
Efficient Coverage Path Planning for
Mobile Disinfecting Robots Using
Graph-Based Representation of
Environment
B. Nasirian1, M. Mehrandezh1 and F. Janabi-Sharifi 2*

1Faculty of Engineering and Applied Science, University of Regina, Regina, SK, Canada, 2Robotics, Mechatronics and Automation
Laboratory (RMAL), Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada

The effective disinfection of hospitals is paramount in lowering the COVID-19 transmission
risk to both patients and medical personnel. Autonomous mobile robots can perform the
surface disinfection task in a timely and cost-effective manner, while preventing the direct
contact of disinfecting agents with humans. This paper proposes an end-to-end coverage
path planning technique that generates a continuous and uninterrupted collision-free path
for a mobile robot to cover an area of interest. The aim of this work is to decrease the
disinfection task completion time and cost by finding an optimal coverage path using a new
graph-based representation of the environment. The results are compared with other
existing state-of-the-art coverage path planning approaches. It is shown that the proposed
approach generates a path with shorter total travelled distance (fewer number of overlaps)
and smaller number of turns.

Keywords: coverage path planning, disinfection, optimization, deep reinforcement learning, autonomous mobile
robots

INTRODUCTION

Surfaces contaminated with COVID-19 pathogens in hospitals introduce significant risk to the safety
of medical personnel and patients. Disinfection routines are among critical measures that hospitals
are taking to minimize the spread of COVID-19. To reduce the workload of the hospitals’ cleaning
teams and to avoid the direct contact of disinfecting agents such as chemicals or UV-C disinfectants
with human body, autonomous mobile robots would provide a favorable solution. The autonomous
robots can potentially perform the disinfection task more precisely and in a timely and cost-effective
fashion. Central to robotic disinfection routines is the coverage path planning.

Coverage Path Planning (CPP) will lead to an improvement in the efficiency of operations in
terms of cost, time, and job quality. It is defined as: generating a continuous and un-interrupted path
that covers an area of interest, while avoiding obstacles (Galceran and Carreras, 2013). The efficiency
of a CPP algorithm is usually determined by the total coverage ratio, completion time, total travelled
path length, and the number of turns (Khan et al., 2017).

Some CPP works cited in the literature are based on heuristics or randomized approaches, where
the coverage path is determined based on a set of simple behaviors (e.g., Mackenzie and Balch, 1993)
or randomized search through the environment (e.g., Palacin et al., 2005). These methods, however,
do not guarantee a complete coverage of the free space (Choset, 2001) while coverage completeness is
essential to guarantee that all COVID-19 pathogens are killed during the robotic disinfection tasks.

Edited by:
Mahdi Tavakoli,

University of Alberta, Canada

Reviewed by:
Cosmin Copot,

University of Antwerp, Belgium
Hongjun Xing,

Harbin Institute of Technology, China

*Correspondence:
F. Janabi-Sharifi

fsharifi@ryerson.ca

Specialty section:
This article was submitted to

Biomedical Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 31 October 2020
Accepted: 07 January 2021
Published: 15 March 2021

Citation:
Nasirian B, Mehrandezh M and
Janabi-Sharifi F (2021) Efficient

Coverage Path Planning for Mobile
Disinfecting Robots Using Graph-

Based Representation of Environment.
Front. Robot. AI 8:624333.

doi: 10.3389/frobt.2021.624333

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6243331

ORIGINAL RESEARCH
published: 15 March 2021

doi: 10.3389/frobt.2021.624333

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.624333&domain=pdf&date_stamp=2021-03-15
https://www.frontiersin.org/articles/10.3389/frobt.2021.624333/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.624333/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.624333/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.624333/full
http://creativecommons.org/licenses/by/4.0/
mailto:fsharifi@ryerson.ca
https://doi.org/10.3389/frobt.2021.624333
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.624333

Complete CPP methods decomposed the free space into
smaller regions (cells) in which optimal path planning could
be simply formulated (Choset, 2001). A complete coverage was
achieved by ensuring that the robot visited all cells in the
decomposed environment at least once (Choset, 2001). Among
the decomposition methods cited in the literature, an exact
environment decomposition method would stand out specially
in environments with un-even-shape boundaries and in presence
of concave-shape obstacles since the re-union of the cells under
this decomposition method would fully represent the free space
(Cabreira et al., 2019). In the pertinent literature, three topics are
given special attention: 1) the environment decomposition
techniques, 2) the optimal coverage path in each cell generated
via environment decomposition, and 3) the optimal coverage
sequences (Cabreira et al., 2019). In this paper we formulate a
complete coverage path planning in the environment that leads to
a minimal travelled distance (cost).

The operational environment would generally consist of
obstacles, free space, and the mobile robot. In the
Boustrophedon decomposition, as the most commonly-used
exact cellular decomposition approach, the free space was
divided into smaller regions (cells) by sweeping a line through
the whole target area in one direction (Choset and Pignon, 1998;
Choset et al., 2000). In order to traverse from one cell to another,
the robot might need to transit through a part of a third cell. This
causes overlaps, thus, extra travelled distance. This is mainly due
to the fact that no mechanism has been considered for transition
from one cell to another in present exact cellular decomposition
methods. To avoid the unnecessary cost associated with this
transition, a modified version of the Boustrophedon-based
decomposition has been proposed by us. Three transition cells
have been added to the decomposed environment at each critical
point. This allows the robot to either expand or shrink the original
cells around the critical point to avoid the overlaps of inter-cell
traversals and cell coverage paths (further explained in Section
Modified Graph Considering the Modified Environment
Decomposition (to Avoid Overlaps)).

Under classical CPP approaches (e.g., Choset and Pignon,
1998; Choset et al., 2000), an adjacency graph was built based on
the topology of the decomposition, where the nodes of the graph
represented the cells and the edges of the graph connected the
nodes with adjacent corresponding cells in the decomposed
environment. The problem of finding the optimal coverage
sequence was equivalent to finding the shortest path within
the adjacency graph that visits each node (cell) at least once,
which was equivalent to the Traveling Salesman Problem. The
problem of finding the optimal path over the adjacency graph is
an NP-complete problem. A depth-first graph search algorithm
was proposed to find an exhaustive walk through the adjacency
graph. However, the depth-first search solution was not optimal,
was computationally expensive, and required huge memory
storage for problems with a large adjacency graph
(i.e., environments with a large number of cells). Later works
on CPP (e.g., Jimenez et al., 2007; Hameed et al., 2013; Tung and
Liu, 2019) utilized Genetic Algorithm (GA) optimization
techniques to find an efficient coverage sequence over larger
adjacency graphs in a shorter computational time and with less

required memory space. However, in the coverage path found
using the adjacency graphs the robot usually needs to traverse
through the middle of the cells to transit from one cell to another,
which results in overlaps (extra travelled distance). The shortest
path that visits all nodes of the adjacency graph is not necessarily
equivalent to the shortest path travelled by robot since the graph
does not consider the overlaps of the transition paths with
coverage back-and-forth straight-line motions in the cell.

Another approach to find the traversal sequences was to create
a Reeb graph of the environment, where the nodes denoted the
critical points, and the edges represented the cells (Mannadiar
and Rekleitis, 2010). In order to find the most efficient coverage
sequence, the Chinese Postman Problem was solved over the
graph, that was to find the shortest tour that traversed over every
edge at least once (Mannadiar and Rekleitis, 2010). In
(Mannadiar and Rekleitis, 2010; Xu et al., 2011; Xu et al.,
2014), the Reeb graph was modified to an Eulerian graph by
duplicating selected edges of the graph. The edge duplication
referred to a situation, where the cell corresponding to the
duplicated edge in graph was divided into two different cells,
which further leaded to extra turns to make in the middle of the
original cell. Since performing a turn in the path takes more time
and energy than that in a straight-line motion, an efficient
coverage path should be generated such that the total number
of turns is minimized and consequently the total operational time
and cost of the CPP is decreased (Galceran and Carreras, 2013).

