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Reliable and robust fruit-detection algorithms in nonstructural environments are essential
for the efficient use of harvesting robots. The pose of fruits is crucial to guide robots to
approach target fruits for collision-free picking. To achieve accurate picking, this study
investigates an approach to detect fruit and estimate its pose. First, the state-of-the-art
mask region convolutional neural network (Mask R-CNN) is deployed to segment binocular
images to output the mask image of the target fruit. Next, a grape point cloud extracted
from the images was filtered and denoised to obtain an accurate grape point cloud. Finally,
the accurate grape point cloud was used with the RANSAC algorithm for grape cylinder
model fitting, and the axis of the cylinder model was used to estimate the pose of the
grape. A dataset was acquired in a vineyard to evaluate the performance of the proposed
approach in a nonstructural environment. The fruit detection results of 210 test images
show that the average precision, recall, and intersection over union (IOU) are 89.53, 95.33,
and 82.00%, respectively. The detection and point cloud segmentation for each grape
took approximately 1.7 s. The demonstrated performance of the developed method
indicates that it can be applied to grape-harvesting robots.

Keywords: grape cluster, region convolutional network, binocular stereo camera, grapemodel reconstruction, pose
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INTRODUCTION

Grapes have become one of the most globally popular fruits because of their desired taste and rich
nutrition. Grape harvesting is a labor-intensive and time-consuming work (Luo et al., 2016). With an
aging population and reduced agricultural labor force in China, it is urgent to develop automated
grape-harvesting robots capable of working in the field (Lin et al., 2019). Traditional manual
harvesting can no longer meet the basic needs of the grape industry, and several prototypes for
commercial grape-harvesting robots have been developed. Over the past 3 decades, the rapid
advancement of digital image processing techniques has enabled applications of machine vision
in agriculture and other fields. Scholars around the world have studied fruit-harvesting robots using
primarily machine vision (Tang et al., 2020b), such as for sweet peppers (Bac et al., 2017), cucumbers
(Van Henten et al., 2003), strawberries (Hayashi et al., 2010; Feng et al., 2012; Han et al., 2012), litchi
(Wang et al., 2016), apples (De-An et al., 2011; Wang et al., 2017), and grapes (Botterill et al., 2017).
Although many harvesting robots have emerged, fruit-detection systems are still a fragile link,
especially for harvesting robots in the face of complexity from nonstructural environments of
orchards and unstructured features of fruits.

Edited by:
Christophoros Nikou,

University of Ioannina, Greece

Reviewed by:
Yunchao Tang,

Zhongkai University of Agriculture and
Engineering, China

Pablo Gauterio Cavalcanti,
Federal Technological University of

Paraná, Brazil

*Correspondence:
Lufeng Luo

luolufeng@fosu.edu.cn

Specialty section:
This article was submitted to
Robot and Machine Vision,

a section of the journal
Frontiers in Robotics and AI

Received: 07 November 2020
Accepted: 21 May 2021
Published: 22 June 2021

Citation:
Yin W, Wen H, Ning Z, Ye J, Dong Z
and Luo L (2021) Fruit Detection and

Pose Estimation for Grape
Cluster–Harvesting Robot Using

Binocular Imagery Based on Deep
Neural Networks.

Front. Robot. AI 8:626989.
doi: 10.3389/frobt.2021.626989

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6269891

METHODS
published: 22 June 2021

doi: 10.3389/frobt.2021.626989

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.626989&domain=pdf&date_stamp=2021-06-22
https://www.frontiersin.org/articles/10.3389/frobt.2021.626989/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.626989/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.626989/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.626989/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.626989/full
http://creativecommons.org/licenses/by/4.0/
mailto:luolufeng@fosu.edu.cn
https://doi.org/10.3389/frobt.2021.626989
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.626989


