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Research in creative robotics continues to expand across all creative domains, including
art, music and language. Creative robots are primarily designed to be task specific, with
limited research into the implications of their design outside their core task. In the case of a
musical robot, this includes when a human sees and interacts with the robot before and
after the performance, as well as in between pieces. These non-musical interaction tasks
such as the presence of a robot during musical equipment set up, play a key role in the
human perception of the robot however have received only limited attention. In this paper,
we describe a new audio system using emotional musical prosody, designed to match the
creative process of a musical robot for use before, between and after musical
performances. Our generation system relies on the creation of a custom dataset for
musical prosody. This system is designed foremost to operate in real time and allow rapid
generation and dialogue exchange between human and robot. For this reason, the system
combines symbolic deep learning through a Conditional Convolution Variational Auto-
encoder, with an emotion-tagged audio sampler. We then compare this to a SOTA text-to-
speech system in our robotic platform, Shimon the marimba player.We conducted a
between-groups study with 100 participants watching a musician interact for 30 s with
Shimon. We were able to increase user ratings for the key creativity metrics; novelty and
coherence, while maintaining ratings for expressivity across each implementation. Our
results also indicated that by communicating in a form that relates to the robot’s core
functionality, we can raise likeability and perceived intelligence, while not altering animacy
or anthropomorphism. These findings indicate the variation that can occur in the
perception of a robot based on interactions surrounding a performance, such as initial
meetings and spaces between pieces, in addition to the core creative algorithms.
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1 INTRODUCTION

There is a growing body of work focusing on robots collaborating with humans on creative tasks such
as art, language, and music. The development of robotic functionalities leading to and following after
collaborative creative tasks has received considerably less attention. These functionalities can
address, for example, how a robot communicates and interacts with collaborators between
musical improvisations, or before a piece begins or ends. Embodying a creative robot with
speech capabilities that do not specifically address its creative capabilities risks distancing
collaborators and misrepresenting artistic opportunities. In robotic literature this is referred to
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as the habitability gap, which addresses the problematic distance
between a robot’s implied capabilities and its actual potential
output (Moore, 2017). In addition, human-robot collaboration is
dependent on the development of a relationship between human
and robot (Fischer, 2019). Emotion and personality conveyance
has been shown to enhance robotic collaborations, with improved
human-robot relationships and increased trust (Bates, 1994). One
under-explored approach for an artificial agent to convey
emotions is through non-linguistic musical prosody (Savery
et al., 2020a). We propose that such an approach could be
particularly effective in human-robot collaboration in creative
tasks, where emotional expression is at the core of the activity,
and where subtle background conveyance of mood can enhance,
rather than distract, from the creative activity.

We present a model for generating emotional musical prosody
in embedded platforms in real time for creative robots. The
system aims to address the habitability gap by enriching
human-robot communication before, during and after
collaborative creative interaction. To support the system, we
have created a new dataset of improvised emotional sung
phrases, used to generate new emotional midi phrases through
a convolutional variational autoencoder (CVAE) conditioned on
emotion.

We implement this system in a marimba playing robot,
Shimon, and analyze the impact on users during creativity-
based musical interactions. The musical tasks feature call and
response musical improvisation over a pre-recorded playback.
We compare the perception of common metrics of likeability and
perceived intelligence, with the perceived creativity and
preferences for interaction as well as Boden’s creativity metrics
(Boden, 2009). We demonstrate that by using a creative
communication method in addition to the core creative
algorithms of a robotic system we are able to improve the
interaction based on these metrics. Our implementation leads
to the perception of higher levels of creativity in the robot,
increased likeability, and improved perceived intelligence.

