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We propose a fault-tolerant estimation technique for the six-DoF pose of a tendon-driven
continuum mechanisms using machine learning. In contrast to previous estimation
techniques, no deformation model is required, and the pose prediction is rather
performed with polynomial regression. As only a few datapoints are required for the
regression, several estimators are trained with structured occlusions of the available
sensor information, and clustered into ensembles based on the available sensors. By
computing the variance of one ensemble, the uncertainty in the prediction is monitored
and, if the variance is above a threshold, sensor loss is detected and handled. Experiments
on the humanoid neck of the DLR robot DAVID, demonstrate that the accuracy of the
predicted pose is significantly improved, and a reliable prediction can still be performed
using only 3 out of 8 sensors.

Keywords: pose estimation, fault-tolerant, data-driven, machine learning, continuum mechanism

1 INTRODUCTION

Robotic systems with deliberately introduced elasticity have become a promising alternative to
classical rigid robots, be it in manipulation or locomotion tasks, in humanoid or animoid robots.
Apart from their favorable dynamic properties, passive compliance protects the actuators from peak
forces or torques that arise from collisions, be they unexpected or intentional. In this context, the
development of distinct joints arose termed continuum mechanism. They extend the current
portfolio of joints with passive compliance and use a spring element made out of a continuously
deformable soft material with a beam-like geometry. As an example, the neck joint of the humanoid
robot David (Reinecke et al., 2016) is shown in Figure 1.

The application requires to control the pose of the top end of the continuum mechanism, termed
end effector pose, along trajectories or toward equilibrium positions in its workspace. Rigorous
models which relate encoder values of the actuation to end effector poses are computationally
expensive and prone to model parameter uncertainties. As we are aiming for mobile systems, the
need of external tracking system must be limited to calibration and evaluation of a pose estimation
method. At deployment time, such pose estimation method must use onboard sensors only.

In this paper, we propose a data-driven approach to pose estimation for elastic structures, which
also features uncertainty estimation and error-handling. The specific contributions, which also define
the structure of the paper, are:

• A data-driven approach for real time six-DoF pose of tendon-driven continuummechanism using
few data points. The model-free estimator can be trained in the experiment and requires only a
small number of measurements (Section 4.1).
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• Uncertainty estimation to detect sensor failure (e.g., slack tendons).
This is done by creating an ensemble of estimators, where each
estimator takes only a subset of sensor information as an input, and
monitoring the uncertainty (Section 4.3).

• A strategy to handle sensor by adapting the pose estimation. As
soon as an anomaly is detected, we select the estimators not
using the faulty sensors and continue predicting accurately the
pose. To the best of our knowledge, this is the first work dealing
with failure detection and handling in the context of continuum
mechanisms (Section 4.3).

• Demonstrating the effectiveness of these methods on the elastic
neck of the DLR robot DAVID. In particular, we demonstrate
that the accuracy of the pose estimation is significantly
improved, and that reliable predictions can still be made
with only 3 out of 8 sensors (Section 5).

Before following this structure, we first formalize the problem
statement in the next section.

2 PROBLEM STATEMENT

This work treats the estimation problem of the position and
orientation (pose) of the upper platform of a tendon-driven
continuum mechanism. The considered mechanism is
depicted, in its current application in Figure 1, and a
schematic drawing to illustrate the kinematics in Figure 2. It
consists of a inertial fixed lower platform, a moving upper
platform and a continuum structure in between. The inertial
frame of reference is denoted B and is attached to the base of the
neck. The position of the upper platform is described by the
origin of frame H, expressed in B, and is denoted as
Br � (x, y, z)T . The orientation of frame H, expressed in B, is
represented by the three Euler angles, denoted as
θ � (θx, θy, θz)T , and combined with the transformation order

ABH � R(θz)R(θy)R(θx) (1)

where ABH ∈ R3×3 incorporates the base vectors of frame H. As
the workspace of the system does not exceed ± 90+ in any
direction, no singular configurations of the Euler angles
appear. The pose is summarized in the vector q ∈ R6,

q � (x, y, z, θx, θy , θz)T (2)

For actuation, tendons are connected to the upper platform.
By putting tension on them, a loading is introduced onto the
upper platform which deforms the continuum and initiates a
motion. The tendons are routed alongside the continuum to the
lower platform without touching, Figure 1 indicated with red. In
the lower platform, the tendons actuators are located. The
incorporated position measurement Δ~l ∈ R4 allows the free
length of each of the tendon to be measured, assuming a
known initial length lt,0 ∈ R4,

lt � lt,0 − Δ~l (3)

Furthermore, four additional length sensors are placed on the
system indicated in green in Figure 1. They are also spanned from

the upper to the lower platform and provide sensor values ~s ∈ R4

which correspond linearly to their length,

ls � K s~s (4)

with the constant calibration matrix K s ∈ R4×4. In summary, the
sensor information are included in ~l � (lTt , lTs )T ∈ R8 and as the
attachment and routing points of additional length sensors are
known, a geometric model for the measured length is available,

li(q) � ����rp,i−Br − ABHHri
����2, for i � 1...8 (5)

In a prior publication (Deutschmann et al., 2019), the
estimation problem was solved using the geometric model for
the length sensors of Eq. 5. An online minimization of the error
el ∈ R8 between the length measurements~l and the model l(q) is
carried out to find an estimate of the pose q̂ ∈ R6,

min
q̂

����~l − l(q)����22 � min
q̂
‖el‖22 (6)

Sources of error using this pose estimation technique are
related to the following assumptions. First, it is assumed that
the sensor readings in Eqs 3, 4 correspond linearly to a length of
the tendons or sensors. Second, the geometric model in Eq. 5
relies on the accurate knowledge about the pulley kinematics of
the tendons, and perfectly known attachment points and straight
sensors. If these assumptions do not hold, the accuracy of the
resulting pose which minimizes Eq. 6 might be affected.