In this work, a CPP approach is proposed that works based on
a new graph representation of environment. In order to avoid the
costly turns in the middle of the cells, which is the case in
(Mannadiar and Rekleitis, 2010; Xu et al., 2011; Xu et al.,
2014), and transition path overlaps through the middle of the
cells, which is the case in (Jimenez et al., 2007; Hameed et al.,
2013; Tung and Liu, 2019), two different possible actions have
been considered for the robot in a cell: 1) back-and-forth straight-
line motion with turns at the end of the lines for covering the cell,
and 2) environment/obstacle contour-following motion to adjust
the robot position for starting the cell coverage. At those cells,
which had their corresponding Reeb graph edge duplicated in
(Mannadiar and Rekleitis, 2010; Xu et al., 2011; Xu et al., 2014),
the robot will have the option to follow some parts of the cell’s
contour in the first traversal, and then cover the cell by back-and-
forth straight-line motion in the second traversal without any
overlaps with the covered parts of the cell’s contour in first
traversal. This would lead to a new form of graph in which
the Eulerian cycle/path needs to be determined leading to a
minimum travelled distance (overlaps). The number of turns
would be also less than that cited in literature, (e.g., Xu et al.,
2014), since the turns in the middle of the cells are eliminated
(this will be further explained in Section Modified Graph
Considering Contour-Following Motion).

Another contribution of this research is that it evaluates the
inter-cell traversals at a low-level as well. The travelled distance
depends on both current-cell-coverage end point and next-cell-
coverage start point. Most of the previous works on CPP (e.g.,
Choset and Pignon, 1998; Jimenez et al., 2007; Xu et al., 2014) did
not consider the current position of the robot in the current cell to
choose the next cell in the coverage sequence. In (Chen et al.,

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6243332

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

2019), a corner model was utilized to find the shortest path
between the current cell and the next cell which would not
necessarily lead to an optimal path that robot can take. Their
technique did not choose the corner that cell coverage should be
started from, hence, the corner information was not included in
their graph representation of the environment. In (Hameed et al.,
2013; Tung and Liu, 2019), entrance and exit points have been
considered for each cell which resulted in multiple inter-cell paths
for each cell. In this work, four corners have been considered at
each cell as the candidates for the cell coverage start and/or end
points. Contrary to the case in a Reeb graph, where the nodes
represent the critical points, in the proposed graph by us, the
nodes represent the cell corner points at the critical points. Some
extra edges get added to the graph, which facilitate inter-cell
traversal paths at each critical point. To perform a complete
coverage, some edges are required to be traversed (cell coverage
edges), while some other will remain optional (i.e., contour-
following, and inter-cell traversal edges) (for further
explanation see Section Modified Graph Considering Cell
Coverage Start and End Points).

The problem of finding the efficient cell coverage sequence
can be solved by finding a path over the proposed graph in
which a required subset of the edges is needed to be traversed
with minimal cost. In this work, the cell coverage sequence
optimization problem has been considered as a Markov
Decision Process (MDP), and the efficient sequence within
the graph has been found using a double Deep Q Network
(DQN) approach. Double DQN is a Deep Reinforcement
Learning (DRL) method which utilizes two identical deep
neural networks to estimate Q-values where each of the
networks is used to update the other. The efficient coverage
sequence of the cells is equivalent to the optimal policy found
via the double DQN. In addition to finding shortest travelled
distance, the path generated through this method is robust to
changes in the start and/or end positions of the disinfection task
and works for coverage of any arbitrary subset of the cells in the
target space (further explained in Section Coverage
Optimization Over the Proposed Graph).

The aim of this work is to decrease the disinfection task cost by
adopting a new graph-based representation of the environment.
More specifically, the contributions are:

- A new graph representation of the environment has been
proposed based on the following modifications which
facilitate finding an efficient coverage path for
disinfection task.

1) Proposing a modified version of the Boustrophedon
environment decomposition with three transition cells
added at each critical point to allow the original cells
expansion or shrinkage;

2) Programming two different actions for the robot in a cell: 1)
back-and-forth straight-linemotion, and 2) contour-following
motion to adjust the robot position for starting the cell
coverage with no extra travelled distance (overlaps); and

3) Considering the corners of the cells (as the candidates
for the cell coverage start and/or end points) as graph

nodes to minimize the inter-cell traversal path overlaps
at each critical point.

- The optimization problem over the proposed graph has been
solved using a Double DQN technique which trains a model
over the environment to find an efficient coverage path for
any start and/or end positions of the disinfection task and
any arbitrary subset of the cells in the environment.

The results of the proposed approach are compared with other
complete CPP approaches cited in literature for indoor
environments (see Section Results and Discussion). It is shown
that the proposed approach outperforms the previous techniques
in terms of the total travelled distance. In addition, the total
number of turns are reduced in comparison with the work in (Xu
et al., 2014). Also, the proposed method is robust to changes in
the start and/or end positions of the robot used for the
disinfection task, and that it generates coverage path for any
arbitrary set of the cells in the decomposed environment. This
will reduce the overall cost of repetitive disinfection tasks in large
hospitals drastically.

METHODOLOGY

In order to decrease the travelled distance and the number of
turns in the hospital disinfection task, a complete CPP based
on a new graph representation of the decomposed
environment has been proposed. In this section the steps
and approaches of environment decomposition, constructing
the graph, and solving the optimization problem over the
graph are described.

Environment Decomposition
CPP in environments comprised of non-convex boundaries and
obstacles renders itself as a complex problem. A commonly-used
technique in most CPP approaches is to decompose the
environment using exact cellular decomposition into smaller
regions (cells) in which optimal path planning can be
formulated (Choset, 2001). Boustrophedon decomposition is
one of the most commonly-used exact cellular decomposition
methods for CPP problem over planar environments. The
Boustrophedon decomposition assumes the environment
boundaries are polygonal and known a priori. In this method,
a line segment (called a slice) is swept through the whole target
area in one direction to determine the critical points. Critical
points are the vertices of the environment boundaries where the
sweeping slice connectivity changes (Choset and Pignon, 1998).
One or two new cells are formed whenever the slice arrives at a
critical point, as shown in Figure 1. The decomposition can be
done in different directions (i.e., different slice sweeping
directions) resulting in different cell decomposition
configurations. One can also optimize the coverage by finding
the best decomposition direction over a particular environment
which leads to a cost-efficient coverage path (Oksanen and Visala,
2009).

After decomposing the environment into cells, the optimal
coverage path inside each cell can be determined separately by

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6243333

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

minimizing a coverage cost function. The direction of the back-
and-forth straight-line motions can be determined in a way that
the total number of turns is minimized and consequently the total
operational time of the CPP is decreased (Galceran and Carreras,
2013).

Graph Representation of Decomposed
Environments
In order to find an efficient sequence in traversing all the cells in a
decomposed environment, a commonly-used approach is to build
a graph that captures the topology of the cells. The problem of
finding theminimum cost coverage sequence is then equivalent to
finding the shortest path over this graph. In this work, we have
proposed a new graph representation of the environment which
leads to a more efficient coverage path. More details are provided
in the following sub-sections.

Mobile Robot
The proposed CPP technique in this work focuses on finding the
efficient sequence of cells coverage and the inter-cell paths
connecting the cells using a graph representation of the
environment. Similar to some other suggested CPP-based
techniques cited in the literature (e.g., Choset and Pignon,
1998; Mannadiar and Rekleitis, 2010; Hameed et al., 2013;
Chen et al., 2019), the proposed CPP technique in general is
not limited to a particular robot and is implementable on most of
the mobile disinfecting robots available in the market. However,
some assumptions have been made on the mobile robot shape,
disinfection system, and the drive mechanism when in designing
the proposed graph representation and the coverage path over the
environment.

The mobile robot is assumed to have a disk shape (i.e., the
robot is presented as a circle that circumscribes the robot
footprint entirely). Also, we assume that the robot is equipped
with a UV-C disinfection system. In order to avoid collision with
environment boundaries, the diameter of the circle
circumscribing the robot (L) should be known while
generating the proposed graph and the coverage path

(equivalent to constructing the configuration space).
Furthermore, disinfection diameter (D) denotes the diameter
of the area that the robot can disinfect using its onboard
probes, e.g., the maximum range of the onboard UV-C lamp
array can be considered as the disinfection radius. Disinfection
diameter (D) is always greater than or equal to the diameter of the
largest circle that circumscribes the entire robot (L). It is also
assumed that the disinfecting robot is of a differential-drive type,
which is capable of turning on the spot. Therefore, the robot does
not need any extra space to perform turns at the end of the
straight-lines in the planned path.