2 RELATED WORK

2.1 Human-Robot Communication
Verbal language-based interaction is the prominent form of
communication used in human-robot interaction (Mavridis,
2015) covering a wide range of tasks from robot companions
(Dautenhahn et al., 2006) to industrial robots (Pires and Azar,
2018). Many robotic interactions do not include language; these
non-verbal forms of communication fall into six categories:
kinesics, proxemics, haptics, chronemics, vocalics, and
presentation (Jones, 2013; Saunderson and Nejat, 2019).
Kinesics includes communication through body movement,
such as gestures (Gleeson et al., 2013), or facial expressions,
while proxemics focuses on the robotic positioning in space, such
as the distance from a human collaborator (Walters et al., 2005).
Haptics refers to touch based methods (Fukuda et al., 2012), while
chronemics includes subtle traits such as hesitation (Moon et al.,
2011). Presentation includes the way the robot appears, such as
changes based on different behavior (Goetz et al., 2003). The final

category, vocalics, includes concepts such as prosody (Crumpton
and Bethel, 2016), which have shown to improve trust and other
human-robot interaction metrics (Savery et al., 2019a). The vast
majority of these communication techniques require significant
technical and financial expense and variation to a system, such as
adding augmented reality technology or changing robot
movements (Saunderson and Nejat, 2019). In comparison,
musical prosody can be implemented in an existing system
with only minor changes (Savery et al., 2019b).

2.2 Musical Generation
Music generation has been widely addressed as a deep learning
task (Briot et al., 2017), in particular using LSTMs (Sturm et al.,
2016; Wu et al., 2019) and more recently transformers Huang
et al. (2018). Music tagged with emotion has also been generated
through long short-termmemory networks (LSTMs) with logistic
regression and used to generate music with sentiment (Ferreira
and Whitehead, 2019). Other efforts have used a Biaxial LSTM
network (Zhao et al., 2019), generating symbolic polyphonic
musical phrases corresponding to Russel’s valence-arousal
emotion space (Posner et al., 2005). Variational autoencoders
(VAEs) Kingma and Welling (2013); Rezende et al. (2014) use an
encoder to represent its input probabilistically in latent space, and
a decoder to convert from latent space back to the original input.
Such VAEs have seen recent success in music generation tasks, for
example, MIDI-VAE which use a VAE with recurrent encoder/
decoder pairs to perform style transfer on midi data, changing the
genre or composer of a piece (Brunner et al., 2018). MusicVAE
employs a hierarchical decoder to better represent the long-term
structure present in music, generating midi phrases that were
16 bars (about 30 s) long (Roberts et al., 2018).

3 CUSTOM DATASET

For this project we created a custom dataset of 4.22 h of audio
recorded by Mary Esther Carter1. Carter is a professional vocalist
and improviser who the authors have worked with before and
were confident would be able to create a dataset matching the
projects goals. Before collecting the data, we conducted
exploratory sessions with seven different student musicians,
comparing their ability to improvise different emotions using
different classification systems. We additionally evaluated how
well the musicians in this group could recognize the emotions
played by other musicians. This process consisted of a 45 min in-
person session, with musicians first improvising, followed by an
informal interview to discuss the difficulty and their preferences
for emotional classifications for improvisation. After these
sessions, we decided that the Geneva Emotion Wheel (GEW)
(Sacharin et al., 2012) was best suited for our purposes. The GEW
is a circular model, containing 20 emotions with emotions and
position corresponding to the circumplex model.

Our decision to use the GEW was based on multiple factors,
firstly we aimed to capture as large a range of emotions as

1https://maryesthercarter.com/

Frontiers in Robotics and AI | www.frontiersin.org April 2021 | Volume 8 | Article 6623552

Savery et al. Robot Communication Surrounding Creative Activities

https://maryesthercarter.com/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


possible, that could be accurately improvised by musicians in the
sessions. In our exploratory study, the GEW balanced between
having many recognizable classes, while also avoiding the
potential confusion from too many overlapping classes, or the
challenge of continuous classes such as the circumplex model.
The GEW also has advantages for implementation, with 20
different discrete emotions which can be reduced to four
separate classes, aligned with a quadrant from the circumplex
model. GEW also includes most of the Eckman’s basic
emotions—fear, anger, disgust, sadness, happiness—only
leaving out surprise. The ability to potentially reduce our
collected dataset between these different models of emotion
allows for significant future use cases.

It should be noted that this dataset comes from only one
musician, and therefore only captures one perspective on musical
emotion. While the dataset can make no claim to represent cross-
cultural emotion conveyance and does not create a generalized
emotion model, we believe that only collecting data from one
person has advantages. By having only one vocalist our system
can recreate one person’s emotional style, avoiding incorrectly
aggregating multiple styles to remove distinctive individual and
stylistic features.