In tests on the real hardware, the pose could be predicted with
a maximum estimation error of ± 4.5mm for position and ±4°
orientation (Deutschmann et al., 2019). The drawbacks of this
method are that a good initial estimate is required to converge,
the presence of local minima, and the assumption of perfectly
known dimensions, e.g., the location of the pulleys and hinges
w.r.t. B.

3 RELATED WORK

There are two main approaches to pose estimation for elastic
structures. If the geometric and material parameters are known
with high accuracy, geometric (Jones and Walker, 2006) or static
(Camarillo et al., 2009; Rucker and Webster, 2011) deformation
models are employed. As these models require information about
actuator positions or forces/torques, a common strategy is to use
actuation sensors or additional sensors such as passive cables
(Rolf and Steil, 2012) or fiber-bragg sensors (Roesthuis andMisra,
2016). More recently, a pose estimation technique without a
deformation model for tendon-driven continuum mechanism
was proposed (Deutschmann et al., 2019). It uses encoder values
of the tendon actuation, additional deformation based length
sensors and a model for the pose-dependent length
measurements to extract the pose by nonlinear optimization
or an Extended Kalman Filter. Two disadvantages of model-
based approaches is that they are prone to parameter uncertainty,
and also rely on the assumption of taut tendons (and length
sensors) which might be jeopardized in fast motions or external
contacts.
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The second approach is to use data-driven methods, which
learn a direct input-output behavior from measured data. The
inputs are commonly actuation torques or actuator positions, and
the corresponding output is the end effector pose. Popular models
are based on neural networks to approximate the static
characteristics from actuation forces (Braganza et al., 2007;
Giorelli et al., 2015), or a Gaussian mixture model to relate
actuator lengths to end effector poses (Malekzadeh et al., 2016).

Fault detection in robotic systems (Khalastchi and Kalech,
2018) is a particular instance of the wide field of anomaly
detection (Chandola et al., 2009). Three main approaches to

tackle the issue are distinguished (Khalastchi and Kalech, 2018):
1) knowledge-based, 2) data-driven-based and 3) model-based
approaches.

The fundamental assumption in knowledge-based approaches
are that all faults and their corresponding symptoms are known.
Then, casual analysis is used based on the fault-symptom
relationship to find to fault which is occurring. In (Hamilton
et al., 2001) this approach is used to for autonomous underwater
vehicles.

Similarly, a common technique in machine-learning is train a
model to classify normal and abnormal behaviors in a supervised
fashion (Hornung et al., 2014). This requires a labeled dataset, and is
unlikely to generalize to unseen faults. When no labels are available,
unsupervised methods such as distance to a nearest neighbor (He
andWang, 2007) or data clustering (e.g., fitting a Gaussian mixture
model to the data (Yu et al., 2010)) can be used instead.

Machine learning techniques belong to the second category,
i.e., data-driven approaches and represent a large source for
possible fault detection techniques. Other approaches covers
the generation of data for nominal behavior by a physical
simulator (Haidu et al., 2015). Based on the data, a failure
envelope is learned for each datatype and failures are
distinguished if the envelope is violated during task execution.

Other data-driven approaches make use of statistical filters. A
common approach in mobile systems is the usage of Kalman-
filters. A fast approach which utilizes one Kalman filter can be
found in (Schmid et al., 2012; Steidle et al., 2016). Faulty sensors
used in the process update are handled based on a confidence
measure of the sensor data. Depending on that confidence, sensor
information is added or removed in the process update. Also, a
bank of Kalman-filters is utilized where each Kalman-filter
predicts the nominal state of a systems assuming a specific
failure has occurred. For a mobile autonomous robot in (Goel
et al., 2000), a bank of eight filters are utilized (implying eight
possible failure sources) and the most reliable filter, used for state

FIGURE 2 | Schematic image of the tendon-driven continuum
mechanism including the used coordinate frames and vectors to build up the
kinematic model of the length measurement.

FIGURE 1 |Neck and head of the humanoid robot David. Left:Motion capability of the structurally flexible neck joint.Middle:Close up scheme of the experimental
system and the necessary length information from the respective sensors. Right: Experimental setup with the LEDs used by the tracking system (in black) and the
additional length sensors (highlighted in green).
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estimation, is chosen based on pre-trained neural-network using
the filter residuals. As every filter is related to a specific failure,
diagnosis is already incorporated.

The last category are model-based approaches. Commonly,
they utilize a model of the system for a nominal behavior and fault
are correspondingly identified if the real behavior, measured by
some signals, is not coherent with the model of this signal. For
hardware failures, physically inspired models are commonly used
and a comprehensive treatment can be found in (Chen and
Patton, 2012).

Our proposed method is a data-driven approach which utilizes
machine learning with unsupervised training as it does not
require labels. Unlike the previous approaches, that only detect
a potential failure, we leverage minimal knowledge about the task
to detect and handle the fault.