In order to disinfect things such as the beds, walls, shelves,
and other equipment in the hospitals, the disinfection coverage
diameter (W) is assumed to be always smaller than or equal to
the disinfection diameter (D). Please note that, in the coverage
path, the distance between the stripes and the distance of the
robot’s center point to the boundaries of the obstacles are equal
to W and W/2, respectively. This means that the free space will
get disinfected based on the disinfection coverage diameter
(W), while a depth of (D/2-W/2) of the walls and obstacles are
being disinfected (note that D ≥W ≥ L). All the items within the
range (i.e., at the D/2 distance from the center of the robot)
along the path will be disinfected. We also assume that, in
addition to vertical UV-C emitters, there are circumferential
emitters to disinfect blind spots immediately under and/or
surrounding the robot. If there are goods covered by other
objects, they will likely be missed due to the nature of radiation-
based disinfection. Since W is always greater than or equal to L,
it is guaranteed that the robot will not collide with the
environment boundaries (equivalent to constructing an
automaton representation of a point robot within its
configuration space). Robot diameter (L) and disinfection
diameter (D) depend on the mobile robot used for the
disinfection task while the disinfection coverage diameter
(W) can be selected by a user based on the required
obstacles disinfection depth (D/2-W/2). The disinfection
coverage diameter (W) is an input to the proposed
algorithm in this work, and it can be adjusted by the user.
In all figures and results presented in this paper, the default

FIGURE 1 | Boustrophedon decomposition technique with a slice sweeping from left to right. (A) Slice connectivity changes from one to two which results in two
new cells. (B) Slice connectivity changes from two to one which results in one new cell. (C) Decomposed environment.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6243334

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

value of W is assumed to be equal to 1 m. The algorithms would
allow different W values, however.

Reeb Graph
One of the approaches that has been utilized in the literature is
based on generating a Reeb graph representation of the
environment and to solve the Chinese Postman Problem over
that graph (Mannadiar and Rekleitis, 2010). Under this, the nodes
denote the critical points, and the edges represent the cells
connecting two neighboring critical points. Figure 2 illustrates
the Boustrophedon decomposition and Reeb graph
representation of a simple environment in presence of a
convex-shape obstacle. In Figure 2, the Reeb graph contains
four nodes (critical points) and four edges (cells).

In order to find the best coverage sequence of the cells, one
needs to solve the Chinese Postman Problem on the graph, which
translates to: finding the shortest tour that traverses every edge on
the Reeb graph at least once. If the Reeb graph of the environment
is an Eulerian graph, all its Euler tours will be solutions to the
Chinese Postman Problem (Mannadiar and Rekleitis, 2010). For
non-Eulerian Reeb graphs, a standard approach to solve the
Chinese Postman Problem is to modify the graph to an
Eulerian one by duplicating selected edges in the graph. The
challenge is to choose duplicated edges such that the total cost
(the sum of the individual costs of all the edges) of the Euler tour
be minimized (Mannadiar and Rekleitis, 2010). Different
strategies such as linear programming and matching theory
algorithms can be utilized to determine which edges to
duplicate (Edmonds and Johnson, 1973).

However, the generated paths in (Mannadiar and Rekleitis,
2010; Xu et al., 2011; Xu et al., 2014) include a high number of
turns in the middle of the environment because of dividing the
cells with duplicated edges into two parts. In addition, the
travelled distance can decrease by applying some modifications
to the Reeb graph. Our proposed approach to resolve these short
comings by modifying the Reeb graph is described in the
following sections.

Modified Graph Considering Cell Coverage Start and
End Points
Most of the previous works on CPP did not consider the position
of the mobile robot in the current cell to choose the next cell in the
coverage sequence. As shown in Figure 3, if the mobile robot is at
the common boundary of the current cell (already covered cell)
and two adjacent cells (not covered yet), the position of the
mobile robot along the common boundary would be an
important factor to account for when choosing the next cell in
the coverage sequence. For example, when the robot is at the
position shown in Figure 3, the adjacent cell one would be a

FIGURE 2 | (A) The planar map of a simple indoor environment in presence of a convex obstacle. (B) The Boustrophedon decomposition and Reeb graph
representation of the environment. The numbered solid points represent the nodes, and the dashed lines denote the edges in the Reeb graph.

FIGURE 3 | The position of the mobile robot along the common
boundary is an important factor in choosing one of the adjacent cells as the
next cell in the coverage sequence.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6243335

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

better candidate, than adjacent cell 2, to be the next cell in the
coverage sequence. In (Chen et al., 2019), the shortest path
between the current cell and the next cell is obtained by using
a corner model. However, the shortest path between them is not
always the best path. Graph-search approaches under CPP do not
consider this point because graphs, particularly Reeb graphs, do
not contain any information about the position of the robot at the
critical points.

The Reeb graph representation of the environment needs to
be modified to include the information on position of the robot
at the critical points. As illustrated in Figure 4A, four corners
are being considered for every cell as the potential cell coverage
start and end points. There are two critical points at two sides
of a cell (left critical point and right critical point). In each cell,
two corners are located on the right side of the left critical
point (left-top and left-bottom), and two corners are located
on the left side of the right critical point (right-top and right-
bottom).

As it can be seen in Figure 4A, corners have an offset of W/2
from critical points horizontal position and environment
boundaries, with W being the robot coverage diameter. This
offset ensures that: 1) the robot does not collide with the
environment boundaries (equivalent to constructing an
automaton representation of a point robot within its
configuration space) of the environment and 2) the covered
areas at the common boundary of two adjacent cells do not
overlap.

Figure 4B shows that the robot located at each corner of the
current cell will have four optional paths to traverse to reach one
of the four adjacent-cell corners. One should note that corners at
the most left and most right critical points of the environment are
exceptions. These optional paths can be added to the Reeb graph
as some extra edges, which facilitate the inter-cell traversal at each
critical point.

In the proposed modified graph, nodes denote the cell corners
(not the critical points), and some optional edges are added to the

graph representing the paths between the corners. In addition to
the nodes, the Reeb graph edges need to be modified as well.
Traversing each edge of the Reeb graph is equivalent to the
corresponding cell coverage. However, as it is shown in Figure 5,
the cell coverage can be done under two different options. Under
the first cell-coverage option, if the robot starts the cell coverage
from the left-bottom corner (corner 4) of the current cell, it will
finish the coverage in one of the two right corners depending on
the cell width and disinfection coverage diameter. In Figure 5A,
the cell coverage finishes at the right-bottom corner (corner 3).
The coverage path is undirected, so the coverage can start from
corner three and end at corner 4. Under the second cell-coverage
option, if the robot starts the cell coverage from the left-top
corner (corner 1) of the same cell, the end corner on the right side
(right-top corner or corner two in Figure 5B) would be different
than the end corner in the first cell coverage option. Therefore,
each edge of the Reeb graph should be replaced with a pair of
coverage edges, where traversing only one of these edges will
suffice for cell coverage.

This would lead to a new graph-search problem in which some
edges are required to be traversed (one of the two cell coverage
edges at each cell), while some other edges will remain optional
(inter-cell traversal edges in Figure 4B). Closest problem cited in
the literature to this setup would be the Rural Chinese Postman
Problem, where a subset of the edges from the graph are required
to be traversed at a minimal cost. Since this required subset does
not form a weakly-connected network, the Rural Chinese
Postman Problem would constitute an NP-complete problem
(Pearn and Wu, 1995). As opposed to that in the original Rural
Chinese Postman Problem, there is a pair of coverage edges
associated to each cell in the graph, and only one of these coverage
edges is required to be traversed in our case. This means that there
are no edges that are required to be traversed; however, there are
pairs of edges that remain essential to be traversed. When one of
the edges in a pair is traversed, that pair is considered to be
complete. The graph representation of the simple environment

FIGURE 4 | (A) The candidate cell coverage with start and end points at each cell. (B) The inter-cell transition options for mobile robot at each corner of the cells.
The dashed red lines show the inter-cell transition paths.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6243336

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

seen in Figure 2, with coverage edge pairs and inter-cell
traversal edges at each critical point (CP) is shown in
Figure 6. The environment boundaries and cell
decomposition have been removed from that in Figure 6 to
illustrate that the cell coverage sequence problem can be solved
as a solely graph-search problem indeed. In Figure 6A, all the
quotients in dividing cells’ widths based on the coverage
diameter (W) in this environment are even numbered.
Therefore, the coverage edges’ end points are adjacent to
their start points. Figure 6B shows a case where the quotient
in dividing cell 4’s width by the coverage diameter (W) is odd
numbered. As it can be seen in Figure 6B, the coverage edges in
cell four start and end corners are not adjacent. It should be
noted that the proposed graph representation of environment is
undirected; therefore, both coverage and inter-cell traversal
edges do not have a direction.

