Lee et al. (2014).

In Pando et al. (2014), Pando et al. studied, among others, the
passive wrist stiffness in the two dimensions that are the flexion/
extension and the radial/ulnar deviation. They extracted from their
data the stiffness ellipses around the neutral position of the wrist in
case of no voluntary co-contraction of the subjects to evaluate thus
the passive stiffness of the articulation. They found that the human
wrist stiffness is anisotropic and the direction of the greater
magnitude of the average stiffness ellipse is around 12.1° from
the pure radial deviation in the counter-clockwise direction toward
a pure flexion. The ratio between the magnitude of the two axes of
the stiffness ellipse is about 2.69 and using the area of the ellipse
[5.61 (Nm/rad)2], we can extract the lengths of the two semi-axes of
the ellipse, which are then 2.19 and 0.81 Nm/rad.

In Lee et al. (2014), Lee et al. studied themechanical impedance of a
human ankle with relaxed muscles, i.e., in passive conditions, both in
seated and standing positions. They found that for low-frequency
motion the stiffness dominates themechanical impedance of the ankle,
which is our application case as we consider the static stiffness in our

FIGURE 3 | Scheme of the leg configuration with their angular positions.
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design. Its characteristics in standing positions are: a tilt angle of 10°, a
magnitude in themajor principal axis direction of 23.86Nm/rad, and a
magnitude in the orthogonal direction of 8.14Nm/rad (the ratio
is 2.99).

Considering these data, we can derive the average Cartesian
compliance ellipse and the associated compliance matrix for both
a human wrist and ankle, using similar parametrization as the one
proposed in Section 3.7.

2.4.2 Design Parameters Definition
In a second step, we should define all the design parameters of the
proposed architecture. They can be divided into geometric
parameters (previously described), elastic parameters, and
internal modulation parameters. As a reminder, there are 5
geometric parameters: α, d, ηA, ηB and ηC .

Each nonlinear spring can be characterized by nonlinear functions.
Their explicit formulations depend on mechanical implementation.
They can have various forms such as polynomial functions of degree
higher than 2 (e.g., quadratic springs), trigonometric functions,
exponential or hyperbolic functions to name but a few (English
and Russell, 1999; Koganezawa et al., 2005; Vanderborght et al.,
2009; Catalano et al., 2011; Petit et al., 2015; Lemerle et al., 2019).
Therefore the number of their associated parameters depends on the
complexity of the model. These parameters are referred to as elastic
parameters. Noting nelastic the number of parameters for one nonlinear
spring, there are in total 3 × nelastic elastic parameters in the proposed
system. They can be highly variable depending on the mechanical
implementation. Moreover, it is not easy to derive realistic values of
them to fix the bound constraints for the minimization problem.
Therefore, it is better if the solution provided by the algorithm is
robust or independent with the values of these parameters.

The internal modulation parameter, called λ, stands for the one-
dimensional quantity we can use to control the stiffness in the
proposed system. Unlike the previous parameters, λ is not fixed to
one mechanical implementation and can therefore be different if
we try to match several compliant behaviors. Therefore, there is
one additional parameter for each desired behavior.

Therefore, the number of design parameters, noted nparam, to
match the specified targeted behaviors is defined as

nparam � 5 + 3 × nelastic + ntargets, (2)

where nelastic stands for the elastic parameters of one leg and
ntargets the number of compliant targeted behaviors.

For this study, we model the nonlinear elastic elements as
hyperbolic sine springs for similar reasons as previously described
in Section 2.2. Their mechanical characteristics have the form
defined in Eq. 1. Therefore, there are 2 elastic parameters for each
leg: (i) the spring constant K* and (ii) the free length δ0*. All the
design parameters are summarized in Table 1.

3 MODEL AND ANALYSIS

In this section, we describe the kinetostatic analysis of the
proposed system with two goals in mind: (i) to derive the
compliance matrix as a function of the design parameters and
(ii) to show the variable stiffness ability of the system.

Firstly the kinematic analysis done by Sofka et al. (2006a)
needs to be extended to include the angular arrangement of the
legs. Then, we describe the inverse and differential kinematics of
the system in a closed form, showing that it is a 2 DoF joint. We
provide an explicit and complete formulation of the general
mapping of the generalized pose of the end effector as a
function of a minimal parametrization. This result is then
used to analyze the static equilibrium of the system and
describe its static stiffness and Cartesian compliance, required
for the optimization algorithm. A list of the main symbols used in
the analysis can be found in Table 2.

3.1 Parametrization of the System
Define the reference coordinate frame attached to the fixed base
of the mechanism

C0 � (X0,Y0,Z0,O0),
where O0 marks its origin and (X0,Y0,Z0) form an orthonormal
basis, noted also B0. Define also, with analogous notation, the
reference frame attached to the end effector of the mechanism

Cee � (Xee,Yee,Zee,Oee).
A possible choice of parameters that easily parametrizes the
generalized pose of the end effector is

x � ( αx αy αz xee yee zee )T, (3)

where the first three components stand for the Euler angles of the
end effector, defining, therefore, its angular orientation about
respectively the axis X0–Y0–Z0, namely (roll, yaw, pitch) and the
last three components are the position of its center Oee in B0.

Denoting with Rot(z, θ) and Trans(z, d) the homogeneous
matrices associated to the transformations of a simple rotation of
θ around the axis z→, and of a simple translation of d along the
axis z→, respectively, it is possible to write

Cee � C0Tee,
where

0Tee � Trans(Z0, zee)Trans(Y0, yee)Trans(X0, xee)Rot(Z0, αz)
Rot(Y0, αy)Rot(X0, αx),

(4)
i.e.,

0Tee �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

czcy czsxsy − szcx czsycx + szsx xee
szcy szsxsy + czcx szsycx − czsx yee
−sy sxcy cxcy zee
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (5)

TABLE 1 | List of design parameters.