4 METHOD

4.1 Pose Estimation as a Regression
Problem
The problem of predicting the six-DoF pose q given
measurements ~l can be formulated as a supervised learning
problem. For a given estimator fΘ, parametrized by the vector
Θ ∈ Rp (p is the number of parameters), the objective is to find
the parameters Θ that minimize the error between its prediction
q̂ � fΘ(~l) ∈ R6 and the true pose q:

L(q, q̂) � ‖ q − q̂ ‖22 (7)

where L is the loss function or objective function.
This is a classic regression problem that can be solved using

various techniques (Stulp and Sigaud, 2015). In this paper, we use
linear models fΘ(~l) � ΘT~l and second-order polynomial models
fΘ(~l) � ΘTϕ(~l), where ϕ extracts polynomial features. We
estimate the parameters with least squares. We select those
models and method because they are fast to compute, do not
require hyperparameter tuning or a large amount of data, and the
learned model is easily interpretable. In our case, we also found
that adding more complexity (e.g., using a neural network or
higher order polynomial) did not improve accuracy.

4.2 Uncertainty Estimation Using
Bootstrapped Ensemble
Querying only one predictor fΘ may be fastest, but one predictor
alone does not provide uncertainty estimation, which is crucial to
detect and handle failures. Here, we distinguish between aleatoric
and epistemic uncertainty (Gal, 2016). Aleatoric uncertainty is
due to the sensor noise and is irreducible (unless we improve the
sensor precision). Epistemic uncertainty corresponds to the
uncertainty in the model. This can be reduced by providing
more training data, and increases with input samples out of the
training distribution (Kendall and Gal, 2017). This is the
uncertainty that allows failure detection.

Uncertainty estimation can be achieved by training an
ensemble of n models ε � { fΘ1, fΘ2, . . . fΘn}, each model having

different parameters Θi (e. g., by using different parameter
initialization for each model). A measure of the uncertainty
would be the variance of the predictions. That is to say, the
uncertainty for dimension k of the pose q ∈ R6 can be estimated
with:

σ2
k �

1
n
∑n
i�1

[fΘi(~l)k − fΘ(~l)k]
2

(8)

where fΘ(~l) is the mean of the predictions and the subscript k
denotes the k-ith element of the vector.

Unfortunately, such an ensemble underestimates the
epistemic uncertainty, as all the models are trained on the
same dataset D. To address this issue, we can train each
model fΘi only on a subset of the training set Di ⊂ D. That
way, each model makes different errors and it reduces the
overconfidence of the ensemble. This technique is called
bootstrapping (Efron, 1992; Breiman, 1996) and the resulting
ensemble is a bootstrapped ensemble. The interesting bit of
bootstrapped ensemble is that we can use any predictor fΘi.
Figure 3 summarizes the creation of ensembles and sub-
ensembles of models.

4.3 Failure Detection and Handling
The ensemble of estimators presented in the previous section
gives us an uncertainty measure: the variance σ2k of the estimators.
With this uncertainty measure, we can simply use a threshold λ to
detect a failure. That is to say, we consider that there is a failure
if σ2k > λ. Figure 4 illustrates how such ensemble can be used to
detect a failed sensor.

For our six-DoF pose estimation problem, we have redundant
sensor information: there are more sensors than needed and there
is coupling in the system. Because of the extra sensors, we can
detect which one(s) failed, and react to it by grouping the
predictions. This allows to estimate the pose q accurately even
with multiple failures. The key insight is how we define the
subsets Di ⊂ D to create the ensemble (cf. Figure 3): we use only
part of the sensors measurements ~l to construct the subsets and
then group the estimators in sub-ensembles εl ⊂ ε by sensor(s)
not used for prediction. As an example, masking the first sensor
results in the input vector ~l � (0 ~l 2 ~l3 ... ~l8).

To illustrate the idea, we now consider the case where we mask
m � 2 sensors (out ofN � 8) as shown in Figures 3, 5. Among the
ensemble of trained models ε � (fΘi, i � 1 . . . n), one is not using
sensors ~l1 and ~l2 (masked sensors are filled with black in
Figure 3), another not using ~l1 and ~l3, . . . in a way that there
is a sub-ensemble ε~l1 ⊂ ε composed of estimators that don’t use
the first sensor ~l1 for predicting the pose (first sub-ensemble in
Figure 3), a second one ε~l2 with estimators that don’t use the
second sensor ~l2, . . . as a result, if one sensor breaks down as in
Figure 5, we can still use the predictions of one sub-ensemble: the
one that does not use the failed sensor.

In order to check if a sub-ensemble εl is usable, we compute the
sub-ensemble variance σ2k and compare it to a threshold . When
there is no error, all sub-ensembles should have a variance below
the threshold. If one failure occurs, e. g. on the sensor j, then only
one sub-ensemble should pass the test: ε~lj which is composed of
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estimators that do not use sensor j. The appropriate threshold λ is
determined empirically.

The previous example was for one failed sensor only. To detect
and handle more than one, we repeat three steps:

1. Ensemble prediction: predict the pose using each model
from the ensemble ε

2. Group predictions by sensors not used to create the
sub-ensembles εl ⊂ ε

3. Check the variance of each sub-ensemble to detect failure

We start with m � 2 masked inputs to detect and handle one
failure and increment that number if needed. We provide the

reader with a visual explanation of the method in the
Supplementary Video.