Modified Graph Considering Contour-Following
Motion
As it can be seen in Figure 6A, in order to find a route over the
graph which traverses all coverage edge pairs, some of the
coverage edges would be required to be duplicated or at some
cases both coverage edges in the same pair have to be traversed. In
(Mannadiar and Rekleitis, 2010; Xu et al., 2011; Xu et al., 2014), in
order to avoid covering the cells with duplicated edges twice, the
graph-search algorithm was modified to cover the top (or
bottom) part of the cell in the first traversal and the bottom
(or top) part of the cell in the second traversal. However, as
Figure 7 shows, the generated path includes a high number of
turns right in the middle of the environment because of splitting
cells. One should note that turns are more costly, so they have to
be avoided. The travelled distance is also increased under this
algorithm because of the extra distance travelled to make
those turns.

Instead of splitting the cells into two, we have defined a
contour-following option for the mobile robot. It allows the

robot to adjust its position in a cell, or cross a cell, without
traversing cell coverage edges. This will result in a reduced
number of turns and travelled distance. Two different actions
are considered for the robot inside each cell: 1) back-and-forth
straight-line motion with turns at the end of the lines (cell
coverage edges pair), and 2) contour-following motion to
adjust the robot position for starting the cell coverage
(contour-following edges).

In this approach, instead of duplicating the coverage edges
or traversing both cell coverage edges in the same pair, the
mobile robot follows some parts of the cell’s contour in the first
traversal to get to a favorable corner node to start the cell
coverage from. Then, it covers the rest of the cell by back-and-
forth straight-line motions in the second traversal. An optimal
coverage path over the environment in Figure 2 has been
represented in Figure 8. A contour-following motion has
been performed by the mobile robot in cell 3. As it can be
seen in Figure 8, there would be no overlaps between the back-
and-forth straight-line motions and the path taken by robot to
adjust its position for starting cell three coverage which was not
the case in CPP techniques (Jimenez et al., 2007; Hameed et al.,
2013; Tung and Liu, 2019) that utilized adjacency graph to find
the coverage sequence.

There are four possible contour-following paths at each cell
connecting the adjacent cell corners to each other. The contour-
following paths have been added to the graph (see Figure 6C). In
CPP problem, traversing of the contour-following edges is not
required.

Modified Graph Considering the Modified
Environment Decomposition (to Avoid Overlaps)
The ellipse shown in Figure 8 represents a part of the optimal
path over the environment, where the most left stripe of cell 4
has been covered separately while the robot was traversing from
cell two to cell three and from cell two to cell four. Cell four
coverage has started from the second stripe of the cell. The

FIGURE 5 | The coverage paths of a cell starting from different corners. (A)Cell coverage started from corner 4 ending at corner 3, and vice versa. (B)Cell coverage
started from corner 1 ending at corner 2, and vice versa.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6243337

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

FIGURE 6 | The graph representation of the simple environment of Figure 2with coverage edges pairs and inter-cell traversal edges at critical points (CPs). (A) The
quotient in dividing cell 4’s width by the coverage diameter (W) is even numbered. (B) The quotient in dividing cell 4’s width by the coverage diameter (W) is odd
numbered. (C) Contour-following edges are added to the graph.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6243338

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

graph does not contain enough information to consider
skipping the first stripe. When the robot is traversing a cell
coverage edge, it is covering the whole cell. As a result, there
would be a coverage overlap in the first stripe of the cell four.
This overlap increases the travelled distance and consequently
the cost of operation. To avoid this, the graph has been
modified based on a more flexible environment
decomposition method. Three transition cells are added to
the cellular decomposition of the environment at each
critical point. This allows the robot to expand or shrink the
cells around the critical points to avoid the overlaps of inter-cell
traversals and cell coverage paths. Figure 9 illustrates the

transition cells and their associated corners which are added
to the graph nodes. The transition cells have a width of W
(coverage diameter) and include two corners (top and bottom).
The modified graph of the simple environment of Figure 2
has been shown in Figure 10. In Figure 10A, the graph is
represented over the environment. The environment
boundaries are removed in Figure 10B to illustrate that
the coverage sequence problem can be considered as a
solely graph-search problem. Those edges of the graph that
are equivalent to coverage of transition cells should be added
to the list of required edges to be traversed for complete
coverage. All other added inter-cell traversal edges at the end
of the transition cells are optional.

Coverage Optimization Over the Proposed
Graph
As explained in Section Graph Representation of Decomposed
Environments, a new graph representation of environment was
constructed, where the graph nodes represent corners of the
cells, and the edges represent cell coverage, contour-following,
or inter-cell traversal. For a complete coverage, all cells
including primary and transition cells are required to be
covered by the robot at least once. This is equivalent to
going through all cell coverage edges (transition cells) or
edge pairs (primary cells) in the graph at least once. Since
cell coverage edges or edge pairs are not connected, the robot
should connect these coverage edges together using contour-
following or inter-cell traversal edges. To find an efficient
sequence of covering the cells, an optimization problem over
the graph was formulated that targets to minimize the distance

FIGURE 7 | Coverage of a single cell in (Mannadiar and Rekleitis, 2010).

FIGURE 8 | The optimal coverage path for the simple environment of
Figure 2. The ellipse shows the first stripe of cell four which has been covered
apart from the rest of the cell area.

FIGURE 9 | The modified cellular decomposition with transition cells.
Each transition cell has only two corners.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6243339

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

travelled by the robot for transitioning between the cells.
Similar to the Rural Chinese Postman Problem (Pearn and
Wu, 1995), the optimization problem would be an NP-
complete combinatorial problem since the subset of required
edges does not form a weakly-connected network.

In this work, the optimization problem was solved using a
double DQN technique (Van Hasselt et al., 2015). As
represented in Algorithm 1, double DQN trains a deep Q
network (Qθ) to approximate the action values through a
DRL process. The reason that a DRL has been chosen over
RL techniques is that the state space for coverage problem is
generally large, and consequently there would be a large number
of state-action pairs. Therefore, a function (deep network)
would be required to approximate the action values (Q
values). Two identical deep networks, online Q network (Qθ)
and target Q network (Qθ′), are utilized in the double DQN
learning process. The purpose of using the targetQ network is to
reduce Q-values overestimation (Van Hasselt et al., 2015).
Through this DRL-based technique, the robot interacts with
the environment defined based on the proposed graph and
learns how to choose the starting corner of the next cell in
the coverage sequence. A pseudocode is provided in Table 1,
which illustrates how the environment in DRL framework has
been constructed based on the proposed graph information.
When Qθ is trained over the graph environment, the efficient
coverage sequence of the cells would be equivalent to the
optimal policy found by double DQN. The optimal action
that the robot takes at each step of the coverage process is
computed by Eq. 1.

apt � argmax
a

Qθ(St , a), (1)

where arepresents all possible actions that the robot can take at
state St , which are the integer numbers in the set: [0, number of

nodes), and apt is the optimal action taken by the agent at each
state St , which is the largest Q-value approximated by Qθ . It is an
integer number in the set: [0, number of nodes) that represents
the starting corner of the next cell in the optimal coverage
sequence.

In the following, the DRL framework in this context is
explained. More details on the definitions and steps are
provided in the pseudocode of Table 1.

Episodes of the learning process start with a robot at a randomnode
(corner) and a list of already covered cells which is created randomly.
The state changes through interactions of the agent and the
environment, which is defined based on our proposed graph
representation of the environment. An episode ends when the agent
reaches the goal (final) state. The agent is at the goal state when all the
cell coverage edges are covered, and the robot is at the end node
(corner) of the episode, which is also selected randomly. If the episode is

FIGURE 10 | The graph representation of the simple environment of Figure 2, which can be utilized to find an efficient cell coverage sequence. (A) The environment
boundaries are shown to present how the graph is constructed. (B) The environment boundaries are removed to show that the coverage sequence problem can be
solved as a solely graph problem.

Algorithm 1. | Double DQN (Van Hasselt et al., 2015).