Symbol Description

α Characteristic angular deviation of each leg
d Characteristic length of each leg
ηA, ηB and ηC Angular orientations of each leg
K* and δ0* Elastic parameters
λ ∈ Rntargets Internal modulation parameter

ntargets stands for the number of desired compliant behavior.
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where, ck and sk stand respectively for cos(αk) and sin(αk), for k
in {x, y, z}.

Considering now each leg (A, B, and C) of the mechanism, it is
possible to parametrize the configuration of Cee also by following
the associated serial kinematic chain, e.g., using the Denavit-
Hartenberg (DH) convention (Siciliano and Khatib, 2007). Note
first that the three legs share the same kinematic structure, which
is shown in Figure 4. As such, they can all be parametrized with
the same DH table given in Table 3. Note that, by the
construction of the system, linkages 1 and 3 are identical, and
d and α are fixed parameters that define the shared legs geometry,
while η is different for each leg.

Calling (q1, q2, q3, q4) and η the joint angles and the base angle of
the generic leg, the global transformation matrix going from the
system base to the end effector through the leg 0Tlee is defined as

0Tlee � 0
Tl1

1Tl2
2Tl3

3Tl4
4Tlee. (6)

where all the intermediate matrices are defined based on the
parameters in Table 3. After calculations, we obtain:

0Tlee �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (7)

where all the non-trivial terms are defined in Supplementary
Appendix A.

3.2 Closing the Kinematic Chain
When the joint is mounted, i.e., the legs are assembled, the
assembly constrains the final frame associated to each leg (and
the generic frame 0Tee) to be equal, i.e.,

0Tee � 0TAee � 0TBee � 0TCee. (8)

TABLE 2 | List of main symbols.

Symbol Description

C0 � [B0 ,O0] Reference coordinate frame attached to the fixed base
Cee � [Bee ,Oee] Reference frame attached to the end effector
O0, Oee Origins of the frames C0 and Cee

B0 � [X0 ,Y0 ,Z0] Orthonormal basis of the frame C0

Bee � [Xee ,Yee ,Zee] Orthonormal basis of the frame Cee

x Generalized pose of the end effector( αx αy αz )T Angular orientations of the end effector( xee yee zee )T Cartesian position of Oee
iTj Transformation matrix from Ci to Cj
iTlj Transformation matrix from Ci to Cj through leg l
∀i ∈ {1, 2, 3,4}, qi Angular position of ith joint for a generic leg
α Angular deviation of the middle link of each leg
d Characteristic length of each leg
η Generic angular orientation of one leg
ηl Specific angular orientation of leg l
(gi)i∈{1,...,7} and (hi)i∈{1,2,3} families of functions defined respectively in Eqs. (11) and (12)
∀i ∈ {A1, . . . ,C4}, qi and τ i Specific angular position and torque of joint i
u � ( αy αz )T Minimal parametrization of the system
T General mapping of the system
L Distance between O0 and Oee

qact � (qA1 qB1 qC1 )T Positions of the actuated joints
τact Torques of the actuated joints
fIK : R2 →R3 Inverse kinematics function
Au ∈ R3×2 Jacobian matrix of fIK (dependent u)
τu ∈ R2 Torque generated by the system
∀* ∈ {A,B,C}, fS* Torque function of the elastic element of respectively leg A, B and C
∀* ∈ {A,B,C}, δ* Deflection of the elastic element of respectively leg A, B and C
∀* ∈ {A,B,C}, θM* Position of motor M*

N0 Basis of the solution space of the equation AT
uX � 0

σee Static stiffness of the system
K Diagonal matrix of the stiffness of each leg
p ∈ R3 Cartesian position of a point attached to the end effector
J ∈ R3×2 Jacobian matrix of p with respect to u
c ∈ R3×3 Cartesian compliance of p
cref ∈ R3×3 Desired Cartesian compliance matrix
∀k ∈ {x, y, z}, ck and sk cos(αk) and sin(αk)
∀i ∈ {1, 2, 3,4}, ci and si cos(qi) and sin(qi)
∀i ∈ {A1, . . . ,C4}, ci and si cos(qi) and sin(qi)
cα and sα cos(α) and sin(α)
∀* ∈ {A,B,C}, c* and s* cos(η*) and sin(η*)

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6141457

Lemerle et al. Configurable 2 DOF VSA Architecture

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


As it is well-known, the solution of Eq. 8, is fundamental to
yield both the direct and inverse kinematics of the parallel
system. An important aid to facilitate this comes from Sofka
et al., (2006a), where it was found that a feasible mounting of
each leg holds for

{ q4 � −q1
q2 � q3 + π

i.e.,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c4 � c1
s4 � −s1
c3 � −c2
s3 � −s2.

(9)

Therefore, after simplifications, Eq. 7 can be written as

T11 � −g1(q1, q2, α)
T21 � −sηg2(q1, q2, α) + cηg3(q1, q2, α)
T31 � sηg3(q1, q2, α) + cηg2(q1, q2, α)
T12 � sηg2(q1, q2, α) − cηg3(q1, q2, α)
T22 � −2cηsηg4(q1, q2, α) + c2ηg5(q1, q2, α) + s2ηg6(q2, α)
T32 � cηsηg7(q1, q2, α) + (c2η − s2η)g4(q1, q2, α)
T13 � −cηg2(q1, q2, α) − sηg3(q1, q2, α)
T23 � cηsηg7(q1, q2, α) + (c2η − s2η)g4(q1, q2, α)
T33 � −2cηsηg4(q1, q2, α) + s2ηg5(q1, q2, α) + c2ηg6(q2, α)
T14 � −dh1(q1, q2, α)
T24 � −d[cηh2(q1, q2, α) + sηh3(q2, α)]
T34 � d[cηh3(q2, α) − sηh2(q1, q2, α)],