To detect nfailures failures, we need to create sub-ensembles εl
with m � nfailures sensors masked. To identify which sensor(s)
failed, we need to mask one additional sensor. As a first approach,
we create the subsets Di ⊂ D corresponding to all the possible

(N
m
) mask configurations, and train one model for each subset.

That is to say, we train an ensemble ε of n � (N
m
) models.

We then repeat that process with additional sensors masked, until
there are not enough sensors left to have a reliable prediction. For the
experimental platform used in this paper, the experiments reveal that

FIGURE 3 | Illustration of the ensemble ε and sub-ensembles creation for m � 2 masked sensors per estimator. 1. Creation of an ensemble of models 2.
Bootstrapping by masking sensors 3–4. Grouping the ensembles by sensor not used to create sub-ensembles.

FIGURE 4 | Illustration of the failure detection using an ensemble of estimator. 1. Predicting the pose which each model in the ensemble 2. Aggregating the
predictions to obtain a mean and a variance 3–4. Detecting failure by using a threshold on the variance (measure of uncertainty).
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relying on 3 (out of N � 8) sensors is enough to have an acceptable
precision, which means we can detect and handle up to 4 failures.

Concretely, to be robust up to 4 failures, we need to cover the
cases where:

• there is one failure, therefore mask 2 sensors and train

( 8
2
) � 28 polynomial models.

• there are two failures, therefore mask 3 sensors and train

( 8
3
) � 56 polynomial models.

• there are three failures, therefore mask 4 sensors and train

( 8
4
) � 70 polynomial models.

• there are four failures, therefore mask 5 sensors and train

( 8
5
) � 56 polynomial models.

Which means we have to train ∑5
m�2(N

m
) � 210 polynomial

models in total to handle all possible cases. We start with m � 2
masked sensors and the first 28 polynomial models (nominal
case, no failure) and then increment the number of masked
sensors and use additional polynomial models only if needed.
The failure detection and handling process remains the exact
same at each stage: they are the three steps presented above.

Although simple, this naive way of creating subsets does not
scale well if the number of sensors or failures handled increases.
We discuss in Section 5.6 how to optimize that process.

5 EXPERIMENTS

The goal of this section is to evaluate the performance of the
proposed method in terms of speed and accuracy, and investigate
its robustness against one or more sensor failures.

5.1 Experimental Setup
The experimental setup consists of the tendon-driven continuum
mechanisms used as the neck of the humanoid robot DAVID,
Figure 1. The upper platform is equipped with a marker target of
an external camera tracking system, which serves as the ground
truth data of the pose. The tracking system is only used for
training, evaluation and is not needed afterward. The pose
dependent length information that is retrieved at a frequency
of 300 Hz comes from two sources. The tendon lengths are given
by the tendon actuators from Robodrive and the four additional
length sensors are provided by Kinfinity UG.

The placement of the two type of sensors is not arbitrary. The
tendons, i.e., the power transmission element of the actuation,
decide the reachable workspace of the mechanism and therefore
their routing cannot be changed. In contrast the placement of
length sensors can be chosen almost freely. In (Deutschmann
et al., 2019), different placements of the sensors were
experimentally investigated regarding their accuracy. To
provide a fair comparison, the configuration yielding best
results was also chosen for the present paper. The system is
driven to different poses or along trajectories by commanding
different sets of tendon-tension, which are realized by a local
tendon-tension controller in each of the actuators (Chalon et al.,
2011).

5.2 Data-Driven Pose Estimation
5.2.1 Static and Dynamic Estimation Error
Static Pose Estimation. To assess the performance of our six-DoF
estimator and compare it to previous work, we first command the
neck to reach 200 static poses. For each pose, we retrieve the
ground truth q using an external camera tracking system from
Nikon (Metris, 2016) and compute the prediction error in
position and orientation. To train the models, we sample
randomly 20 poses and use the rest of the datapoints for
testing. Each model is therefore trained with the same 20

FIGURE 5 | Illustration of the failure handling using an ensemble of estimator. 1. Predicting the pose using each sub-ensembles when there is no failures: the
uncertainty remains small 2–3. When a failure occurs, the uncertainty increases except for the sub-ensemble not using the faulty sensor 4. Because there is a sub-
ensemble not affected by the failure, we can continue to predict accurately the pose.
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datapoints, but each one with different sensors masked, so each
model uses a different set of input features.We repeat that process
using 10 different random seeds. To estimate the runtime of each
method, we perform 1,000 single predictions and average the time
taken. The test is done on a computer equipped with 8 Intel i7-
8550U CPUs at 1.80 GHz.

Dynamic Pose Estimation. We then evaluate the pose
estimation method trained with static poses only on dynamic
motions. For that, we record the ground-truth and estimated pose
on a pre-defined trajectory. We provide the reader with a
Supplementary Video showing the method in action.

5.2.2 Results
Static Pose Estimation. The results are summarized using mean
error and standard deviation over the test poses in Table 1,
runtimes are included when available. We also show the error
distribution in position and orientation in Figure 6.

Overall, the data-driven approaches are fast (they run at
∼ 5000 Hz) and more accurate than the model-based one: the
mean error is reduced up to 5 times (cf. Table 2). As expected, the
linear model runs faster at a cost of some accuracy compared to
the polynomial model.It is worth mentioning that although the
model-based approach appears inaccurate in the present
comparison, it is fairly accurate and fast to compute when
compared to other model-based pose estimation techniques as
reported in (Deutschmann et al., 2019).