Initialize online network Qθ , target network Qθ′ , experience replay memory D

repeat

for each environment step:

Select some action at at state St

Execute at and observe next state St+1 and reward rt

Add (St , at ,St+1 , rt) to D

for each online network update step:

Sample a random mini-batch of (St , at ,St+1 , rt) from D

Compute the target: YQ
t � rt + cQθ(St+1 , argmax

a
Qθ′(St+1 , a))

Update the online network weight θ based on the error (Qθ(St+1 , at) − YQ
t)2

for each target network update step:

Update the target network weight: θ′ � θ

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 62433310

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

TABLE 1 | Pseudocode for the python class graphEnvironmentwhich includes details on how the methods for episode reset, transition and reward model, and creating the
observation image are coded. The environment in DRL framework is constructed based on the proposed graph information.

class graphEnvironment:
def __init__(graph, start_corner, end_corner, max_steps):
episode_step ← 0
reward ← 0
done ← False
SIZE ← ceil (sqrt (graph.num_corners))
episode_actions ← empty array
current_corner ← start_corner
state ← a list of 0s and 1s representing the robot current corner and already covered cells
final_state ← a list of 0s and 1s representing the robot end corner and required cells to be covered
final_reward ← 1
double_coverage_reward ← - 0.5
primary_cell_coverage_reward ← 0.05
transition_cell_coverage_reward ← 0.005
cost_scale ← 0.1
coverage_overlap_scale � 2

def reset():
episode_step ← 0
reward ← 0
done ← False
start_corner ← a random integer number in the set [0, graph.num_corners)
end_corner ← a random integer number in the set [0, graph.num_corners)
current_corner ← start_corner
state ← a list of 0s and 1s representing the robot current corner and a random set of already covered cells
final_state ← a list of 0s and 1s representing the robot end corner and a random set of required cells to be covered
episode_actions ← empty array
observation ← get_image()
return observation

def step(action):
episode_step ← episode_step + 1
if action belongs to a cell that has not been covered:

action_sequence ← graph.actionSequence (current_corner, action)
episode_actions ← concatenate (episode_actions, actionSequence)
reward ← 0
for act in action_sequence:
new_pos ← graph.nextCorner (current_corner, act)
cost ← graph.transitionCost (current_corner, act)/max_cost×cost_scale
reward ← reward - cost
if current_corner is in a primary cell:
if act is equivalent to cell coverage:
state ← update state by adding the current cell to the list of covered cells
reward ← reward + primary_cell_coverage_reward

if act is equivalent to contour-following and cell has already been covered or the contour-following is parallel to the coverage direction:
reward ← reward - cost×coverage_overlap_scale

else:
if act is equivalent to cell coverage:
if action !� current_corner:
reward ← reward - cost×coverage_overlap_scale

else:
state ← update state by adding the current cell to the list of covered cells
reward ← reward + transition_cell_coverage_reward

current_corner ← new_pos
state ← update the robot current corner

else:
done ← False
if state��final_state or episode_step >� max_steps:
done ← True

new_observation ← get_image()
reward ← double_coverage_reward
return new_observation, reward, done

if all required cells have been covered:
final_path_cost ← graph.transitionCost (current_corner, end_corner)/max_cost×cost_scale ×(coverage_overlap_scale+1)
reward ← reward + final_reward - final_path_cost
action_sequence ← graph.actionSequence (current_corner, end_corner)
episode_actions ← concatenate (episode_actions, actionSequence)

(Continued on following page)

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 62433311

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

not converging to the goal state, it will be forced to stop when the
number of steps reaches a pre-defined maximum number of steps.

State includes 1) the robot’s current node (corner), 2) the list
of already covered cells, and 3) the episode’s end node (corner).
Since the model considered for the Q networks is a convolutional
neural network, the state, S, at each step of the episode is a three-
channel image created based on the observation made on the
above three parameters, where the first channel has a nonzero
value in the pixel corresponding to the robot’s current node
number, the second channel has nonzero values in the pixels
corresponding to the already covered cell numbers, and the third
channel has a nonzero value in the pixel corresponding to the
robot’s end node number. The size of this square image is
calculated based on the total number of nodes.

Action, a, is an integer number in the set: [0, number of nodes)
that represents a node number. Having access to its current state,
the agent selects a node number from which the robot should
start covering the next cell. There are four options (nodes) for
starting coverage from at each primary cell and two options
(nodes) for starting coverage from at each transition cell.

Transition is the process of applying the selected action at the
current state and updating the state after observing the changes in the
environment. If the selected action by agent is a node in an uncovered
cell, the robot takes the shortest path from the current node to the
selected node (as its action) over the graph. When the robot arrives at
the selected node (as its action), it starts covering the cell and ends at
another corner of the cell. This covered cell is added to the list of
already covered cells in the new state. The robot’s current node
(corner) is updated in the new state as well. If the selected action by
agent is a node in an already covered cell, the state does not change,
and a negative reward is assigned to that state-action pair.

Rewards are defined in a way that they would encourage the
robot to take an efficient path for traversing all cell coverage edges
in the proposed graph. The reward function is defined in a way
that it would reward the agent for reaching the goal state with
minimum travelled distance. The following is a description of the
reward function. The pseudocode of Table 1 provides more detail
on how these rewards are applied at each step of an episode.

- If the agent at a particular state selects a node to travel to (as its
action) which belongs to an already covered cell, meaning that it

decides to cover a cell that has already been covered before, the
state (robot’s current node and the list of already covered cells)
will not change and a large negative double-coverage reward of
Rdc � −0.5 will be assigned to that state-action pair. Rdc has a
large negative value since covering an already covered cell (area)
of the environment results in a large amount of unnecessary
cost (extra travelled distance) while not helping the coverage
task completion at all. The magnitude of Rdc has been chosen to
be much larger than the magnitude of the cost of transition (CT

in Eq. 2) for travelling from current node to a node in an
adjacent uncovered cell. This encourages the agent to avoid
covering a cell more than once and try covering the uncovered
cells in the environment instead. The exact value of Rdc has been
found by tuning the DRL hyperparameters over several sample
indoor environments based on speed of convergence, and not
getting stuck in local minima.

- If the agent at a particular state selects a node to travel to (as its
action) which belongs to an uncovered cell, the transition model
has two parts: 1) transition part which constitutes travelling
from the current node to the selected node (as an action) using
contour-following and inter-cell traversal edges, and 2)
coverage part which constitutes covering the destination cell
starting from the selected node (as an action). Therefore, the
coverage reward assigned to the state-action pair, Rc, has two
parts that encourages the agent to select nodes in the uncovered
cells while minimizing the travelled distance for transition to
the selected node.

Rc � CT + Rcc. (2)

Cost of transition, CT , and cell-coverage reward, Rcc, are
described below:

1) Cost of transition (CT) is a negative reward assigned for the cost
of travelling from current node to the selected node (as an action).
The total cost of transition is the summation of cost of traversing
all edges in the graphpath fromcurrent node to the selected node:

CT � ∑
i

CTi. (3)

TABLE 1 | (Continued) Pseudocode for the python class graphEnvironment which includes details on how the methods for episode reset, transition and reward model, and
creating the observation image are coded. The environment in DRL framework is constructed based on the proposed graph information.

current_corner ← end corner
done ← False
if state��final_state or episode_step >� max_steps:
done ← True

new_observation ← get_image()
return new_observation, reward, done

def get_image():
env ← 3-dimensional array with size of (SIZE, SIZE, 3) # equivalent to an image with 3 channels and width×height of SIZE×SIZE
env ← update the first channel to indicate the robot current corner
env ← update the second channel to indicate the already covered cells
env ← update the third channel to indicate the robot end corner
img ← convert env to an RGB image
return img

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 62433312

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

The cost of travelling from one node to an adjacent node in the
graph has already been calculated offline and is included in the
graph edge weights. The graph edge weights,WTi, are obtained
based on the shortest distances between adjacent nodes of
the graph. A primary cell coverage edge weight is zero
since there is no extra travelled distance for covering a
single primary cell. To find CTi associated to every two
nodes, the edge weight (WTi), is normalized and then
scaled based on a trial and error process while tuning
the DRL framework rewards definition.

CTi � −0.1(WTi

WTmax

) , (4)

where WTmax is the maximum edge weight in the entire graph.