(10)

where is a family of functions defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(q1, q2, α) � c21(c22 − s22cα) + s21cα + 2c1s1s2sα
g2(q1, q2, α) � c2[s1sα − c1s2(1 + cα)]
g3(q1, q2, α) � (c21 − s21)s2sα + c1s1[2cα − c22(1 + cα)]
g4(q1, q2, α) � c2[c1sα + s1s2(1 + cα)]
g5(q1, q2, α) � c21cα + s21(c22 − s22cα) − 2c1s1s2sα
g6(q2, α) � s22 − c22cα
g7(q1, q2, α) � (c22 − s22)(1 + cα) + c21[s22(1 + cα) − (1 − cα)]

−2c1s1s2sα,
(11)

and (hi)i∈ {1,2,3} is a family of functions defined as

⎧⎪⎨⎪⎩ h1(q1, q2, α) � c1s2sα − s1(1 − cα)
h2(q1, q2, α) � c1(1 − cα) + s1s2sα
h3(q2, α) � c2sα.

(12)

The families (gi)i∈ {1,...,7} and (hi)i∈ {1,2,3} are introduced to
improve the readability of the matrices and the calculations.

As expected from Sofka et al. (2006a), and as we will
confirm with our derivation, the assembled system has 2 DoF.
Thus, it is possible to parametrize the position and
orientation of the reachable end effector configurations
with only two variables. For convenience we choose

u � ( αy αz )T . (13)

To fully characterize the set of feasible end effector
configurations it is necessary to specify the other 4 variables in Eq. 3.

To derive the angular orientation αx as a function of u, a key
point relies on noting that

0Tlee(3, 2) � 0Tlee(2, 3), (14)

and then, by using Eq. 5 and rearranging the terms, it is possible
to extract αx as

αx � arctan( sysz
cy + cz

), (15)

a result in agreement with (Sofka et al., 2006a).
Then, the analysis can be extended by deriving an explicit

formulation of the position of the center of the end effector
(xee, yee, zee) as a function of u. Only the key results are given
in the following part and the reader is invited to refer to
Supplementary Appendix B for more detailed proofs of the
different assumed expressions.Based on Eqs 5 and 8, we
have

FIGURE 4 | Kinematic diagram of a generic leg. It is composed of 3
linkages (1, 2, and 3), and 4 noncoplanar joints. It is parameterized by its
angular deviation α, its characteristic length d and its angular orientation η. The
coordinates frames are also represented. Its associated DH table is
given in Table 3.

TABLE 3 | Denavit-Hartenberg parameters of a generic leg.

# qi di ai αi

0 0 0 0 η

1 q1 0 0 π
2

2 q2 d 0 α

3 q3 -d 0 π
2

4 q4 0 0 π − η
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xee � 0Tlee(1, 4) (16a)

yee � 0Tlee(2, 4) (16b)

zee � 0Tlee(3, 4), (16c)

from which it can be shown [based on (10)] that

x2ee + y2ee + z2ee � 2d2(1 − cα), (17)

which gives the distance square of the point Oee to the point O0. This
distance is thus independent of the positions of the legs as it depends
only on d and α which are two parameters inherent of the mechanical
design of the system and could also be found based on a geometric
closed form of the system.

Defining such distance as

L : � d
��������
2(1 − cα)

√
, (18)

and using the previous equations, it can be shown that

x2ee � L2(1 + cycz
2

) (19a)

(yee + zee)2 � L2

2(1 + cycz)(sy − cysz)2 (19b)

(yee − zee)2 � L2

2(1 + cycz)(sy + cysz)2. (19c)

According to the convention defined previously, we have

∀(αy , αz) ∈ (−π/2; π/2), xee ≥ 0,

therefore, using Eq. 19a, we obtain

xee � L

������
1 + cycz

2

√
. (20)

Then, the system defined byEqs. 19b and 19c has 4 pairs (yee, zee) of
solutions. Yet, according to the convention previously defined, we
know that yee should increase when αz is increasing and zee should
decrease when αy is increasing. Therefore, there is only one suitable
solution for the pair (yee, zee), which is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yee � L
cysz���������

2(1 + cycz)√
zee � −L sy���������

2(1 + cycz)√ .
(21)

To conclude, the proposed system has 2 DoF in orientation and
the explicit formulation of the general mapping T is as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
αx
αy
αz

xee
yee
zee

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

arctan( sysz
cy + cz

)
αy

αz

L

������
1 + cycz

2

√
L

cysz���������
2(1 + cycz)√

−L sy���������
2(1 + cycz)√

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� T(αy , αz). (22)

This mapping is always defined for all (αy, αz) in (−π/2; π/2).

3.3 Inverse Kinematics Model
This subsection aims to find the position of all the joints of each
leg of the system as a function of the pose of the end effector, x.

Based on the chosen parametrization, calculations for
each leg are very similar. Therefore, only generic
calculations are presented in the following section.
Moreover, using the reduction of parametrization,
presented in Eq. 9, the aim is equivalent to find only q1
and q2 as functions of x. The reader is invited to refer to
Supplementary Appendix C for a more detailed
demonstration of the following equations.