3.1 Process and Data
We first created a short list of vocalists who we have worked with
in the past. We then conducted Skype calls with three professional
vocalists refining the overall plan and describing the process,
before asking Mary Carter to record and emotionally label her
vocal improvisation. We choose to work with Carter as she had at
home access to high quality recording equipment, and the
authors have previously worked with her. In the future we
expect to record with additional vocalists. Carter was paid
$500 to record the samples over a week long period at her
home studio, using a template we created in Apple digital
audio workstation—Logic Pro, while maintaining the same
microphone positioning. For the samples we requested phrases
to be between 1 and 20 s, and to spend about 15 min on each
emotion, allowing unscripted jumping between any order of the
emotions. We allowed deletion of a phrase if the singer felt
retroactively that the phrase did not capture the correct
emotion. The final recorded dataset includes 2,441 phrases
equaling 4.22 h of data with an average of 122 phrases for
each emotion. Samples from the dataset can be heard online.2

3.2 Dataset Validation
To validate the dataset, we performed a study with 45 participants
from Prolific and Mechanical Turk, paying each $3. Each
question in the survey asked the participant to listen to a
phrase and select a location on the wheel corresponding to the
emotion and intensity they believed the phrase was trying to
convey. Phrases fell under two categories of “best” and “all,” with
each participant listening to 60 total phrases selected at random.
Between the 45 participants listening to 60 phrases, 2,700 ratings
were given, which we believe gave a strong overall rating of the

dataset. The “best” category consisted of five phrases for each
emotion that were hand-selected by the authors as best
representing that emotion. The best emotions were chosen to
ensure an even distribution of phrase lengths in each emotion set,
with each emotion having a chosen phrase for the lengths, 3, 5, 7,
9, and 11 s. When multiple phrases existed for each length the
authors chose phrases that were most distinctive in style from the
other emotions, aiming to create a stylistic separation between
each emotion class. The “all” category consisted of a phrase
sampled from all phrases in the dataset for that emotion, with
a new phrase randomly selected for each participant. Rose plots of
the validation results that combine the “best” and “all” categories
can be seen in Figure 1, separated into each Geneva Wheel
quadrant. The plots show strong validation correlation in
Quadrants 1, 2 and 3, while Quadrant four showed a higher
level of confusion.

3.3 Dataset to Midi
We converted each phrase’s audio into a midi representation to
use as training data. This process required significant iteration, as
we developed a custom pipeline for processing our dataset. This
was necessary due to the range of vocal timbre and effect, ranging
from clear melodies, to non-pitched effects. We first ran the
monophonic pitch detection algorithm CREPE (Kim et al., 2018)
on each phrase, which output a frequency and a confidence value
for a pitch being present every 0.01 s. As the phrases included
breaths and silence, it was necessary to filter out pitches detected
with low confidence. We applied a threshold followed by a
median filter to the confidence values, and forced each
detected pitch region to be at least 0.04 s long.

We next converted the frequencies to midi pitches. We found
the most common pitch deviation for each phrase using a
histogram of deviations, shifting the midi pitches by this
deviation to tune each phrase. We rated onsets timing
confidence between 0 and 1. To address glissando, vibrato and
other continuous pitch changes, we identified peaks in the
absolute value of the pitch derivative, counting an onset only
when detecting a pitch for at least 0.04 s.

3.4 Scales
Scherer has shown that musical scales—without a melody or
rhythm - are able to display emotion (Scherer et al., 2017). We
therefore asked the singer to also record scales tagged with
emotion to be used in an audio sampler. The audio sampler
was designed to play back each note from the recorded scales, in
such a way that new symbolic phrases consist of combinations of
each note from the scale. In contrast to the main dataset we only
recorded scales for four emotion classes, corresponding with each
quadrant of the circumplex model. In addition to explaining the
model to the vocalist, each quadrant had two key words which
were angry/anxious, happy/exciting, relaxing/serene, sad/bored.