Dynamic Pose Estimation. To report also on the dynamic
estimation behavior, the experimental platform is driven to
several static poses subsequently and the estimated pose for
the model-based and the present approach are recorded. The
mean-error along the trajectory of 200 subsequent poses is given
in Table 1 and the corresponding trajectories of four estimated
coordinates (x, θx, θy , θz) can be seen in Figure 7.

As for static poses, the data-driven approaches perform best,
with the polynomial model being more accurate than the linear
one. Mean error reported in Table 1 is higher than for static poses
for two reasons. First, it now accounts for the transition error
between two static poses, that are not covered at all during
training. Then, as we are considering trajectories, static errors

TABLE 1 | Comparison of mean runtime and error (both in position and orientation) for each method. The data-driven approaches are fast and also more accurate than the
model-based approach. For each metric, we bolded the best mean. “N/A” means that the data is not available.

Model-Based Deutschmann et al.
2019

Linear Polynomial

Runtime (ms) N/A ± N/A 0.1 ± 0.0 0.2 ± 0.0
Static Pose Estimation
Error in position (mm) 1.1 ± 1.0 0.3 ± 0.3 0.2 ± 0.2
Error in orientation (deg) 0.9 ± 0.8 0.3 ± 0.3 0.1 ± 0.1
Dynamic Pose Estimation
Error in position (mm) 5.1 ± 2.3 1.7 ± 1.4 1.6 ± 1.4
Error in orientation (deg) 3.8 ± 3.0 0.8 ± 0.6 0.5 ± 0.4

FIGURE 6 | Error distribution in position and in orientation on 180 static poses for the model-based approach (Deutschmann et al., 2019) and the
polynomial model.

TABLE 2 | Ablation study: influence of the amount of training data, number of
sensors and type of model on the performance. We bolded results with the
best mean error. Baseline models are trained using 20 datapoints and 8 sensors.

Position error (mm) Orientation error (deg)

Model-Based 1.1 ± 1.0 0.9 ± 0.8
Linear baseline 0.3 ± 0.3 0.3 ± 0.3
Polynomial baseline 0.2 ± 0.2 0.1 ± 0.1
Neural network (2 layers) 0.8 ± 0.6 0.8 ± 0.7
Linear (3 sensors) 1.0 ± 0.7 1.2 ± 1.0
Linear (4 sensors) 0.4 ± 0.3 0.5 ± 0.6
Polynomial (3 sensors) 0.9 ± 0.6 1.2 ± 0.9
Polynomial (4 sensors) 0.1 ± 0.1 0.1 ± 0.1
Polynomial (5 datapoints) 0.9 ± 0.9 1.1 ± 0.9
Polynomial (10 datapoints) 0.5 ± 0.5 0.6 ± 0.5
Polynomial (40 datapoints) 0.2 ± 0.3 0.3 ± 0.2
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at fixed poses accumulate yielding a higher mean value.It is worth
noting that those models were only trained on static poses and
therefore the results could be improved if part of the dynamic
poses where included in the training set.

5.3 Hyperparameters Study
To study the effect of the different hyperparameters (type of
model, training set size, number of sensors) on the performance,
we compare the baseline regressors (20 datapoints and 8 sensors)
to several variants. One datapoint corresponds to training data at
a specific pose. We present the results in Table 2.

Effect of the training set size. We vary the training set size from
5 datapoints to 40 datapoints for the polynomial model. Overall,
with more training data, the performance improves. However,
after a certain amount (here 30 datapoints), adding more data
does not improve the results anymore. This is due both to the
irreducible error (sensor noise) and to the limited capacity of the
polynomial model. Although the results are slightly worse with 40
datapoints, the difference is not significant.

Effect of the type of model. We compare linear, polynomial and
neural network1 models. Although the neural network yields
good performance, it is less sample efficient than the two others, i.
e., with more training data it would reach the same accuracy. It
also requires hyperparameter tuning (learning rate, mini-batch
size, . . .) and has more parameters ( ∼ 3e6 parameters vs. 276 for
the polynomial model). For those reasons, using a polynomial
model of order 2 is enough in our case.

Effect of the number of sensors. We compare the baseline linear
and polynomial models (8 sensors) to models using less sensors (3
and 4 sensors). As expected, adding more sensors reduces the error
for the linear model. Almost no changes can be observed for the
polynomial model with more than 4 sensors: the results are slightly
worse but the difference is not significant. As discussed in Section
4.3, having redundant sensor information is key to detect and
handle potential failures. The more sensors we have, the more
failure we can handle. Therefore having 8 sensors is preferable.

Effect of the placement of sensors. Because the polynomial model
performs well with only 4 sensors (for instance when using only the
tendon length sensors), the placement of the 4 additional length
sensors will not affect much the accuracy. However, the positioning
would affect the ability to detect failures: if the information that a
sensor provides is not useful for the prediction, then it will not be
used by the polynomial model, the weight for this input feature will
be close to zero. As a result, if such sensor fails, as it does not affect
the variance of the predictions, the failure will not be detected but
the pose will still be predicted accurately.