Firstly, to obtain q2, the idea is to isolate h3(q2, α) defined in
Eq. 12. It can be shown that c2 is defined by the equation

c2 � 1
dsα

(cηzee − sηyee). (23)

From Eq. 23, it is possible to extract q2 as a function of x and
the parameters of the system, as follows:

q2 � arccos[ 1
dsα

(cηzee − sηyee)]. (24)

Besides that, it can be shown that c1 and s1 should satisfy the
following system

( s1
c1
) � 1

~d
( 1 − cα s2sα
−s2sα 1 − cα

)( xee
−(cηyee + sηzee) ), (25)

where ~d is defined as
~d � d[(1 − cα)2 + (s2sα)2]. (26)

As q2 is known in Eq. 24, it is possible to extract from Eq. 25 q1
as a function of only x and the parameters of the system, as
follows:

q1 � arctan⎡⎢⎣−s2sα(cηyee + sηzee) − (cα − 1)xee
(cα − 1)(cηyee + sηzee) − s2sαxee

⎤⎥⎦. (27)

The complete solution for a generic leg is then

q1 � arctan⎡⎢⎣−s2sα(cηyee + sηzee) − (cα − 1)xee
(cα − 1)(cηyee + sηzee) − s2sαxee

⎤⎥⎦
q2 � arccos[ 1

dsα
(cηzee − sηyee)]

q3 � arccos[ 1
dsα

(cηzee − sηyee)] − π

q4 � −arctan⎡⎢⎣−s2sα(cηyee + sηzee) − (cα − 1)xee
(cα − 1)(cηyee + sηzee) − s2sαxee

⎤⎥⎦.

(28)

It can be easily adapted for each leg, by replacing the generic
parameters and variables with the proper ones. For instance, by
replacing in the previous equations, (q1, q2, q3, q4) with
(qA1, qA2, qA3, qA4) and η with ηA, it is possible to obtain the
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inverse kinematics of leg A, namely TAee, and analogously for legs
B and C.

3.4 Differential Kinematics
The explicit inverse kinematics model is given as

qact � fIK(u), (29)

where qact represents the vector of the actuated joints of the
system, defined as

qact � ( qA1 qB1 qC1 )T , (30)

the function fIK can be written as

fIK(u) � ⎛⎜⎜⎝ fIK ,A(u)
fIK ,B(u)
fIK ,C(u)

⎞⎟⎟⎠, (31)

and u stands for the minimal parametrization of the system,
defined in Eq. 13.By differentiation of Eq. 29, we obtain

_qact � Au _u, (32)

where the matrix Au is defined as

Au � zfIK
zu

(u) � ⎛⎜⎜⎝ zαyfIK ,A(u) zαzfIK ,A(u)
zαyfIK ,B(u) zαz fIK ,B(u)
zαyfIK ,C(u) zαzfIK ,C(u)

⎞⎟⎟⎠, (33)

where for any function f and variable xi, zxif stands for the
partial derivative of f with respect to xi. An explicit formulation
of Au can be computed based on the results presented in
Section 3.3 and is reported in Supplementary Appendix D.
This formulation depends explicitly on the pose of the end
effector.

3.5 Static Equilibrium
Using the kinetostatic duality, we obtain

τu � AT
u τact , (34)

where τu in R2 represents the torques of the end effector
associated with u and τact stands for the torques of the
actuated joints, i.e., it could be denoted as

τact � ( τA1 τB1 τC1 )T . (35)

For a given external wrench f, acting on the end effector, the static
equilibrium gives us, using Eq. 34, the relationship between the
external wrench f and the torque of the actuated joints as

f � AT
u τact . (36)

As we assume to be working outside of the singularities, the rank
of the matrixAu is 2, so it has a pseudo-inverse. So, it is possible to
derive from Eq. 36, the torque τ*act required to balance a given
external wrench f* acting on the end effector, as

τ*act � Au(AT
uAu)− 1

f * + λN0, (37)

where λ is a scalar real andN0 represents a basis of the solutions of

AT
uX � 0. (38)

The reader is invited to refer to Section 4.1 for details on the
calculation of N0.

3.6 Static Stiffness
To define the static stiffness, we first need to define τact as a
function of the torque of the elastic elements.

Define fSA, fSBfSC the torque functions of the nonlinear elastic
elements placed on each leg of the system. Letting * ∈ {A,B,C}, fS*
represents thus the torque of the actuated joint on the leg * and is a
function of the deflection δ* of the elastic mechanism defined as

δ* � q*1 − θM*, (39)

where θM* denotes the position of each motor M*. θMA, θMB and
θMC are the controlled input variables of the proposed system.

Therefore, τact can be written as

τact(δ) � ⎛⎜⎜⎜⎝ fSA(qA1 − θMA)
fSB(qB1 − θMB)
fSC(qC1 − θMC)⎞⎟⎟⎟⎠ � ⎛⎜⎜⎝ fSA(δA)

fSB(δB)
fSC(δC)

⎞⎟⎟⎠, (40)

where δ stands for the vector of the deflections of the elastic
elements defined as

δ � ( δA δB δC )T . (41)

Let’s define σee, the static stiffness of the end effector as

σee � zτu
zu

. (42)

Using the chain rule we have that

σee � zτu
zτact

zτact
zqact

zqact

zu
. (43)

Based on Eq. 34, we have

zτu
zτact

� AT
u (44)

and based on Eqs. 29 and 33, we have

zqact

zu
� Au. (45)

Moreover, we have

zτact
zqact

� K(δ), (46)

where K(δ) is a diagonal matrix in R3×3 with the stiffness of each
leg on its diagonal, defined as

K(δ) �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

zfSA
zqA1

(δA) 0 0

0
zfSB
zqB1

(δB) 0

0 0
zfSC
zqC1

(δC)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (47)

Therefore, we obtain
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σee � AT
uK(δ)Au. (48)

3.7 Cartesian Compliance and Cost
Function
To represent the stiffness characteristics of the system, we decide
to represent in the space its Cartesian compliance, the quantity
denoted by c in R3×3 such that

dp � cdf , (49)

where p in R3 is a point attached to the end effector and f in R3 is
the Cartesian external forces applied at this point, i.e., f represents
only the forces applied on p in the directions x, y and z. This
decision is motivated by the fact that, as shown in the previous
section, the end-effector of the system has only 2 Dof, whichmeans
that the system will not allow motions in one of the three Cartesian
directions of space, thus in that same direction the stiffness would
be infinite. Therefore its inverse (i.e., the compliance) will be more
manageable mathematically, and easier to represent graphically.