2) A positive cell-coverage reward of Rcc � 0.05 for covering an
uncovered primary cell or a positive cell coverage reward of
Rcc � 0.05 × 0.1 � 0.005 for covering an uncovered
transition cell is assigned to the coverage part. This
positive Rcc reward has been utilized to allow the agent
learn if it is gradually getting closer to the goal state. The
magnitude of Rcc is in the order of the magnitude of the cost
of transition (CT in Eq. 2) for travelling from current node to
another node in an uncovered cell. This helps the agent to
learn how to select the next cell in a way that the total episode
reward is maximized instead of selecting the closest
uncovered cell. Rcc for covering an uncovered transition
cell is smaller (by a factor of 10) than the corresponding
parameter for a primary cell since the transition cells are
always smaller than the primary cells. The exact values of Rcc

for both primary and transition cells have been found by trial
and error through implementing the DRL optimization over
several sample indoor environments. Improper values of Rcc

would increase the optimization convergence time and/or
even lead to getting stuck in local minima.

- When the transition path includes a contour-following,
the edge transition cost (CTi) is calculated similar to
that in Eq. 4 as if the contour-following happens in an
uncovered cell, and that it is not parallel to the cell
coverage direction. However, if the contour-following
happens in a covered cell or the contour-following path
is parallel to the cell coverage direction, the cost would
increase since coverage overlaps would be inevitable in
those parts. For those cases, the transition cost is multiplied
by a factor of 3 (obtained based on trial and error) to
penalize the agent for the coverage overlaps (extra travelled
distances) as it is indicated in Eq. 5.

CTi � −0.1(3)(WTi

WTmax

). (5)

- The magnitude of this transition cost should not be much larger
than the magnitude of transition cost in Eq. 4 since the agent

should still have a chance to take a contour-following path in a
covered cell if it leads to a maximized total episode reward at
the end.

- If applying an action at the current state results in reaching the
goal state, where all the cells are covered and the robot is at the
end corner of the episode, a large positive final reward of Rf � 1
will be assigned to the current state-action pair. This large
positive reward encourages the agent to continue taking
transition paths and covering the cells to reach the goal state.

This double DQN approach, like many other Deep learning
techniques, is slow at the training step since a large number of
possible interactions with the environment needs to be fed to the
learning networks. However, once the agent is trained on the
environment, the execution speed would be fast. The agent would
be capable of generating an efficient coverage path for any
arbitrary start and/or end positions immediately (i.e., via a
transfer learning). The user can determine which cells need to
be covered (which could be equivalent to selecting the rooms that
need to be disinfected), and the agent will generate the coverage
path using the already trained model without wasting time to
solve the problem for the new setting. The training step used in
the DRL can be done offline on a more powerful processor and
then the trained network can be uploaded onto the robot onboard
hardware. At the execution step, the required computational
power is not expensive, therefore, most of the commonly-used
processors on the mobile robots will be able to run it in real time.

Similar to some other CPP works cited in the literature (e.g.,
Hameed et al., 2013; Xu et al., 2014; Lewis et al., 2017; Chen
et al., 2019), our proposed technique considers a global path
planning that finds an efficient sequence for covering different
regions (cells) of the static and known environment, while
minimizing the travelled distance (overlap) in the coverage
path. Therefore, we assume that the hospital floor plans
would be static and known in advance, and the DRL-based
coverage planning can be carried out offline. The proposed
Double DQN optimization technique is applicable for hospital
disinfection since it is fast enough at the execution phase and
suitable for transfer learning (i.e., it can manage new start/end
corners, arbitrary areas of the environment selected for
disinfection). The environment uncertainties such as
unknown obstacles, dynamic objects, etc. and the robot
constraints are usually considered in a local path planning
algorithm, which needs to constantly acquire sensory
information on the environment. Development of a local
path planning method constitutes our future work through
which we will compute a collision-free trajectory in real time
based on the coverage path generated by our proposed global
CPP technique.

RESULTS AND DISCUSSION

The proposed graph can be automatically created for any
environment based on the steps described in Section
Environment Decomposition and Section Graph Representation

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 62433313

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

of Decomposed Environments. The environment data including
the planar map of the environment is passed as input to a
MATLAB script written by our team. The proposed algorithm
creates and saves a file which contains all the information about
the graph representation of the environment including nodes,
edges, and transition costs and action sequences of travelling
from one node to another. The time required for this process is in
the order of seconds (using an OMEN HP laptop running
Windows 10 with an Intel Core i7-9750H CPU @ 2.60 GHZ
and 16 GB of RAM). The constructed graph is passed to a Python
code, where the environment of the DRL framework has been
created based on the information of the graph. The pseudocode
for the Python class of the environment constructed based on the

proposed graph is provided in Table 1. The Double DQN agent
provided in the GitHub repository of keras-rl package has been
utilized to create the Keras model and run the reinforcement
learning episodes. The sequential model initialized for both
online and target Q networks includes three convolutional
layers followed by two dense layers. An epsilon-greedy policy
and an Adam optimizer with learning rate of 25e-5 are considered
for the training step.

After the agent is trained over the graph environment, it
would be able to generate an efficient traversal sequence over
the graph for different configurations of the input
environment. Different configurations can be created by
selecting different: 1) start and/or end positions for

FIGURE 11 | The complete coverage path generated by the proposed CPP technique based on the graph representation of environment. (A)Whole free space has
been covered. (B)Cell 3 has been excluded from the area of interest. (C)Cell 2 has been excluded from the area of interest, and end corner position has changed. (D)Cell
4 has been excluded from the area of interest, and both start and end corner positions have changed. The blue lines represent the overlapped parts of the path.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 62433314

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

disinfection task, and/or 2) sets of the environment cells that
need to be covered. In order to evaluate the performance of the
proposed CPP technique, the coverage path has been generated
in several environments. The environment shown in Figure 2,
with modified cell decomposition shown in Figure 9, and the
graph representation shown in Figure 10, has been chosen to
demonstrate the performance of our proposed method. This
simple environment has been chosen as the testbench
evaluation environment since the optimal coverage path for
different configurations of this environment is manually
attainable. In the first scenario, the entire free space is
required to be covered. The coverage planning is set to start
from cell one and to end at cell four. Figure 11A shows the
calculated coverage path. As it can be seen, there are no

overlaps (extra travelled distance). The robot performs a
contour-following motion in cell three to adjust the cell
coverage start corner. The disinfection coverage diameter
(W) in this scenario was set at 1 m. It should be noted that
all cell coverage paths are assumed to be in vertical direction
(parallel to the Y-axis).

As it was mentioned in Section Coverage Optimization Over
the Proposed Graph, the coverage path planner can generate paths
for different configurations of the environment which it has been
trained for. It means that users can select any arbitrary area of
interest in the environment to be covered (Figure 11B). They can
also choose any arbitrary combination of the start and end
corners for the disinfection task (Figures 11C,D). As it can be
seen in Figure 11, the generated paths for different configurations

FIGURE 12 | (A) An indoor environment with a single room and a single obstacle inside the room. (B) The complete coverage path generated by the CPP technique
based on the graph representation of environment. The path stripes are shown by solid red lines. (C) The extra travelled distances (overlaps) in the generated coverage
path. The overlapping parts of the path are shown by solid blue lines.

FIGURE 13 | (A) An indoor environment including a single roomwith a single obstacle inside and two obstacles outside. (B) The extra travelled distances (overlaps)
in the generated coverage. The overlapping parts of the path are shown by solid blue lines.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 62433315

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

of the environment are optimal, i.e., the extra travelled distance
(overlap) is minimal.

Figure 12A represents another indoor environment that
comprises of a single room and a single obstacle. The
generated path is shown in Figure 12B. Since the
environment is larger than the simple environment in
Figure 11, and that there is a higher number of path stripes
over the environment, Figure 12C has been also generated to
show the extra travelled distances (overlaps) in the generated
coverage path. Figure 13A shows another environment that
comprises of the same room, but two obstacles are added to
the environment. The extra travelled distances (overlaps) in the
generated path are shown in Figure 13B. The extra travelled
distance (overlap) is the optimization metric used in the CPP
problem. If two different CPP approaches generate two different
complete coverage paths with no overlaps, the travelled distances
of those two approaches will be equal, and the extra travelled
distance will be zero in both cases. As the coverage overlap
increases, the extra travelled distance increases. Therefore, the
extra travelled distance (overlap) can be considered as the
evaluation metric in the CPP problem. The complete coverage
paths generated for both cases in Figures 12, 13 environments are
quite efficient in terms of extra travelled distance since the ratios
of their extra travelled distance to their total travelled distance are
quite low (less than 2%).