5.4 Failure Detection and Handling
To evaluate the effectiveness of the proposed approach for
detecting and handling failures, we simulate the loss of sensors
while the neck is moving. A common failure is when a length
sensor outputs wrong values because a tendon goes slack. Instead
of a correct measurement, it outputs zeros. Another type of
failure, harder to detect, is when the sensor freezes and
outputs a constant value. In Figures 8A,B, we show the effect
of both failures on the uncertainty: a jump can be observed right
after the loss of tension in Figure 8A. When the sensor freezes (cf.
Figure 8B), as expected, the failure is detected only when the neck
position changes. Because in both cases the variance increases by
a large amount, no careful tuning of the detection threshold is

FIGURE 7 | Qualitative comparison of the model-based and polynomial estimators for dynamic pose estimation.

12 fully-connected layers of 256 units each, trained with Adam optimizer until
convergence using a learning rate of 1e − 3 and a batch size of 20 (size of the
training set). Different hyperparameters where tested, and these performed best.
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required. To show that the method can handle more than one
failure, we simulate in Figure 9 the loss of four sensors.

In Figures 8C, 9, we display the prediction over time for the sub-
ensemble not using the broken sensors. We use the ground-truth
pose as a reference. The approach successfully detect all the failures
and handle them by using the sub-ensemble not affected by the loss
of the sensors. As a result, the proposedmethod can robustly and still
accurately (cf. Table 2) predict the pose even with multiple losses.

5.5 Comparison With the Linearized Model
The geometry of the deformation of the neck system and the
coupling of the tendonmotion is highly nonlinear (Deutschmann
et al., 2018). The geometrical exact nonlinear mapping can be
found in (Deutschmann et al., 2019). This work confirms the
non-linearity as a polynomial model of order two reveals the best
prediction results. However, as stated in Table 2, the linear
models already yield results comparable to the model-based

approach. We therefore compare the first-order term of the
trained linear coefficients for four sensors used with the partial
derivative of the q(l) i. e., a local linearization about the initial
straight configuration in the following equation.

flin �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.41 0.35 0.37 0.41
−0.25 0.30 0.25 −0.26
0.38 0.56 −0.56 −0.38
7.46 −16.61 15.76 −7.51
−9.94 −5.17 5.05 9.63
−4.13 7.75 5.45 −3.45

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (9)

(zq(l)
zl

)T

�
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.44 0.06 0.06 0.44
−2.33 2.5 2.50 −2.34
0.01 1.78 −1.73 −0.01
0.43 −0.15 0.15 −0.43

−11.79 −1.0 0.99 11.76
−2.69 2.78 2.77 −2.63

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (10)

The top three rows correspond to positions and the bottom
three rows to orientations. The trained coefficients (9) and the
model-based coefficients (10) have the same signs and
symmetries, indicating that the sensor information is used
in a similar fashion to predict the direction of the pose.
However, the magnitude of the values defers largely: simply
linearizing the model would not be as accurate as the trained
linear model.

5.6 Limitations
We have shown in the previous sections that the proposed
approach yields a good estimation of the pose and handle
failures while keeping a low runtime. However, we have to

train ∑5
m�2(N

m
) � 210 models to handle all possible failures.

We can optimize our approach to make it scalable both in term of
number of sensors and failures handled. A first optimization is
to restrict the sub-ensembles εl to a maximum of two models.
Then, to handle more sensors, we can cluster them (e.g., grouping
them in a hierarchical way) or compress the information to
reduce the input dimension (e.g., using an auto-encoder).
Doing so, our approach would identify a failure from a group
of sensors and no more from a single sensor.

A B C

FIGURE 8 | On a recorded trajectory, we simulate two types of failures (depicted as the red vertical line): (A) one tendon goes slack at t � 35 and the associated
sensor~l1 outputs zeros (B) the sensor~l1 freezes at t � 35 and outputs a constant value. In (A) and (B), we plot the mean prediction (dark blue) from the ensemble of
estimators along with the uncertainty (shaded blue area). In both cases, the uncertainty goes above the threshold and the method is able to detect the failures and select
the sub-ensemble not using the faulty sensor. In (C), we plot the prediction of that sub-ensemble along with the corresponding ground truth. The method is able to
predict accurately the pose even with a broken sensor.

FIGURE 9 |On a recorded trajectory, we simulate four failures (depicted
as the red vertical lines). The proposed method detects automatically those
four failures (sensors ~l6 at t � 4, ~l2 at t � 27, ~l5 at t � 75 and ~l3 at t � 125),
selects the sub-ensemble not using the faulty sensors and continue to
predict accurately the pose. We plot the pose prediction with mean and
variance for the sub-ensemble of estimators selected by our method.
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6 DISCUSSION AND CONCLUSION

In this work, we show that data-driven approaches are
competitive alternatives to estimate the pose of a tendon-
driven continuum mechanism. The linear and polynomial
models are fast to train, require only a small amount of
data and prove to be more accurate that the model-based
approach. As mentioned in the end of Section 2, assumptions
about the sensor linearity and perfectly known kinematics are
made which, in cases where the loose their validity, may result
in larger errors in the pose estimation. In other words, small
deviations or modeling errors in the kinematics of the tendon
pulleys or the attachment points of the sensors will cost
accuracy in the estimated pose. In contrast, the polynomial
model learns a direct mapping from sensor readings to the
measured pose and does not make these assumptions, allowing
an improved accuracy.

To detect and handle sensor failures, we make use of
ensembling technique and minimal knowledge about the
system. By clustering the different models, our method
predicts the pose accurately even with 4 out of 8 faulty
sensors.