According to the minimal parametrization defined in Eq. 13, p
is a function of u. So, we have

dp � Jdu, (50)

where the matrix J is in R3×2 and denotes the Jacobian matrix of
the function p with respect to the variables of u.

τu � JT f (51)

where τu denotes the forces associated with u and f stands for the
Cartesian forces of p, from which we obtain in the static
equilibrium

dτu � JTdf . (52)

Moreover, using the definition of the static stiffness of the end
effector in Eq. 42, we obtain

dτu � σeedu. (53)

The matrix K is always invertible and as previously said, the
rank of the matrix Au is 2, as we assume to be working outside of
the singularities, so it has a pseudo-inverse. Therefore, based on
Eq. 48, σee is invertible. So,

du � σ−1
ee dτu (54)

with

σ−1
ee � (AT

uAu)− 1
AT

uK
−1Au(AT

uAu)− 1
. (55)

So, by injecting Eq. 52 in Eq. 54, we obtain

du � σ−1ee J
Tdf , (56)

which gives us, based on Eq. 50, the expression of the Cartesian
compliance c such as

dp � cdf with c � Jσ−1
ee J

T . (57)

Knowing the compliance matrix, it is possible to derive the cost
function used in the optimization algorithm such as

y � ∑ntargets
i�1

∑3
j�2

∑j
k�2

[c(i, j) − cref (i, j)
cref (i, j) ]2

, (58)

where cref stands for the desired compliance matrix based on the
definition of the desired behavior and ntargets the number of
desired compliant behaviors. As a note, the sum is only done
on the lower-diagonal and diagonal components (and non-null)
of the compliances matrices as they are symmetric. The
minimization problem is done using MATLAB, based on the
sqp-algorithm.

3.8 Graphical Representation Methodology
To get a visual representation of the Cartesian compliance, we
plot the ellipsoid associated with the matrix c. This ellipsoid is
defined using the singular value decomposition of c. Its axes are
directed by the eigenvectors of the matrix and their half lengths
are defined by their respective associated eigenvalue. The ellipsoid
is centered in p. Hence, the ellipsoid represents the possible
deflection of the system in the space for a normalized external
wrench, and thus the greater the ellipsoid is, the more compliant
is the system.

Figure 5 shows an example of the various representations and
views of the compliance ellipsoids for a specific configuration of
the system. One way to represent the compliance ellipsoids is to
draw them in 3 dimensions. They can be viewed either from a 3D
perspective, such as in Figure 5A, or from a top view of the
system [i.e., on a projection on the plane (y, z)] such as in
Figure 5B. A second option is a representation in 2D, where
the same ellipsoids of the Cartesian compliance are plotted in a
plane (~Ly, ~Lz), such as in Figure 5C. This plane corresponds to an
arbitrary scaled distance between the points while following the
surface of all of the reachable points. It represents therefore the
ellipsoids as if they were always seen from the normal of every
point. Note that these ellipsoids are not defined in the (~Ly, ~Lz)
plane, so not to be affected by the representation singularities
associated with the selected parametrization in ~Lz � ± π/2. On
the contrary, they are defined in the tangent plane to each point of
the curved surface in Figure 5A. Note also that for ~Lz � ± π/2 the
ellipsoids are arbitrarily oriented choosing ~Lx � 0. Note that we
will preferentially use this representation in the rest of the paper,
referring to it as flattened representation.

The analogous of meridians and parallels have been plotted also to
help the understanding of the corresponding ellipses in the example
figures. In each representation, the locus of all the possible points
reachable of p is also plotted as a colored area even if the ellipsoids are
displayed only in some discrete points. This area is referred to as the
workspace of the system. The flattened representation has the
advantage not to distort the ellipsoids and not to be sensitive to the
Cartesian workspace which may be affected by the design parameters
of the mechanism. So, this representation will mainly be used
thereafter. Finally, the angular orientation of the axes of the first
joint of each leg is plotted as small black lines in the different graphs.

Besides, one thing to notice is that the ellipsoids are only ellipses,
tangent to the workspace. This is in agreement with the consideration
made at the beginning of this subsection, which motivated the choice
of representing the system compliance instead of its stiffness.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 61414511

Lemerle et al. Configurable 2 DOF VSA Architecture

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


4 RESULTS

4.1 Variable Stiffness Ability of the System
In this section, we prove that it is possible to have a decoupled
control of the position and the stiffness of the system, i.e., that it is
possible tomodify the spring load withoutmoving the end effector.

Let us consider first the static stiffness given in Eq. 48 and
show that it can be modulated. For a given position u, the matrix
Au is decided. Moreover, in case of the elastic elements are
nonlinear, the matrix K depends on the deflection δ which can
be controlled through the position of the motors θM*. Therefore,
the matrix K and thus the static stiffness of the system σee can be

controlled using nonlinear elastic elements in series of each
kinematic leg. This result agrees with the one in case of the
design of one DoF physically compliant VSA using the
antagonistic approach, as reported in the literature
(Vanderborght et al., 2013).

Similarly, the Cartesian compliance of the system defined in
Eq. 57 can be controlled if the elastic elements are nonlinear by
modifying the positions of the motors θM*.