To date, the main effects of natural factors on the accurate
detection of fruits include the intensity of natural illumination,
overlap of multiple fruits, and the occlusion of stems and
leaves (Yu et al., 2019). Most methods related to fruit target
detection are based on machine-learning algorithms. For
grape-harvesting robots, the complexities of various grape
characteristics, especially their irregular shape, generates
significant challenges to accurately locate the grape-
harvesting robot. Before the robot performs picking
operations in a nonstructural orchard, it is necessary to
recognize and locate a suitable cutting point on the
peduncle of grape clusters. However, it is difficult to
determine the optimal plucking location because of the
complexity and uncertainty of orchard environments. In
particular, the peduncle of grapes is often small and easily
obscured by branches and leaves. Therefore, accurate position
information relies on extracting the appearance features of
fruit, including the color, size, shape, and texture (Lu and Sang,
2015; Rizon et al., 2015; Yu et al., 2019; Cecotti et al., 2020). In
the study by Luo et al. (2018), color features were used to
extract more effective color components for grapes, which
were then segmented to capture images using the k-means
clustering algorithm and obtain contours of the grapes.
Ouyang et al. (2012) first considered median filtering to
remove noise on strawberry images and utilized the OTSU
algorithm for image segmentation and to acquire the most
discriminative shape features via mean shift clustering and
morphological operations. Mizushima et al. (2013) used a
linear support vector machine (SVM) and the Otsu
threshold method to segment color images. However, the
illumination intensity of the environment affected the
identification accuracy, even though these methods can
identify targets from images. Of note, traditional machine
vision methods have difficulty performing target detection
for grape clusters with irregular shapes.

Convolutional neural networks have been extensively used
in fruit detection due to their impressive capabilities of
feature extraction and autonomous learning. For instance,
Wan et al. (2020) adopted the Faster R-CNN (Ren et al., 2015)
to detect apples, oranges, and mangoes more accurately by
improving the convolutional and pooling layers (Wan and
Goudos, 2020). Mai et al. (2020) proposed a novel Faster
R-CNN by merging multiple classifier fusion strategies; the
improved model identified small fruit compared with other
detection models. Tian et al. (2019a) improved the YOLO-V3
(Redmon and Farhadi, 2018) model with the DenseNet
(Huang et al., 2017) network to process low-resolution
feature layers for apple detection. The experimental results
showed that the YOLO-V3–dense model was superior to the
original YOLO-V3 model and the Faster R-CNN with the
VGGNet model. However, the above methods with deep
neural network algorithms, such as SSD (Liu et al., 2016),
R-CNN (Girshick et al., 2014), and Faster R-CNN (Girshick,
2015), can only acquire the position of the target using a
bounding box. Thus, they are unable to accurately extract
contour and shape information. Tian et al. (2019b) used the
cycle-consistent adversarial network (CycleGAN) (Zhu et al.,

2017) to effectively achieve data augmentation and the
YOLO-V3–incorporated DenseNet modules to detect apple
lesions.

There is a limited body of research on the extraction of
target contours based on convolutional neural networks.
Majeed et al. (2018) applied a convolutional neural
network, SegNet (Badrinarayanan et al., 2017), to segment
apple tree trunks and branches from RGB-D images. Lin et al.
(2019) deployed a fully convolutional network (FCN)
(Shelhamer et al., 2017) to segment RGB images and
output a fruit and branch binary map with an RGB-D
camera before applying euclidean clustering to group the
points into a set of individual fruits. The experiments showed
that the precision and recall for guava detection were 0.983
and 0.948, respectively. Therefore, the CNN could be used to
detect and segment grapes in nonstructural environments.

The 3D visual information is the most intuitive data
available to fruit-harvesting robots as it attempts to sense
the grape (Tang et al., 2020a). This study aimed to develop
a vision-sensing algorithm to detect grapes and segment them
using a binocular stereo camera in a nonstructural
environment. A method for grape target detection based on
the Mask R-CNN (He et al., 2017) network is proposed. The
Mask R-CNN not only accurately recognized grapes in
complex environments but also extracted object regions
from the background at the pixel level. There was no
significant absolute mean difference between the binocular
stereoscopic visual measurements and the true data (Tang
et al., 2019), and all the grape cloud points were acquired
from the global point cloud collected from low-cost camera
binocular stereo sensors.

The objective of this study was to develop a vision
algorithm to detect grapes and estimate their pose in

FIGURE 1 | Photograph of the image acquisition system.
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nonstructural environments using a ZED camera. The
pipelines of the study are to 1) employ a mask region
convolutional neural network (Mask R-CNN) (He et al.,
2017) to segment grapes from RGB images, 2) extract the
point cloud data of each grape cluster from the segmented
images and preprocess the point cloud, and 3) reconstruct the
grape model by fitting a cylinder model based on point cloud
data to estimate the pose of the grape using the axis of the
cylinder model.