The data collection plan was based around common practice
described by virtual instrument libraries3. For each emotion, 11
versions of a chromatic scale across an octave and a half were

2www.richardsavery.com/prosodycvae 3https://www.spitfireaudio.com/editorial/in-depth/grow-your-own-samples/
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sung, 3 with very short notes, 3 with 500 ms, 3 with 1000 ms and 2
with 2000 ms duration. To allow the scales to contain all timbrel
features for each emotion, we allowed for any dynamic variations
and accents. The syllables themselves were also chosen for each
scale by the vocalist.

4 GENERATIVE SYSTEM DESIGN

The system was designed with the primary goal of operating and
responding to audio in real time on multiple embedded

platforms. Future use cases will likely involve other
computationally expensive systems, such as speech recognition
and emotional interactions. In past work we have generated raw-
audio for prosody (Savery et al., 2019b), however even after
considerable refinement, and the use of multi-GPU systems,
generation required 3 s of processing per 1 s of audio. With
this in mind the initial design choice was to generate symbolic
data using a version of the dataset converted to midi values, and
not attempt to generate raw audio.

The symbolic generation of the system contains the pitch and
rhythm of emotionally labeled melodies. Due to the process

FIGURE 1 | Rose plots of dataset validation and generation evaluation.

FIGURE 2 | Generative System Overview.
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described in Section 3.3 the data also includes micro-timings.
Symbolic data alone does not capture the range of emotion
present in the dataset through timbre variations. By using the
scale dataset described in Section 3.4 the generation process
encapsulates symbolic information with tagged emotion,
capturing timbre and phoneme information. Figure 2 shows
an overview of the system. The system’s interface is written
MaxMSP, allowing users to chose an emotion. This activates a
python script which generates a midi file and returns it to
MaxMSP. Figure 3 presents an example of the musical
prosody phrases the systems is capturing, showing the
contrasting pitch, rhythm and timbre for each emotion.
Generated samples can be heard online.4

4.1 CC-VAE
4.1.1 Data Representation
Wemaintain the same data structure as developed in our audio to
midi process, using midi pitch values that are sampled every 10
milliseconds. We then convert each melody to a length of 1,536
samples, and zero pad shorter melodies. Versions of each phrase
are then transposed up and down six semitones, to give 12
versions of each phrase, one in each key. The melody is then
reshaped to be 32 by 48 samples. The emotion label for each
melody is converted to a one-hot representation.

4.1.2 Network Design
We chose to use VAEs due to their recent success in sequence and
music generation tasks, and because they allow for analysis of the
latent space which can provide insight into how well the network
has learned to represent the different emotions. VAEs can be used
to generate new data by sampling and decoding from the latent
space, allowing the system to learn features of the data in an
unsupervised manner. Figure 4 shows the latent space after

FIGURE 3 | Spectogram of musical prosody phrases (blue line indicates pitch contour).

FIGURE 4 | Vanilla VAE Latent Space, classifying Carter’s audio dataset.

4www.richardsavery.com/prosodycvae
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training a Vanilla VAE on our custom dataset, without emotion
labels. This demonstrates the latent space is able to separate by
emotion without conditioning.

Our Conditional VAE is based on the standard architecture
proposed by Sohn et al. (Sohn et al., 2015). A Conditional
Variational Encoder (CVAE) varies from a VAE by allowing
an extra input to the encoder and decoder. We input a one-hot
emotion label, allowing for sampling a specific emotion from the
latent space. As is common practice for a VAE, we use Kullback-
Leibler divergence in the loss function. Our latent space
dimension is 512, which we arrived at after testing multiple
variations.

We chose to use a Convolutional Network (ConvNet) within
our CVAE for multiple reasons. Although ConvNets are much
less common in symbolic music generation (Briot et al., 2017),
they have been used for audio generation such asWaveNet (Oord
et al., 2016) as well as some symbolic generations (Yang et al.,
2017). While we experimented with Vanilla RNNs, LSTMs and
GRUs as encoders and decoders we found they were very prone to
overfitting when trained conditionally, likely due to our dataset
size. Our architecture is presented in Figure 2.