Let us prove now that the compliance can be modulated at a
fixed position. The first step is to derive a possible expression of
N0, a basis of the space of the solutions of Eq. 38. The matrix Au,
defined in Eq. 33 can be written as

FIGURE 5 | Cartesian compliance ellipsoids of the system (A) 3D view, (B) top view and (C) flattened (see text for detail) representations. Simulations are made at
the center of the end effector, with ηA, ηB and ηC evenly distributed around the basis, α � π/4, d � 50mm and c � (1 rad/Nm, 1 rad/Nm, 1 rad/Nm)

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 61414512

Lemerle et al. Configurable 2 DOF VSA Architecture

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Au � (Qy Qz ), (59)

where Qy and Qz stand respectively for the first and second
columns of matrix Au.

Therefore, X in R3 is a solution of Eq. 38 if and only if

{QT
y X � 0

QT
z X � 0

. (60)

This system of equations has a space of solution of dimension 1 if
and only if Qy and Qz , i.e., the two columns of Au, are non-
collinear which can be written as det(AT

uAu)≠ 0. This is always
true as we assume to be working outside of the mechanical
singularities, i.e., the rank of Au is equal to 2.

Therefore, the Solutions of Eq. 38 are described as

{X ∈ R3
∣∣∣∣∃λ ∈ R, X � λN0}. (61)

A possible definition of N0 is thus

N0 � Qy × Qz

‖ Qy × Qz ‖2, (62)

where . × . and ‖ .‖2 denote respectively the cross product and the
euclidean norm of vectors in R3.

Therefore, along the space described by N0, we have a one
dimensional space where τact is varying without affecting the
equilibrium position of the end effector. The matrix Au is thus
constant as the pose of the end effector is decided and
therefore, qact is fixed. Assuming the non-linearity of the
elastic elements, there is a space to control the compliance
of the end effector without modifying the pose of the end
effector. This is a one-dimensional space and can be therefore
used to control a one-dimensional variable linked to the

stiffness, such as the sum of the potential elastic energies
stored in each elastic elements.

The effect of the internal modulation is studied while varying the
parameter λ defined in Eq. 37, with the model of the elastic elements
defined in Eq. 1. It has to be noticed that with this definition of fS*, the
stiffness of each elastic element is an even function in λ, as fS* is an odd
function in λ, using Eq. 37. Figure 6 represents the Cartesian
compliance ellipses for various values1 of λ. We can see how,
acting on λ, the ellipses scale homogeneously in all directions,
without appreciable changes in shape and orientation like the co-
contraction of human muscles (Milner, 2002; Perreault et al., 2002).

Moreover, Figure 7 shows the evolution of the legs torque and
stiffness, and the output force at three different positions of the
end effector, highlighting how the actuation of λ changes the
stiffness but does not change the external equilibrium. Indeed, the
external wrench balanced at the end effector (f ay, f az) is not
modified whereas the stiffness of each leg is affected and thus the
stiffness of the end effector.

As a final note, it is possible to show that the stiffness of the
system is increasing when the external wrench is increasing. In
addition, although the stiffness increases slightly in all directions,
the increase is larger in the direction of the applied external force.
For sake of space, the associated figures are not displayed here as
this is an expected behavior for a VSA (Vanderborght et al.,
2013).

4.2 General Design Guidelines
In this section, we give the results of the effects of the geometric
parameters on the compliance of the system according to the
methodology described in Section 2.3. To show their effects, the
Cartesian compliance ellipsoids are plotted at the center of the
end effector (i.e., p in the previous analysis is Oee) for several
positions of the end effector [parametrized by u � ( αy αz )T ]
and various geometries defined by the design parameters.When it
is relevant, the workspace of the system is also plotted as a colored
area even if the ellipsoids are displayed only in some discrete
points.

Figure 8 represents the different figures of the simulations when
the various design parameters are varying. Figures 8A,B show the
results when the angular positions of the legs are varying in a
symmetric or asymmetric way. We can see that in both cases,
depending on the angular position, it is possible to stretch the
ellipses in one of its two main directions by modifying the value of
the angle and to rotate them. Figures 8C–E show the effects of α on
the Cartesian compliance ellipses and the workspace. We can notice
that the compliance ellipses are globally increasing when α is
increasing. Figures 8F–H show the effects of d on the Cartesian
compliance ellipses and the workspace. We can notice that the
compliance ellipses are globally increasing when d is increasing.

As it is shown in the different figures, all the design
parameters do not have the same effect nor the same
intensity on the compliance characteristic of the system. For
instance, the effects of α are more important in terms of

FIGURE 6 | System Compliance in flattened representation, as a
consequence of the internal modulation while λ is varying in the set {0 Nm, 2
Nm, 5 Nm, 10 Nm}. Simulations are made at the center of the end effector,
with ηA, ηB and ηC evenly distributed around the basis, α � π/4,
d � 50mm, and all the elastic elements identical (K* � 1Nm/rad
and δ0* � 1 rad).

1λ is only varying in the positive values as the stiffness of each elastic element is an
even function in λ in case of a hyperbolic sine spring.
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stretching the ellipses, especially at the borders of the
workspace, whereas d has more a global influence
everywhere that can be compensating by using different
elastic elements. Moreover, it is important to notice that
both previous results go together with a stretch of the
surface of the feasible positions of the end effector, shown
in Figures 8C,D,F,G. This explains that the increase in
compliance is also an effect of the increase of the lever arm
of the forces. Combining the previous two effects, it is
conceivable to change the shape of the ellipses while
maintaining the feasible surface and ellipses area roughly
constant by changing alpha and d simultaneously in
opposite directions. However, it appears that α and d are
not enough to modulate the ratio of the ellipse at (0,0)
position where we observe always a circle for an even
distribution of the legs as shown in Figures 8E,H. This
shows a limitation of using only these two parameters to
modify the embedded behavior in the system and justify the

use of the angular positions of the legs as geometric
parameters.