The presented method embodies a computationally fast and
accurate pose estimation method. This method was already
employed to train a reinforcement learning controller (Raffin
and Stulp, 2020) and could also replace the model-based
approach, currently used in the model-based control approach
implemented on the neck system (Deutschmann et al., 2017).
This would result in a more accurate positioning given the more
accurate estimated pose.

One limitation is the scalability of the method, as discussed in
the previous section, which should be addressed in the future.
Apart from that, our method is in fact not specific to tendon-

driven continuum mechanism: it only requires sensor
redundancy and learn to predict the pose directly from data.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

AR conceived of the presented idea and carried out the
experiment with the help of BD, AR and BD wrote the
manuscript with support from FS.

FUNDING

This work was partially funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation)—Grant
Number 405032572, the European Union’s Horizon 2020
Research and Innovation Program under Grant Number 951992
(project VeriDream) and by the Hermann von Helmholtz-
Gemeinschaft Deutscher Forschungszentren e. V. under Grant
ZT-I-0010 (RedMod) and ZT-I-PF-5-20 (LearnGraspPhases).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frobt.2021.619238/
full#supplementary-material.

REFERENCES

Braganza, D., Dawson, D. M., Walker, I. D., and Nath, N. (2007). A neural network
controller for continuum robots. IEEE Trans. Robot. 23, 1270–1277. doi:10.
1109/tro.2007.906248

Breiman, L. (1996). Bagging predictors. Mach Learn. 24, 123–140. doi:10.1007/
bf00058655

Camarillo, D. B., Carlson, C. R., and Salisbury, J. K. (2009). Configuration tracking
for continuum manipulators with coupled tendon drive. IEEE Trans. Robot. 25,
798–808. doi:10.1109/tro.2009.2022426

Chalon, M., Friedl, W., Reinecke, J., Wimboeck, T., and Albu-Schaeffer, A. (2011).
“Impedance control of a non-linearly coupled tendon driven thumb,” in IEEE/
RSJ International Conference on Intelligent Robots and Systems, San Francisco,
CA, September 25–30, 2011 (Piscataway, NJ: IEEE), 4215–4221.

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: a survey.
ACM Comput. Surv. 41, 1–58. doi:10.1145/1541880.1541882

Chen, J., and Patton, R. J. (2012). Robust model-based fault diagnosis for dynamic
systems, Heidelberg, Germany: Springer Science and Business Media.

Deutschmann, B., Chalon, M., Reinecke, J., Maier, M., and Ott, C. (2019). Six-dof
pose estimation for a tendon-driven continuum mechanism without a
deformation model. IEEE Robot. Autom. Lett. 4, 3425–3432. doi:10.1109/lra.
2019.2927943

Deutschmann, B., Dietrich, A., and Ott, C. (2017). “Position control of an
underactuated continuum mechanism using a reduced nonlinear model,” in

IEEE 56th annual conference on decision and control, Melbourne, VIC,
December 12–15, 2017 (Piscataway, NJ: IEEE), 5223–5230.

Deutschmann, B., Eugster, S. R., and Ott, C. (2018). Reduced models for the static
simulation of an elastic continuum mechanism. IFAC-PapersOnLine 51,
403–408. doi:10.1016/j.ifacol.2018.03.069

Efron, B. (1992). Bootstrap methods: another look at the jackknife. Breakthroughs
Stat. 569–593. doi:10.1007/978-1-4612-4380-9_41

Gal, Y. (2016). Uncertainty in deep learning, Cambridge, United kingdom:
University of Cambridge.

Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., and Laschi, C. (2015).
Neural network and jacobian method for solving the inverse statics of a cable-
driven soft arm with nonconstant curvature. IEEE Trans. Robot. 31, 823–834.
doi:10.1109/tro.2015.2428511

Goel, P., Dedeoglu, G., Roumeliotis, S. I., and Sukhatme, G. S. (2000). “Fault
detection and identification in a mobile robot using multiple model estimation
and neural network,” in IEEE International Conference on Robotics and
Automation, San Francisco, CA, April 24–28, 2000 (Piscataway, NJ: IEEE),
2302–2309.

Haidu, A., Kohlsdorf, D., and Beetz, M. (2015). “Learning action failure models
from interactive physics-based simulations,” in IEEE/RSJ international
conference on intelligent robots and systems, Hamburg, Germany, 28
September–2 October, 2015 (Piscataway, NJ: IEEE), 5370–5375.

Hamilton, K., Lane, D., Taylor, N., and Brown, K. (2001). “Fault diagnosis on
autonomous robotic vehicles with recovery: an integrated heterogeneous-
knowledge approach,” in Proceedings 2001 ICRA. IEEE International

Frontiers in Robotics and AI | www.frontiersin.org April 2021 | Volume 8 | Article 61923810

Raffin et al. Fault-Tolerant 6D Pose Estimation

https://www.frontiersin.org/articles/10.3389/frobt.2021.619238/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2021.619238/full#supplementary-material
https://doi.org/10.1109/tro.2007.906248
https://doi.org/10.1109/tro.2007.906248
https://doi.org/10.1007/bf00058655
https://doi.org/10.1007/bf00058655
https://doi.org/10.1109/tro.2009.2022426
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/lra.2019.2927943
https://doi.org/10.1109/lra.2019.2927943
https://doi.org/10.1016/j.ifacol.2018.03.069
https://doi.org/10.1007/978-1-4612-4380-9_41
https://doi.org/10.1109/tro.2015.2428511
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Conference on Robotics and Automation, Seoul, South Korea, May 21–26, 2001
(Piscataway, NJ: IEEE), 3232–3237.