BINOCULAR IMAGE ACQUISITION

The harvesting robot used for this study is shown in Figure 1.
Image acquisition was performed using a ZED camera with a
1,920 × 1,080 pixel resolution under cloudy and sunny
conditions. The collection times were restricted to between
9:00 a.m. and 3:00 p.m. The illumination conditions included
frontlighting, backlighting, and side-lighting. The camera
viewing direction was parallel to the direction of natural
illumination for frontlighting, antiparallel to imitate
backlighting, and perpendicular to imitate side-lighting. The
distance between the camera and grapevine was set to 600 mm
from the harvesting robot’s end-effector as possessed at an
ideal range of motion to conveniently perform harvesting. In
addition, the visual system has a suitable target search field at
this distance. During the experiments, 180 grape images were
acquired under different illumination conditions. To enhance
the richness of the experimental dataset, the collected images
were preprocessed for image enhancements, such as rotation,
brightness, and saturation. Of these, 150 images were
expanded to 1,050 images using the above data-
augmentation methods, which were then selected as the
training sets for the target detection model. The remaining
30 images were expanded to 210 images to verify the detection
performance of the Mask R-CNN model.

FRUIT DETECTION AND POSE
ESTIMATION

The fruit-detection algorithm is depicted in Figure 2. This
process can achieve the following functions by processing RGB
images from the binocular camera: 1) segment fruit using the
Mask R-CNNmodel; 2) segment the output of the instance based
on the Mask R-CNN model; and 3) extract the individual fruit
point cloud of the initial point cloud from a nonstructural

environment. Although each point cloud was obtained from a
single viewpoint and the point clouds only contain part of the
geometrical information of the fruit, partial point clouds were
found to be sufficient for fruit detection and pose estimation.

Image Preprocessing and Dataset
Annotation
The image annotation tool LabelMe was used to annotate the
datasets and create a segmentation mask for grapes. These mask
images were used to calculate the reverse loss in the model
training and to optimize the model parameters. The
performance of the trained model for grape segmentation was
evaluated by comparing the predicted mask images with the
annotated mask images. The ripe grape regions of the image
were labeled, and the remaining region was considered as the
background. The annotation results are shown in Figure 3.

Fruit Segmentation Based on Mask R-CNN
The Mask R-CNN detection model is a new method in the field of
target detection. This is an improved network based on the object-
detection model Faster R-CNN, which adds a branch to predict an
object mask into the Faster R-CNN (He et al., 2017). This study
proposes a grape-detection method based on the Mask R-CNN to
recognize and segment grapes under complex backgrounds. The
model consists of a convolutional skeleton, region proposal network
(RPN), region of interest alignment (RoIAlign), mask branch,
classification branch, and bounding-box regression branch. The
framework of the model is shown in Figure 4.

(1) Convolution skeleton

The ResNet-101 network structure has 101 layers for the
complete extraction of complex semantic and spatial
information of grape images. Therefore, the convolution
skeleton adopts the ResNet-101 network structure to extract
grape features from images.

(2) RPN

The RPN is a fully convolutional network used to generate
candidate bounding boxes from grape images.

(3) RoIAlign

The RoIAlign eliminates coordinate errors caused by quantization
and adopts bilinear interpolation to obtain a pixel image with floating-

FIGURE 2 | Fruit detection algorithm flow diagram. Step (1): image preprocessing and dataset annotation; Step (2): fruit segmentation on the Mask R-CNN; Step
(3): point cloud acquisition and reconstruction.
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point number coordinates. According to the coordinate position of the
candidate area, the corresponding candidate area of the feature map is
pooled into a fixed-size feature map.

(4) Mask branch, classification, and bounding-box regression branch

The classification and bounding-box regression branch are
responsible for classifying grapes in the feature map and
regression of the bounding box, while the mask branch is

responsible for segmenting grape contours and predicting the
grape mask.

Point Cloud Acquisition From Nonstructural
Environments Based on Binocular Images
The visual system contained a low-cost binocular stereo
camera. The binocular stereo camera was the ZED 2K Stereo
Camera produced by STEREOLABS and consists of two RGB

FIGURE 3 | Grape dataset of instance segmentation. (A) Original image, (B) mask image of the instance segmentation, and (C) visualization of the mask image.