4.3 Design Parameters for Human-Like
Joints
In this section, we derive sets of parameters to match the
passive compliant behavior of a human wrist (Pando et al.,
2014) and a human ankle (Lee et al., 2014). In both cases, the
idea is to find the best set of parameters to match the targeted
ellipse at the neutral position, defined in Section 2.4.1.
Regarding the input of the algorithm, we would like to
match 3 characteristics. Therefore, with 12 design
parameters the solutions are not unique. We can then set
additional constraints besides the realistic values of the design
parameters. As we are considering passive behavior, we set λ
equal to 0. This means that in absence of external load, no
motor torque is required to get the passive behavior of the

FIGURE 7 | Evolution of the torque of each leg τ leg, their respective stiffness σ leg and the force balanced by the end effector (f ay, f az) (in the directions of αy and αz) for
λ varying between -10 Nm and 10 Nm and for various equilibrium positions ueq and external forces feq � (f ayext, f azext). (A) corresponds to ueq � (0, 0) deg − feq � (0, 0) Nm, (B)
to ueq � (90, 0) deg − feq � (5, 0) Nm and (C) to ueq � (60,30) deg − feq � (3, −5) Nm.
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system. Moreover, we consider an even distribution of the legs
around the basis. Figure 9 represents solutions for a wrist and
an ankle considering theses constraints. Their associated
design parameters are reported in Table 4. Therefore, it is
possible to get feasible systems based on the proposed
architecture with a passive compliant behavior similar to
the human wrist or a human ankle.

5 DISCUSSION

In this work, we proposed and studied a new concept to
design a 2 DoF VSA. To reduce the complexity of the
mechanical implementation and increase the compactness
of the system, we use only 3 motors. This is the minimum
number of motors to be able to have a 2 DoF mechanism fully

FIGURE 8 | Effects of the geometric parameters on the system compliance. (A) represents the system compliance in flattened representation, as the angular positions
of the two legs ηB and ηC vary in a symmetric way. ηA is fixed and equal to 0, ηC � −ηB and ηB is varying in the set {π/4, π/3, π/2, 2π/3, 3π/4}. Simulations are made at the
center of the end effector, with α � π/4, d � 50mm and c � (1 rad/Nm 1 rad/Nm 1 rad/Nm). (B) represents the system compliance in flattened representation, when the
angular position of one leg (ηB) varies in an asymmetricway. ηA and ηC are fixed and respectively equal toπ/4 and −π/4 and ηB is varying in the set {−3π/4, −2π/3,−π/2,
−π/3, π/3, π/2, 2π/3, 3π/4, π}. Simulations are made at the center of the end effector, with α � π/4, d � 50mm and c � (1 rad/Nm, 1 rad/Nm, 1 rad/Nm). (C) and (D)
represent the workspace of the system in 3D view and side view when α is varying in the set {π/6, π/4, π/3, 5π/12}. (E) is the associated flattened representation of the
compliance ellipsoids. Simulations aremade at the center of the end effector, with ηA, ηB and ηC evenly distributed around the basis,d � 50mmand c� (1 rad/Nm, 1 rad/Nm,
1 rad/Nm). (F) and (G) represent the workspace of the system in 3D view and side view when d is varying in the set {25 mm, 50 mm, 75 mm, and 100 mm}. (H) is the
associated flattened representation of the compliance ellipsoids. Simulations aremade at the center of the end effector, with ηA, ηB and ηC evenly distributed around the basis,
α � π/4 and c � (1 rad/Nm, 1 rad/Nm, 1 rad/Nm).
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actuated in positions and partially actuated in stiffness.
Therefore, our solution is more compact than most of the
solutions existing in the current state-of-the-art (refer for
instance to the works of (Grebenstein et al., 2011; Romano
et al., 2014; Weckx et al., 2014; Koganezawa, 2017; Tan et al.,
2017)). To the best knowledge of the authors, only the work in
(Stoeffler et al., 2018) follows the same approach of using only
3 motors.

Obviously, a limitation of our proposed solution relies in
the loss of DoF in the control of stiffness of the system with
respect to the existing 2 DoF VSAs. Indeed, our system can
control the overall size of its endpoint stiffness ellipse but not
its stiffness independently in the two directions of motion. Yet
this approach is motivated by the fact that human beings
modulate their stiffness through both their posture
(exploiting the geometry and properties of their limbs)
and co-contraction (Milner, 2002; Perreault et al., 2002).
More interestingly, their effects are quite distinct as the
limb geometry and posture have a large impact on the
shape and orientation of the ellipse and the co-contraction
on the overall size (Perreault et al., 2002). Therefore, by
implementing physically the human joint geometry and
allowing the control of the overall size of the stiffness, we
can design human-like joints with the potential of natural
control of both the position and stiffness. To the best
knowledge of the authors, there is no other work following
this approach.

However, the challenge of the mechanical implementation of
the passive compliance of human joints remains. That is why we
derived a model of our system and studied the effect of its main
design parameters on the characteristics of the compliance
ellipses. Additionally to the guidelines given in Section 4.2, it

appears that the influences of the angular positions of the leg are
interesting as they allow us to stretch or rotate the compliance
ellipses in certain directions. Combining all of the effects, it will be
possible to embed some specific behavior in the design for a
specified application. And indeed, we derived sets of design
parameters to match the passive behavior of a human wrist
and a human ankle.