4.2 Sample Player
The generated midi file is loaded into MaxMSP to be played by
the sampler. The audio sampler plays back individual notes
created during the recording of the scales. MaxMSP parses the
midi file, assigning each note a midi channel. Channels are
divided by emotion and note length. For example, happy is
assigned to channels one to four, with channel one containing
the shortest note and channel four the longest note; sad is
assigned to channels five to eight with the shortest note
assigned to channel five and the longest note assigned to
channel 8. The audio sampler plays as a midi device, and can
be played directly like any midi instrument.

4.3 Generation Evaluation
To evaluate the results, we first generated three phrases for each
emotion. We then ran a survey using the same questions as the
dataset validation described in Section 3.2, asking 39 new
participants to select an emotion and intensity for each of the
60 total generated phrases. Participants encountered five listening
tests during the survey, and we only used data from participants
who answered all listening tests correctly. Figure 1 shows a
comparison between the rose plots for each quadrant of the
original dataset vs. the generated phrases.

We computed the mean and variance for each emotion,
weighted by intensity, using the methods described in (Coyne

et al., 2020), which rely on circular statistics. The results are
shown in Table 1. The first columns show the percentage of all
data points that were classified as an emotion in the correct
quadrant. The next columns, showing average difference, were
calculated by first finding the difference between each ground
truth emotion’s angle and its weighted average reported angle,
and then averaging that value over the emotions within each
quadrant. It is worth noting that only three emotions in the
dataset and two emotions in the generated data had weighted
average angles outside the correct quadrant. The final units were
converted from degrees to units of emotion (20 emotions in 360°).
The last columns, showing variance, were calculated by finding
the weighted variance for each emotion (converted to units of
emotion), and then averaging for each quadrant.

Our results show that the generated phrases performed
similarly to the dataset in terms of emotion classification.
While the percentage of phrases identified in the correct
quadrant is slightly lower for the generated phrases, the
average difference and variance have similar values. Visually,
the rose plots show that participants were able to largely
identify the correct quadrant, having the most difficulty with
Quadrant 4 (relaxing/serene) for both our collected dataset and
generations.

5 EXPERIMENT

After creating the described prosody generation system we linked
the system to our custom robotic platform Shimon. Shimon is a

TABLE 1 | Results of emotion survey for dataset phrases compared with generated phrases. See Generation Evaluation for an explanation of the metrics.

Quadrant % Correct Quadrant Average Difference Average Variance

Dataset Generated Dataset Generated Dataset Generated

1 57.2 56.3 1.32 1.98 1.76 1.83
2 54.5 52.5 1.45 0.96 1.79 1.88
3 57.4 51.5 2.16 1.93 1.92 1.89
4 43.7 31.9 1.61 1.24 1.86 2.03

FIGURE 5 | Shimon the robotic marimba player.
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four-armed marimba playing robot that has been used for a wide
range of musical tasks from improvisation (Hoffman and
Weinberg, 2010) to film scores (Savery and Weinberg, 2018).
Figure 5 shows Shimon improvising with a human performer. To
visually show Shimon voicing the prosody we copied a previous
implementation used to link Shimon’s gestures to human
language for hip hop (Savery et al., 2020b).

For the experiment, we considered creativity through Boden’s
framework for computational creativity (Boden, 2009). Boden
considers creativity as a balance between novelty and coherence,
with expressivity playing a significant role in the process. This
concept draws on the notion that a completely random idea could
be considered novel, yet would lack coherence. Boden’s
framework was used to evaluate computational creativity in a
number of previous works (Riedl and Young, 2010; Savery et al.,
2020b).

We choose to compare musical prosody to a text-to-speech
system for Shimon. Speech is very commonly used in robotics
(Brooks et al., 2012; Niculescu et al., 2013) and is likely the
primary form of audio interaction. Speech is often described as a
way for replicating human to human communication
(Crumpton and Bethel, 2016) and we believe would
commonly be considered the default audio type for a robot
such as Shimon.

Our experiment was designed to answer two research
questions:

(1) Can emotional prosody improve a robot’s creative
output, as measured through novelty, coherence and
expressivity when compared to a text-to-speech system?

(2) Can emotional prosody alter the perception of animacy,
anthropomorphism, likeability and intelligence for a
creative robot compared to a text-to-speech system?