He, P., and Wang, J. (2007). Fault detection using the k-nearest neighbor rule for
semiconductor manufacturing processes. IEEE Trans. Semicond. Manuf. 20,
345–354. doi:10.1109/tsm.2007.907607

Hornung, R., Urbanek, H., Klodmann, J., Osendorfer, C., and Van Der Smagt, P.
(2014). “Model-free robot anomaly detection,” in IEEE/RSJ international
conference on intelligent robots and systems, Chicago, IL, September 14–18,
2014 (Piscataway, NJ: IEEE), 3676–3683.

Jones, B. A., and Walker, I. D. (2006). Practical kinematics for real-time
implementation of continuum robots. IEEE Trans. Robot. 22, 1087–1099.
doi:10.1109/tro.2006.886268

Kendall, A., and Gal, Y. (2017). What uncertainties do we need in bayesian deep
learning for computer vision?. Adv. Neural Inf. Process. Syst., 5574–5584.
doi:10.5555/3295222.3295309

Khalastchi, E., and Kalech, M. (2018). On fault detection and diagnosis in robotic
systems. ACM Comput. Surv. 51, 1–24. doi:10.1145/3146389

Malekzadeh, M. S., Queißer, J. F., and Steil, J. J. (2016). “Learning the end-effector
pose from demonstration for the bionic handling assistant robot,”in
Proceedings of the 9th international workshop on human human friendly
robotics, September 29 and 30, 2016, Genoa, Italy.

Metris, k. C. (2016). Available at: http://www.metris3d.huw (Accessed August 31,
2020).

Raffin, A., and Stulp, F. (2020). Generalized state-dependent exploration for deep
reinforcement learning in robotics,

Reinecke, J., Deutschmann, B., and Fehrenbach, D. (2016). “A structurally flexible
humanoid spine based on a tendon-driven elastic continuum,” in International
conference on robotics and automation, Stockholm, Sweden, May 16–21, 2016
(Piscataway, NJ: IEEE), 4714–4721.

Roesthuis, R., and Misra, S. (2016). Steering of multisegment continuum
manipulators using rigid-link modeling and FBG-based shape sensing. IEEE
Trans. Robot. 32, 372–382. doi:10.1109/tro.2016.2527047

Rolf, M., and Steil, J. J. (2012). Constant curvature continuum kinematics as fast
approximate model for the bionic handling assistant,”in International
conference on intelligent robots and systems, Vilamoura-Algarve, Portugal,
October 7–12, 2012 (Piscataway, NJ: IEEE), 3440–3446.

Rucker, D. C., andWebster, R. J. (2011). Statics and dynamics of continuum robots
with general tendon routing and external loading. IEEE Trans. Robot. 27,
1033–1044. doi:10.1109/tro.2011.2160469

Schmid, K., Ruess, F., Suppa, M., and Burschka, D. (2012). “State estimation for
highly dynamic flying systems using key frame odometry with varying time
delays,”in International conference on intelligent robots and systems, Vilamoura-
Algarve, Portugal, October 7–12, 2012 (Piscataway, NJ: IEEE), 2997–3004.

Steidle, F., Tobergte, A., and Albu-Schäffer, A. (2016). “Optical-inertial tracking of
an input device for real-time robot control,”in International conference on
robotics and automation, Stockholm, Sweden, May 16–21, 2016 (Piscataway,
NJ: IEEE), 742–749.

Stulp, F., and Sigaud, O. (2015). Many regression algorithms, one unified model: a
review. Neural Netw. 69, 60–79. doi:10.1016/j.neunet.2015.05.005

Yu, G., Li, C., and Sun, J. (2010). Machine fault diagnosis based on Gaussian
mixture model and its application. Int. J. Adv. Manuf Techn. 48, 205–212.
doi:10.1007/s00170-009-2283-5

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Raffin, Deutschmann and Stulp. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Robotics and AI | www.frontiersin.org April 2021 | Volume 8 | Article 61923811

Raffin et al. Fault-Tolerant 6D Pose Estimation

https://doi.org/10.1109/tsm.2007.907607
https://doi.org/10.1109/tro.2006.886268
https://doi.org/10.5555/3295222.3295309
https://doi.org/10.1145/3146389
http://www.metris3d.huw
https://doi.org/10.1109/tro.2016.2527047
https://doi.org/10.1109/tro.2011.2160469
https://doi.org/10.1016/j.neunet.2015.05.005
https://doi.org/10.1007/s00170-009-2283-5
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Fault-Tolerant Six-DoF Pose Estimation for Tendon-Driven Continuum Mechanisms
	1 Introduction
	2 Problem Statement
	3 Related Work
	4 Method
	4.1 Pose Estimation as a Regression Problem
	4.2 Uncertainty Estimation Using Bootstrapped Ensemble
	4.3 Failure Detection and Handling

	5 Experiments
	5.1 Experimental Setup
	5.2 Data-Driven Pose Estimation
	5.2.1 Static and Dynamic Estimation Error
	5.2.2 Results

	5.3 Hyperparameters Study
	5.4 Failure Detection and Handling
	5.5 Comparison With the Linearized Model
	5.6 Limitations

	6 Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