For now, biomechanical data exists only at the neutral
position of the joints. However, in the future, additional
data could be available on various positions of the
workspace of the joints. In this case, we may want to match
several ellipses. In the proposed system, it is possible to
increase the number of desired ellipses. Figures 10A,B
present solutions for 2 desired ellipses. The case 1.1
corresponds to a solution with an additional constraint of
the vector λ equal to 0. As it is shown, this solution may be
insufficient. Case 1.2 stands for a solution without any

FIGURE 9 | (A) Compliance ellipses at the neutral position in absence of external load for a wrist joint. The dashed black line stands for the targeted ellipse
extracted from human biomechanical data in Pando et al. (2014). The blue line represents compliant behavior of the proposed systemwith an even distribution of the
legs around the basis. (B) Compliance ellipses at the neutral position in absence of external load for an ankle joint. The dashed black line stands for the targeted
ellipse extracted from human biomechanical data in Lee et al. (2014)). The blue line represents compliant behaviour of the proposed system with an even
distribution of the legs around the basis.

TABLE 4 | Design parameters to match human wrist and human ankle.

Human wrist Human ankle

ηA (°) 1 10
ηB (°) 121 130
ηC (°) 241 250
α (°) 45 45
d (mm) 50 50
K1 (Nm/rad) 0.939 0.479
K2 (Nm/rad) 1.968 1.514
K3 (Nm/rad) 1.990 1.959
δ0,1 (rad−1) 1.53 4.47
δ0,2 (rad−1) 0.28 0.02
δ0,3 (rad−1) 0.44 0.03
λ (Nm) 0 0
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additional constraints. In this case, the two ellipses are well
matched. It shows that the system could match additional
passive behaviors, for instance by relaxing the constraint of
passivity, previously explained (λ equal to 0). The associated
design parameters of these 2 cases are given in Table 5.

To go further, we could also apply the proposed concept to
more complex joints (such as the shoulder or the hip).
Unfortunately, such biomechanical data are not yet
available. We are more than aware that this is not an easy
task and we can only encourage the biomechanical scientific
community to pursue their current efforts in this direction,
such as the work proposed in Hunt and Lee (2019).

As another further step, we could imagine having a lot of desired
ellipses. The case 2.1 for instance corresponds to an isotropic

FIGURE 10 | (A) (case 1.1) represents the compliance ellipses at the neutral position in absence of external load with λ null. (B) (case 1.2) represents
the compliance ellipses at the neutral position in absence of external load without any additional constraints. (C) (case 2.1) represents the
compliance ellipses in a large portion of the workspace. In all figures the dashed black lines stand for the targeted ellipses and the blue lines stand for the
solutions.

TABLE 5 | Design parameters of cases 1.1 to 2.1.

Case 1.1 Case 1.2 Case 2.1

ηA (°) 9 55 111
ηB (°) 110 128 180
ηC (°) 170 211 249
α (°) 30 49 40
d (mm) 49 49 10
K1 (Nm/rad) 2.000 0.789 0.01
K2 (Nm/rad) 2.000 1.986 0.01
K3 (Nm/rad) 0.01 1.051 0.01
δ0,1 (rad−1) 1.08 1.79 6.50
δ0,2 (rad−1) 0.64 0.63 4.86
δ0,3 (rad−1) 6.5 3.20 6.50
λ (Nm) [0 0] [5.94 7.9e−5] 025
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compliant behavior of the system in a large portion of the
workspace. Such a system could be conceived for applications
using teleoperated robots where we would like to have the same
behavior over the workspace. Concretely, the required behavior is
now a compliance circle over 25 positions over a grid of 5 × 5
positions between −60° and 60° in both directions. In this case, we
have thus 75 characteristics tomatch. Similar results are obtained if
the vector2 λ is free and if λ is set to 0, ensuring thus the passivity of
the compliant behavior. Therefore, only the results when λ is null,
noted 025, are displayed here. Figure 10C represents the result of
the optimization algorithm and the parameters are given in
Table 5. As it is shown in Figure 10C, the behavior is not
exactly matched but it seems acceptable over a smaller range of
the workspace.

Obviously, in the case of several desired ellipses, there are
some mechanical limitations but we can refer to Section 4.2
to get the general trends and to design useful desired
behavior. And it seems possible to design artificial
joints that match the passive compliant behavior of
human articulations in various positions of the
workspace, to investigate the potential of such features in
robotic systems.

Another limitation of this study is that we did not explore
the space of all the possible spring characteristics. Indeed, we
used a model (referred to as hyperbolic sine springs) that we
already implemented in previous works (Catalano et al., 2011;
Lemerle et al., 2019), as similar elastic behaviors can
reproduce some attributes of an antagonistic pair of
muscles driving a joint (Garabini et al., 2017). However, to
improve the human-likeliness of the output stiffness
characteristic, we could study more extensively on the best
nonlinear spring characteristic that should be implemented.
This was out of the intended scope of this work, but future
studies could investigate further on this topic using additional
biomechanical data to implement human-like stiffness
behaviors.

6 CONCLUSION

This paper presents the concept of a new configurable 2 DoF
variable stiffness joint. The system is based on redundant
parallel nonlinear elastic actuation, using the antagonistic
approach inspired by the human musculoskeletal system. The
kinematic structure of the system is based on the architecture
of the Omni-Wrist III, designed by Rosheim et al. and we
propose to add in series nonlinear elastic systems to obtain a
VSA. To get a compact design, only three motors are used and
we prove that this allows us to control both the position and
the overall stiffness of system. A one-dimensional quantity
linked to the stiffness can thus be controlled like the
voluntary co-contraction of human muscles. Moreover, we
outline the impact of the main design parameters on the

compliant behavior of the system as general guidelines. We
describe an optimization methodology to fine-tune the
mechanical implementation of this type of system to
match the specific passive behavior of a human wrist
and ankle.

We believe that the proposed design could find many
applications, including industrial manipulators and
prosthetic devices for various joints, due to its versatility.
The sets of parameters obtained to match the passive behavior
of a human wrist are particularly relevant as they open the
possibility to design a compact system with an embedded
passive behavior close to the human one. A new prototype of a
compact physically compliant variable stiffness wrist is
currently under development.
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