For these research questions we developed two exploratory
hypothesis, extending the work of Moore (2017), where voices
matching the mode of interaction will improve the interaction.
For research question 1 we hypothesize that when
communicating using emotion-driven prosody, Shimon will
achieve higher ratings for novelty, and expressivity with a
significant result, while coherence will not have significant
difference. We hypothesize this will occur since prosody will
increase the image of Shimon as creative agent, but not alter
coherence. This aligns with our design goals of addressing the
habitability gap and aiming for a robot that interacts in a manner
that matches its performance. For research question 2 we
hypothesize that there will be no difference in perception of
animacy, and anthropomorphism, however prosody will achieve
a significant result for higher likeability. We believe that the extra
functionality implied by a text-to-speech system will enhance the
perceived intelligence.

5.1 Experimental Design
We conducted the experiment as a between-group study, with
one group watching robotic interactions with a text-to-speech
system and the other with our generative prosody system. The
study was set up as an online experiment with participants

watching videos of a musician interacting with Shimon. For
the text-to-speech we used Google API with a US female voice
(en-US-Wavenet-E) (Oord et al., 2016). We chose the voice
model as it is easily implemented in real time and a widely
used system.

The musical interactions involved six clips of a human
improvising four measures, followed by Shimon responding
with a four-measure-long improvisation. The improvisation
was over a groove at 83 beats per minute, resulting in the
improvisation lasting for about 23 s. Each improvisation was
followed by a seven-second gesture and response from
Shimon, either using text-to-speech or prosody. Both the
speech and prosody used three high valence-low arousal and
three low valence-low arousal phrases. The prosody or text-to-
speech was overdubbed after recording allowing us to use
identical musical improvisations from the human and robot.
For text-to-speech we used phrases that designed by the
author based on past interactions in rehearsal between human
participants.

The high valence-low arousal text included the three phrases:

• Great work. What you played really inspired me to play
differently. Could you hear how we were able to build off
each others music?

• That was fun, it was good playing with you. I really liked
hearing the music you played on keyboard, it worked well
with what I played.

• Thanks so much for playing here with me, I thought what
you played was really good. Let’s keep playing together.

The low valence-low arousal text included the three phrases:

• Let’s try it again soon, the more we play together the more
we will improve. I’m going to listen to you really carefully
next time

• That was a really good start, I enjoyed the way we interacted
together. We should keep trying to work on it and get better.

• Did you listen to what I played? Do you think it worked well
with what you played? The more we practice the better we
can get.

Participants first completed a consent form outlining the
process, and then read brief instructions on the experiment
process. After watching three of the clips they were asked to
rate them based on Boden’s metrics, then repeated the process for
the next three clips. Boden’s metrics were rated on a seven point
sliding scale. Participants were explicitly asked to rate the musical
improvisation from the robot for each metric. Clips were
randomly ordered for each participant. Additionally, a seventh
clip was added as an attention check, which included an
additional video. In this video, instead of sound, participants
were asked to type a word that was asked for at the end of the
survey.

After watching each interaction, participants rated animacy,
anthropomorphism, likeability and perceived intelligence using
the Godspeed measure (Bartneck et al., 2009). Each metric
contained four or five sub-questions, which were averaged to
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give an overall rating. To conclude the experiment, participants
answered demographic questions and were given an open text
response to comment on the robot or experiment.

We used Amazon Mechanical Turk (MTurk) to recruit
participants who then completed the survey through Qualtrics.
MTurk is a crowd-sourcing platform created by Amazon that
allows individuals and businesses to hire users to complete
surveys. Participants were paid $2.00 upon completion of the
survey, which took around 10 min. We allowed only MTurk
Masters to participate, and required a successful job rate of 90%.
We also monitored time to complete overall, and time spent to
complete each question. We recruited 106 initial participants,
four of whom failed the attention check. An additional two
participants were disqualified as they completed the survey in
under 5 min. As participants failed the attention check a new spot
was immediately opened allowing us to reach 100 participants. In
total we included data from 50 participants who heard the text-to-
speech system and 50 who heard the prosody system. The mean
age of participants was 44, ranging from 25 to 72, with a standard
deviation of 11. The majority of participants were based in the
United States (89) with the remaining in India (11). We found no
difference in comparisons of the results between each country.
Considering the gender of each participant, 39 identified as
female, 60 as male and one as non-binary.