FIGURE 4 | Framework of the proposed Mask R-CNN.
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cameras. Each RGB camera can create an RGB image consisting
of 1,920 × 1,080 pixels. The camera needs to be calibrated
before use to determine its internal and external parameters,
such as focal length and distortion coefficients. This is because
the internal and external parameters are the essential factors for
the transformation from pixel coordinates to camera
coordinates. The getCameraInformation function of the ZED
camera was used to obtain these parameters. The
transformation matrix from pixel to camera coordinates is
obtained using this method.

The depth data can be converted to camera coordinates based
on the triangular ranging principle as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi � f · b
xil − xir

xi � xil · zi
f

yi � yil · zi
f

, (1)

where (xi, yi, zi) are the camera coordinates of pixel i; (xil , yil) and
(xir , yir) are the pixel coordinates of pixel i of the left and right
cameras, respectively; b is baseline length of the cameras; and f is
focal length. In addition, the focal length and distortion
coefficients were estimated using the calibration method
developed by Zhang (Zhang, 2000). In the experiment, the

minimum distance from the ZED camera to the grape tree
was set to 600 mm.

Extracting Point Cloud Data of Each Grape Cluster
From Segmented Images
To acquire grape point clouds, it is necessary to extract region
information of grapes from RGB images. The Mask R-CNN is
capable of identifying the number of fruits in the binary map so
that the corresponding fruit regions can be directly detected. The
RGB output image (Figure 5A) of the Mask R-CNN detection and
segmentationmodel can be converted into binary images (Figure 5B)
of grapes. Each binary image represents the segmentation region of a
bunch of grapes in the RGB image. The initial point cloud from the
vineyard is shown in Figure 5C. The transformation relationship
between the grape point cloud (Figure 5D) data and the pixel region
information can be expressed by Eq. 1.

Point Cloud Preprocessing
Outlier noise still exists in grape point clouds after extraction
from the initial point cloud. Some discrete noise is far from the
main point cloud, which significantly impacts the estimated
fruit pose. Hence, it is necessary to perform point cloud
denoising. The grape point cloud was divided into N
groups, where n is the number of points of each group. The
average distance and standard deviation of each group are
calculated as follows:

FIGURE 5 |Grape point cloud segmentation. (A)Result of Mask R-CNN on a grape image, (B) binary images of grapes, (C) initial point cloud from the vineyard, and
(D) grape point cloud segmented from the initial point cloud.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dki � ∑n−1
j�1

1
n − 1

��������������������������(xi − xj)2 + (yi − yj)2 + (zi − zj)2√

μk � ∑n
i�1

di
n

σk �
������������
1
n
∑n
i�1

(di − μk)2
√

i ∈ [1, n], j ∈ [1, n − 1], k ∈ [1,N]

, (2)

where dki is the average distance between the i-th point in the k-th
group and adjacent points in the same group; μk is the global
average distance of the k-th group; and σk is the global distance
standard deviation of the k-th group. The average distance
di ∈ [μ − ασ, μ + ασ] is used to retain the point; otherwise, the
point is considered an outlier and is removed. The outlier noise
points can be effectively removed by performing many
experiments on each group of point clouds. Dense point
clouds affect the calculation speed, so we used voxel filtering
to down-sampling and reduce the number of point clouds while
maintaining their shape characteristics. The principle of voxel
filtering is to divide the input point cloud into several voxels to
form a 3D grid. Furthermore, the center of gravity of the voxel
was used to approximately characterize the spatial position of all
points in the voxel, and sparse point clouds obtained after the
voxels were processed were used to increase the calculation speed.
The grape point cloud denoising process is shown in Figure 6.

Grape Model Reconstruction and Pose
Estimation
Due to the complexity and uncertainty in the shapes of grape
clusters, each grape cluster is unique, but the shape of a mature
grape cluster can still be considered as similar to a cylinder. To
accurately estimate the pose of grape clusters, the random sample
consensus (RANSAC) algorithm was adopted for grape point
cloud cylinder fitting. This can be used to iteratively eliminate
outliers in a sample set and obtain improved data. The algorithm
is widely used in the fields of feature matching, multi-view
geometry, image parameter estimation, 3D model fitting, and
other computer vision fields. This approach has the advantages of
good robustness, high efficiency, and others. The mathematical
equation of the cylinder model is given as follows:

r2 � (x − x0)2 + (y − y0)2 + (z − z0)2

− [a(x − x0) + b(y − y0) + c(z − z0)]2
a2 + b2 + c2

, (3)

where (x0, y0, z0) are the coordinates of a point on the cylinder
axis, L

→ � (a, b, c) is the direction vector of the cylinder axis, and r
is the radius of the cylinder. As the radius of each z-section of the
grape point cloud is different, the range of radii for the cylinder
model was set to 3.0–5.5 cm.