In the next step of the evaluation, the performance of the
proposed CPP technique based on our proposed graph
representation of environment has been compared with two
well-known state-of-the-art CPP techniques suggested in the
literature over two indoor environments. The CPP technique
proposed in (Mannadiar and Rekleitis, 2010; Xu et al., 2011; Xu
et al., 2014) duplicated selected edges of the Reeb Graph to make
it Eulerian, and then solved a Chinese Postman Problem over the
graph to find the efficient sequence of cell coverage with minimal
travelled distance. Figure 14A shows the coverage path generated
by the CPP technique proposed in (Xu et al., 2014) on the simple

environment shown in Figure 2. As it can be seen in Figure 14A,
there are many turns in the middle of cell one and cell four that
happen because of splitting these two cells into two parts (dashed
blue lines). The extra travelled distances (overlaps) are
represented by solid blue lines. The generated coverage path is
not optimal over this simple environment since the technique
does not consider the start and end points of coverage for each
cell. In their CPP technique, the robot has to return to the starting
cell at the end of the coverage (Figure 14A).

The CPP technique proposed in many of the previous
attempts (e.g., Jimenez et al., 2007; Hameed et al., 2013; Tung
and Liu, 2019) utilized Genetic Algorithm (GA) optimization to
find an efficient coverage sequence over the adjacency graph of
the environment that visits each node (cell) at least once by
solving a Traveling Salesman Problem. The coverage path
generated by the CPP technique proposed in (Tung and Liu,
2019) is shown in Figure 14B. As it can be seen in Figure 14B, the
robot needs to traverse through the middle of the cells one and
four to get back to the starting point which results in extra
travelled distances (overlaps) represented by solid blue lines in
cells one and four. In their CPP technique, the robot has to return
to the starting point at the end of the coverage.

A coverage path has been also generated using our proposed
method on the same environment with the exact same start and
end position. Results are given in Figure 14C. Our proposed
method outperforms the CPP techniques in (Xu et al., 2014) and
(Tung and Liu, 2019) in terms of total travelled distance. The
extra travelled distance in the path generated by our approach is
about 5% and 3.6% of the extra travelled distance resulted by
applying the CPP technique in (Xu et al., 2014) and (Tung and
Liu, 2019), respectively. The robot takes contour-following paths
to adjust its position for starting the cell coverage at each cell.
After arriving at the cell coverage start point found through the
optimization, the robot covers the cell with no overlaps with the
previously covered part of the cell contour. This can be seen in all
the cells in Figure 14C. The number of turns in the path

FIGURE 14 | The complete coverage path generated by: (A) the CPP technique proposed in (Xu et al., 2014), (B) the CPP technique proposed in (Tung and Liu,
2019), and (C) the proposed CPP technique based on the graph representation of environment. The solid red lines represent the generated path, and the solid blue lines
represent the overlapped parts of the path. The dashed blue lines show the common boundaries of the divided cells.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 62433316

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

generated by our approach is about 65% of the number of turns
resulted by applying the CPP technique in (Xu et al., 2014) since
the robot does not need to split the cells to get back to the starting
cell, and it takes contour following paths instead. The technique
proposed in (Tung and Liu, 2019) produced similar number of
turns to that in our proposed technique. A comparison of the
extra travelled distance and number of turns is shown in Table 2.
In Table 2, the extra travelled distance ratio is defined as the extra
travelled distance using our proposed technique divided by the
extra travelled distance utilizing other techniques in (Xu et al.,
2014; Tung and Liu, 2019). Similarly, the number of turns ratio is

defined as the number of turns produced through the use of our
proposed technique divided by the number of those from other
techniques in (Xu et al., 2014; Tung and Liu, 2019). The smaller
extra travelled distance ratio or number of turns ratio are in
Table 2, the better our technique has worked in comparison with
other techniques.

The proposed CPP technique based on the graph
representation of environment and other techniques (Xu et al.,
2014; Tung and Liu, 2019) have been applied to generate a
complete coverage path on a more complicated indoor
environment, as shown in Figure 15. The sequences of

TABLE 2 | A comparison of the extra travelled distance and number of turns resulted in the proposed CPP technique based on the graph representation of environment and
CPP techniques proposed in (Xu et al., 2014) and (Tung and Liu, 2019).

CPP technique proposed
in other works

CPP technique proposed in (Xu et al., 2014) CPP technique proposed in (Tung and Liu, 2019)

Environment Environment of Figure 14 Environment of Figure 15 Environment of Figure 14 Environment of Figure 15

Extra travelled distance ratio ×100 5% 42% 3.6% 43%
Number of turns ratio ×100 65% 45% ≈100% ≈100%

FIGURE 15 | The cell coverage sequence by: (A) the CPP technique proposed in (Xu et al., 2014), (B) the CPP technique proposed in (Tung and Liu, 2019), and (C)
the proposed CPP technique based on the graph representation of environment The extra travelled distances (overlaps) in the generated coverage path by: (D) the CPP
technique given in (Xu et al., 2014), (E) the CPP technique proposed in (Tung and Liu, 2019), and (F) the proposed CPP technique based on the graph representation of
environment. The overlapping parts of the path are shown by solid blue lines. The solid orange lines.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 62433317

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

covering the cells using the proposed techniques in (Xu et al.,
2014) and (Tung and Liu, 2019) are shown in Figures 15A,B
respectively. The extra travelled distances (overlaps) in the path
generated by the other techniques in (Xu et al., 2014) and (Tung
and Liu, 2019) are depicted in Figures 15D,E, respectively.

The proposed CPP technique based on the graph
representation of the environment has been applied over the
same environment with same start and end points. The sequence
of covering the cells and the extra travelled distance (overlaps) in
the path generated by our proposed method are shown in Figures
15C,F respectively. A comparison of the extra travelled distance
and number of turns has been shown in Table 2. As it can bee
seen in Figure 15F, the extra travelled distance (overlap) has been
decreased in the generated coverage path by our proposed
method. The extra travelled distance in the path generated by
our proposed approach is about 42% and 43% of the extra
travelled distance resulted by applying the other CPP
technique in (Xu et al., 2014) and (Tung and Liu, 2019),
respectively. This cost reduction is a result of utilizing the
proposed graph representation of the environment, which was
created considering three modifications described in Section
Graph Representation of Decomposed Environments. This
improvement can decrease the disinfection cost dramatically
since the hospital disinfection is a repetitive task which should
be done based on certain routines. The decrease in the cost is
more significant when our proposed method is applied over
larger indoor environments like hospitals.

In addition to the extra travelled distance (overlap), the number of
turns in the path generated for environment ofFigure 15 is 45% of the
total number of turns resulted by applying the CPP technique in (Xu
et al., 2014). The number of turns is decreased because the proposed
graph representation of the environment makes it possible for the
robot to take a contour-following edge for adjusting each cell coverage
start point or crossing a cell. The CPP technique in (Xu et al., 2014)
split the duplicated edges, so the robot performed extra turns at each
side of the splitting edges. This decrease in the number of turns
decreases the disinfection task completion time and cost. The number
of turns in the path generated by applying our technique is similar to
the number of turns produced by applying the technique proposed in
(Tung and Liu, 2019).

At the execution step, the required computational power was
not expensive. Therefore, most of the commonly-used processors
on the mobile robots will be able to run it in real time. For
example, using an OMEN HP laptop running Windows 10 with
an Intel Core i7-9750H CPU@ 2.60 GHZ and 16 GB of RAM, the
execution of the algorithm for the environment of Figure 15 took
about 30 s.

CONCLUSION

Mobile robots make the hospital disinfection process safer and
more effective. Central to the autonomous disinfection, a CPP
technique was presented in this paper which decreases the time and
cost for robotic disinfection of hospitals. The proposed technique
utilizes a new graph representation of the environment. This graph
representation of the environment is created offline considering a

more flexible version of Boustrophedon cell decomposition
method, taking both contour-following paths in cells, and the
corners of cells as start and end points of cell coverage into
account. The efficient cell coverage sequence is found by solving
an optimization problem over the graph using a double DQN
technique. The generated coverage path by the proposed
technique has been compared with those generated by two
state-of-the-art CPP approaches over two indoor
environments. The results indicate that the travelled distance
and number of turns are reduced when using our proposed
method. In particular, the extra travelled distance in the path
generated by the proposed approach was in the range of 3.6% to
43% of the extra travelled distance resulted from applying other
CPP techniques cited in the literature, (Xu et al., 2014; Tung and
Liu, 2019), depending on the complexity of the environment.
Furthermore, the number of turns was 45% to 65% of the total
number of turns resulted when applying one of the CPP
techniques cited in the literature, (Xu et al., 2014). This will
lead to an improved completion time and cost for disinfecting
hospitals using unmanned systems.