5.2 Results
Our analysis was conducted with a Jupyter Notebook, running
directly on the exported CSV from qualtrics. Libraries for analysis
included NumPy, and SciPy.stats.

5.2.1 Creativity
Prosody had a higher mean for coherence 4.80 (std � 1.31),
novelty 5.18 (std � 1.30), and quality 4.95, (std � 1.68) compared
to speech with the means 4.19 (std � 1.56), 4.64 (std � 1.24), and
4.14 (std � 1.37). Prosody had effect sizes of 0.40 for coherence,
0.43 for novelty, and 0.56 for quality indicating a medium size
effect calculated using Cohen’s D. For expressivity prosody had
an effect size of 0.25, indicating a small effect size. After
conducting a pairwise t-test across categories were significant

with the results, coherence (p � 0.041), novelty (p � 0.040), and
quality (p � 0.014). After a Bonferroni-Holm correction for
multiple comparisons, only quality remained significant with
(p � 0.014) while coherence (p � 0.12) and novelty (p � 0.12)
where no longer significant. For expressivity, prosody only had a
slightly higher mean which was not significant (p > 0.05).
Figure 6 shows a box plot of all Boden’s metrics.

5.2.2 Godspeed
For the Godspeed metrics we first calculated Cronbach’s alpha for
each question subset. This resulted in animacy (0.86),
anthropomorphism (0.88), likeability (0.92), perceived
intelligence (0.89). This shows high internal reliability across
all metrics. Prosody had an effect size for each metric as animacy
(0.16), anthropomorphism (0.08), likeability (0.85) and perceived
intelligence (0.54), measured with Cohen’s D.

Prosody had a slightly higher mean for animacy 3.56 (std �
0.88) compared to speech 3.44 (std � 0.75). Prosody also had a
slightly higher rating for anthropomorphism 3.14 (std � 0.99),
compared to speech 3.08 (std � 0.885). After running a pairwise
t-test neither animacy or anthropomorphism were significant.
Prosody had a higher mean for likeability, 4.38 (std � 0.89)
compared to 3.94 (std � 0.52) and showed a significant result (p �
0.002) in a pairwise t-test, which remained significant after a
Bonferroni-Holm correction for multiple comparison (p � 0.011).
For perceived intelligence, prosody 4.10 (std � 0.82)
outperformed speech 3.72 (std � 0.70), with a significant result
(p � 0.014) which remained significant after correction (p �
0.042). Figure 7 shows a box plot of all Godspeed metrics.

6 DISCUSSION AND FUTURE WORK

6.1 Research Question 1
Overall, our results indicated that the communication method
outside of performance made a significant difference in
participant ratings of creativity. The higher ratings for novelty
and quality supported our hypothesis that prosody would
outperform speech, however we did not expect coherence to
improve with prosody as well. Surprisingly, we found no

FIGURE 6 | Box plot of Boden’s Creativity Metrics. Quality is significant,
p � 0.014.

FIGURE 7 | Box plot of Godspeed Metrics. Likeability and Intelligence
are significant p � 0.011 and p � 0.042.
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significant difference between voice type for expressivity and
additionally expressivity only had a small effect size. This did
not support our hypothesis as we had expected prosody to create
the impression of a more expressive robot.

Further research is required to understand why the perception
expressivity, as a creativity trait, did not change based on the voice
used. One possible reason is that participants believed a robot that
could use language was capable of a wide range of expression,
much like the addition of prosody. Alternatively, expressivity is a
feature that is not easily altered by the form of interaction post-
performance.

The relation between each creativity rating cannot be easily
simplified, and there is no correct answer to what rating a
performance should receive for coherence or novelty. We
expected that the prosody system would receive higher ratings
for novelty, but not coherence. We believe that the higher ratings
for coherence may have come from the system acting as a unified
robot, with its communication functioning in the samemanner as
its performance.