The grape point cloud was extracted from the initial point
cloud based on the output of theMask R-CNN, and the processed
grape point cloud was used for the RANSAC algorithm as the
input, which is primarily to address the issue of outliers. The
outliers in the point cloud were eliminated after the algorithmwas
iterated. The basic flow of the algorithm is as follows.

Step (1): Creation of the bounding box of the grape point
cloud. The grape point cloud data are P � {P1, P2, P3, . . . , Pn} and
the side length of the bounding box can be shown as follows:

⎧⎪⎨⎪⎩ xb � xmax − xmin

yb � ymax − ymin

zb � zmax − zmin

, (4)

where xb, yb, and zb are the side length of bounding box and xmax,
xmin, ymax, ymin, zmax, and zmin are the maximum and minimum
coordinates of the grape point cloud in 3D coordinates.

Step (2): The bounding box is divided into voxels (cubes)
where Pi is the coordinate of point i, and the index index(Pi) of
the voxel where the point i is located is given by the following
equation:

⎧⎪⎨⎪⎩ ui � int(xi − xmin)/l
vi � int(yi − ymin)/l
wi � int(zi − zmin)/l , (5)

where Pi � (xi, yi, zi), index(Pi) � (ui, vi,wi), l is the side length
of the voxel, and int() is the rounding function.

Step (3): The algorithm traverses all points in the point cloud,
eliminates voxels without points, and obtains the index of voxels
that contain points.

Step (4): Randomly select a portion of voxels to fit the initial
cylinder and calculate its parameters.

Step (5): sij is the distance between the centroid of the voxel
outside the initial cylinder model and the surface of the initial
cylindrical model and σ i is the standard deviation. In the

FIGURE 6 | Grape point cloud (A) before and (B) after denoising.
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experiments, the threshold t was set to 3σ i. The voxel is regarded
as an outlier when sij > t; otherwise, the voxel is regarded as an
inlier. Ci is the number of inliers.

Steps (6), (4), and (5) are repeated, the algorithm iterates the entire
point cloud 1,000 times, the and largest inlier set Cmax is selected for
the cylinder fit to obtain the optimal cylinder model parameters.

The processing architecture of the model reconstruction for
grapes is illustrated in Figure 7.

The key step is to estimate the fruit pose so that the harvesting
robot can approach grapes for collision-free picking. The grape

pose is estimated from the unit direction vector l
→ � L

→
/
∣∣∣∣∣∣ L→∣∣∣∣∣∣ of

the axis for the optimal cylinder model. A pose estimation
example is shown in Figure 8.

MODEL TRAINING AND RESULT ANALYSIS

Model Training
The experiment was implemented on a computer running
Ubuntu16.04 with 16 GB RAM, NVIDIA GeForce GTX
1080Ti 11 GB GPU, and an Intel Core i5 8400 CPU. The
algorithm was run in PyCharm using Tensorflow, the Keras
deep learning framework, Opencv, PLC, and other libraries in
the Python programming language. The dataset contains a total
of 1,260 grape images, the training set contains 1,050 grape
images, and the test set contains 210 grape images. We
utilized mini-batch training to better converge the
training model.

Loss Function
While training the detection network, the multitask loss on each
sampled RoI consists of three parts (He et al., 2017): classification
loss, bounding-box loss, and average binary cross-entropy loss.
The loss function shows differences between the predicted values
and ground truth, which has important impacts on model
training. The multi-task loss function can be shown as follows:

L � Lcls + Lbox + Lmask, (6)

where Lcls is the classification loss, Lbox is the bounding-box loss,
and Lmask is the average binary cross-entropy loss.

The classification loss Lcls can be computed as follows:

Lcls � 1
Ncls

∑
i

− log[ppi pi + (1 − ppi )(1 − pi)], (7)

where Ncls is the number of categories and pi is the probability
that the k-th RoIs are predicted as positive samples (foreground).
The ppi � 1 when the RoIs are positive; otherwise, ppi � 0. The
bounding-box loss can be computed as follows:

Lbox � 1
Nreg

∑
i

ppi R(ti, tpi ), (8)

FIGURE 7 | Algorithm flowchart for grape model reconstruction: (A) grid division, (B) elimination of outliers, (C) cylinder fitting, and (D) grape cylinder model.