The learning time in the double DQN is in the order of hours
which indicates that the agent should be trained offline. However,
once the agent is trained over an environment, the in-field
execution time will be in the order of seconds (with an Intel
Core i7-9750H CPU @ 2.60 GHZ and 16 GB of RAM).
Additionally, the trained model by double DQN technique is
robust to changes in the start and/or end states of the robot used
for the disinfecting task. It is also robust to excluding some cells
from the disinfection target area, so regions of interest to disinfect
can be prioritized on the fly. For future works, we will apply other
DRL techniques over our proposed graph to decrease the training
time. To further our research, we intend to extend this work to
scenarios, where multiple disinfecting robots are employed for
doing the task collectively. This will decrease the total operation
time significantly due to the division of workload over all robots,
which can be incorporated to the current problem formulation
under the DRL method. Also, further works needs to be done
on adding constraints and uncertainties to the problem
formulation, for instance, uncertainties in the obstacles
position (including unknown static obstacles and dynamic
obstacles), constraints and uncertainties in mobile robot
motion, constraints on the battery capacity and access to
the charging stations will be considered.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

BN developed the algorithms, conducted the simulations and was
the main author of the manuscript. MM helped with the
development of the idea, led the graph representation work,
and helped with authoring the paper. FJ-S helped with the

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 62433318

Nasirian et al. Coverage Planning for Disinfecting Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

development of the planning algorithm, reinforcement learning,
and helped with the paper authorship and organization.

FUNDING

This work was financially supported by Natural Sciences and
Engineering Research Council of Canada under Discovery

Grant # 2017-06930 and Ryerson Dean of Engineering and
Architectural Science Research Fund (DRF). The funding
from NSERC was used partially to support the first author,
the research activities including computing system and
simulation software. The second source was used to
support the computing facility and field trips. The work
was also partially funded through MITACS Accelerate to
support the first author.

REFERENCES

Cabreira, T., Brisolara, L., and Ferreira, P. R., Jr (2019). Survey on coverage path
planning with unmanned aerial vehicles. Drones 3 (1), 4. doi:10.3390/
drones3010004

Chen,X., Tucker, T.M.,Kurfess, T. R., andVuduc, R. (2019). “Adaptive deeppath: efficient
coverage of a known environment under various configurations,” in Proceedings of
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Macau, China, November 3–8, 2019 (Piscataway, NY: IEEE), 3549–3556.

Choset, H., Acar, E., Rizzi, A. A., and Luntz, J. (2000). “Exact cellular
decompositions in terms of critical points of morse functions,” in
Proceedings of 2000 IEEE international conference on robotics & automation
(Symposia Proceedings), 2270–2277.

Choset, H. (2001). Coverage for robotics–a survey of recent results. Ann. Math.
Artif. Intell. 31 (1-4), 113–126. doi:10.1023/a:1016639210559

Choset, H., and Pignon, P. (1998). “Coverage path planning: the boustrophedon
cellular decomposition,” in Field and Service Robotics Editor A. Zelinsky
(London, United Kingdom: Springer), 203–209.

Edmonds, J., and Johnson, E. L. (1973). Matching, Euler tours and the Chinese
postman. Math. Program. 5 (1), 88–124. doi:10.1007/bf01580113

Galceran, E., and Carreras,M. (2013). A survey on coverage path planning for robotics.
Robot. Autonom. Syst. 61 (12), 1258–1276. doi:10.1016/j.robot.2013.09.004

Hameed, I. A., Bochtis, D., and Sørensen, C. A. (2013). An optimized field coverage
planning approach for navigation of agricultural robots in fields involving
obstacle areas. Int. J. Adv. Rob. Syst. 10 (5), 231. doi:10.5772/56248

Jimenez, P. A., Shirinzadeh, B., Nicholson, A., and Alici, G. (2007). “Optimal area
covering using genetic algorithms,” in Proceedings of 2007 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, Zurich,
Switzerland, September 4–7, 2007 (Piscataway, NY: IEEE), 1–5.

Khan, A., Noreen, I., and Habib, Z. (2017). On complete coverage path planning
algorithms for non-holonomic mobile robots: survey and challenges. J. Inf. Sci.
Eng. 33 (1), 101–121. doi:10.6688/JISE.2017.33.1.7

Lewis, J. S., Edwards, W., Benson, K., Rekleitis, I., and O’Kane, J. M. (2017). “Semi-
boustrophedon coverage with a dubins vehicle,” in Proceedings of 2017 IEEE/
RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, September 24–28, 2017 (Piscataway, NY: IEEE), 5630–5637.

Mackenzie, D., and Balch, T. (1993). “Making a clean sweep: behavior based vacuuming,”
in Proceedings of AAAI 1993 fall symposium series: InstantiatingReal-WorldAgents,
Washington, DC, October 22–24, 1993 (Menlo Park, CA: AAAI), 93–98.

Mannadiar, R., and Rekleitis, I. (2010). “Optimal coverage of a known arbitrary
environment,” in Proceedings of 2010 IEEE International Conference on
Robotics and Automation, Anchorage, AK, May 3–7, 2010 (Piscataway, NY:
IEEE), 5525–5530.

Oksanen, T., and Visala, A. (2009). Coverage path planning algorithms for
agricultural field machines. J. Field Robot. 26 (8), 651–668. doi:10.1002/rob.
20300

Palacin, J., Palleja, T., Valganón, I., Pernia, R., and Roca, J. (2005). “Measuring
coverage performances of a floor cleaning mobile robot using a vision system,”
in Proceedings of 2005 IEEE International Conference on Robotics and
Automation, Barcelona, Spain, May 18–22, 2005 (Piscataway, NY: IEEE),
4236–4241.

Pearn, W. L., and Wu, T. C. (1995). Algorithms for the rural postman
problem. Comput. Oper. Res. 22 (8), 819–828. doi:10.1016/0305-
0548(94)00070-o

Tung, W. C., and Liu, J. S. (2019). Solution of an integrated traveling
salesman and coverage path planning problem by using a genetic
algorithm with modified operators. IADIS Int. J. Comput. Sci. Inf. Syst.
14 (2). 95–114.

Van Hasselt, H., Guez, A., and Silver, D. (2015). Deep reinforcement learning with
double q-learning. https://arxiv.org/abs/1509.06461.

Xu, A., Viriyasuthee, C., and Rekleitis, I. (2014). Efficient complete coverage of a
known arbitrary environment with applications to aerial operations. Aut.
Robots 36 (4), 365–381. doi:10.1007/s10514-013-9364-x

Xu, A., Viriyasuthee, C., and Rekleitis, I. (2011). “Optimal complete terrain
coverage using an unmanned aerial vehicle,” in Proceedings of 2011 IEEE
International Conference on Robotics and Automation, Shanghai, China, May
9–13, 2011 (Piscataway, NY: IEEE), 2513–2519.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Nasirian, Mehrandezh and Janabi-Sharifi. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 62433319

Nasirian et al. Coverage Planning for Disinfecting Robots

https://doi.org/10.3390/drones3010004
https://doi.org/10.3390/drones3010004
https://doi.org/10.1023/a:1016639210559
https://doi.org/10.1007/bf01580113
https://doi.org/10.1016/j.robot.2013.09.004
https://doi.org/10.5772/56248
https://doi.org/10.6688/JISE.2017.33.1.7
https://doi.org/10.1002/rob.20300
https://doi.org/10.1002/rob.20300
https://doi.org/10.1016/0305-0548(94)00070-o
https://doi.org/10.1016/0305-0548(94)00070-o
https://arxiv.org/abs/1509.06461
https://doi.org/10.1007/s10514-013-9364-x
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Efficient Coverage Path Planning for Mobile Disinfecting Robots Using Graph-Based Representation of Environment
	Introduction
	Methodology
	Environment Decomposition
	Graph Representation of Decomposed Environments
	Mobile Robot
	Reeb Graph
	Modified Graph Considering Cell Coverage Start and End Points
	Modified Graph Considering Contour-Following Motion
	Modified Graph Considering the Modified Environment Decomposition (to Avoid Overlaps)

	Coverage Optimization Over the Proposed Graph

	Results and Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