FIGURE 8 | Example of grape pose estimation.
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where Nreg is the number of pixels in the feature map, ti are the
transformation parameters (translation and scaling) of positive
RoIs for the prediction region, tpi are the transformation
parameters (translation and scaling) of positive RoIs to the
real label, and R(,) is the smoothing function.

Training Results
The experimental parameter was set to 0.001, the mini-batch
size for each iteration was set to 32, the momentum coefficient
was set to 0.95, the weight decay was set to 0.001, and the
regularization parameter was set to 0.0016. Each iteration
involves an update of the model parameters, and the model
was run for over 400 iterations. The loss function curve is shown
in Figure 9. The training process is completed when the average
loss is less than 0.1, and the loss function is no longer reduced
after 380 iterations.

Comparison and Evaluation of Detection
Under Different Lighting Conditions
To evaluate the accuracy and robustness of the model, we used
precision (P), recall (R), and intersection over union (IOU) to
evaluate the identification and segmentation performances of the
model. The P, R, and IOU are calculated as follows:

P � TP
TP + FP

, (9)

R � TP
TP + FN

, (10)

IOU � prediction∩target
prediction∪target

, (11)

where TP is the number of fruits identified as fruits, FP is the
number of backgrounds identified as fruits, FN is the number of
fruits identified as backgrounds, prediction is the pixel area of the
predicted fruits, and target is the pixel area of the actual fruits.
The detection and segmentation results are shown in Figure 10.
The model had excellent detection and segmentation results

under the three lighting conditions, indicating a good accuracy
and robustness.

The precision, recall, and IOU of the model are shown in
Table 1. The detection results of the model under the front- and
side-lighting conditions are slightly better than those under
backlighting conditions. This is because the grape boundary in
the image is obvious under the front- and side-lighting conditions,
and the model can more easily distinguish grapes from the
background; thus, the grapes are easier to detect. However, the
surface of the grapes reflects light under backlighting conditions,
and the heavily reflective areas cover the morphological features of
the grapes. Thus, it is more difficult to detect them.

Time Efficiency Analysis
The initial point cloud can be quickly obtained by fusing the left
and right image information from the binocular camera based on
the parallax principle. Further, grapes are detected based on the
Mask R-CNN network, while filtering and denoising methods are
used to obtain accurate grape point clouds. This study proposes an
algorithm for grape detection and point cloud segmentation that
provides high precision, recall, and IOU . The detection and point
cloud segmentation for each grape takes approximately 1.7 s, which
meets the requirements of real time operations for harvesting
robots. The algorithm time efficiency is shown in Table 2.

CONCLUSION

Grape detection, model reconstruction, and pose estimation are
important as they can be used to guide harvesting robots to
approach grapes for collision-free picking. Therefore, this study
investigates a vision algorithm to detect grapes in nonstructural
environments using a low-cost binocular stereo camera before
reconstructing its 3D model and estimating its pose. The
algorithm proposed in this study comprised the following
functions: 1) grape detection based on the Mask R-CNN and
combined with a mask point cloud for segmentation; 2) statistical
and voxel-filtering methods are used to remove noise and sparsify
the grape point cloud data to obtain accurate and simplified point
cloud information; 3) the RANSAC algorithm is used to eliminate
outliers and construct the grape cylinder model; and 4)
estimation of the grape clusters pose.

The performance of the proposed algorithm was analyzed and
evaluated through experiments, and the conclusions are summarized
as follows. The Mask R-CNN realized a mean precision of 89.53%, a
recall of 95.33%, and an IOU of 82.00% for grape detection. The
model had excellent detection and segmentation results under
different lighting conditions. Grape cylinder fitting was suitable
for grape cluster pose estimation, and the pose estimation
approach proposed here can be used for collision-free picking.
The detection, point cloud segmentation, and pose estimation for
each grape took approximately 1.7 s, which meets the requirements
of real time operation. In conclusion, the proposed algorithms can
detect grapes in nonstructural environments, segment point clouds,
construct cylindermodels, and estimate grape pose. Future work will
increase the number of learning samples, optimize the model
structure, and improve the accuracy of grape pose estimation.

FIGURE 9 | Loss function curve.
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