6.2 Research Question 2
Our results for likeability matched our hypothesis that prosody
would outperform speech. Perceived intelligence ratings however
did not support our hypothesis as we had predicted language would
be interpreted as having a higher intelligence. It was reasonable to
assume that with text-to-speech and the ability to speak a language,
Shimon would have been perceived as more intelligent. We found
that the system with prosody was considered more intelligent,
despite not communicating linguistically. This can be explained by
the assumptions that moving towards the habitability gap will
create a disjointed perception of the robot. A possible conclusion
was that participants understood there was not a deep knowledge
of language, whereas musical phrases implies a deeper musical
intelligence.

6.3 Text Responses
We found no distinct variation in text responses between the speech
and prosody group. Overall 92 participants chose to respond, with
responses ranging from one sentence to four sentences. From the
speech group only one participant mentioned the voice, writing “I
enjoyed the robot, especially when she spoke to the pianist” (gender
added by participant). In the prosody responses four participants
mentioned the voice, but only in passing, such as the voice was
“cute.” The vast majority of response rated the musical responses
and generations, with themajority positive such as “I liked the robot
and I like the robots music more than the humans,” and “Nice to
listen to.”The negative comments tended to focus on the inability of
robots in general to play music or be creative such as “It could play
notes, but it lacked creativity.”

6.4 Generative Process
Our dataset used interpretation of emotions from one vocalist.
While this had the benefit of consistency throughout phrases, in
future work we intend to gather data from a larger number of
musicians and to evaluate how well the model can generalize. We
also plan to have other robots communicating through prosody
using data from different vocalists.

We plan to further investigate timbre and its potential
application to the generation process. We also intend to study
which features of the phrases influenced participants’ choice in
selecting an emotion. For example, exploring whether there is a
difference in emotion classification accuracy for the melody of the
generated phrases alone, in comparison with emotionally-
sampled audio as we used here. Future work will also include
more extensive studies using the generated prosody in human-
robot interactions. This will take place between varying group
sizes from one human and robot, to groups of humans and robots
with different embedded personalities. We expect for emotional
musical prosody to enable many future collaborations between
human and robot. Our overall accuracy presented in Table 1
shows consistent results in the mid 50%. We believe this accuracy
is acceptable for our current system, as the average variance and
average difference are both close to two across all categories,
implying that the primary errors in identification where small,
such as mistaking love for admiration. For our experiment in
particular we only used two quadrants, and were also able to
choose only specific emotions that scored over 80% accuracy.

In both the original dataset and generated material
participants had the lowest accuracy identifying the fourth
quadrant emotions. Our results are not easily compared to
other generative systems as the fourth quadrant emotions are
rarely used in robotic studies Savery andWeinberg (2020). This is
partly because common classification systems such as Ekman’s
discrete classes do not include anything in the fourth quadrant.
We also believe these emotions tend to be less easily displayed
externally as they are low arousal and closer to neutral emotions.
In future work we aim to consider methods to better develop the
fourth quadrant emotions.

6.5 Limitations
We compared one text-to-speech system with one musical
prosody system on one robotic platform. In future work we
aim to compare further audio systems, to expand
understandings of why different metrics showed significant
results. It is possible that varying the speech used would alter
the final ratings. Nevertheless, we believe that the range of metrics
that did prove significant show that this is an important first step
in understanding how communication between core creative
tasks can shape the perception of a robot.

We were only able to compare two forms of communication in
a the constrained scenario consisting of directly after a musical
interaction. To restrict our experiment to two groups we did not
compare prosody to moments where the robot did not interact at
all. We believe that by its nature a robot such as Shimon is always
interacting and its presence can alter humans actions (Hoffman
et al., 2015), leading us to believe that no movement or audio is its
own form of interaction. In future research we intend to analyze
the impact of musical prosody compared to no interaction in a
longer performance.

This study was conducted online through video, which comes
with benefits and drawbacks. As we were running online we were
able to gather many more participants than would have been
possible in person. Similar HRI studies have shown no difference
in online replication of certain studies (Woods et al., 2006), and
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we believe our method was constrained to a point that would be
replicated in an in-person study. We did not include a
manipulation check in our study, however our analysis of the
text responses indicated that participants did not identify the
independent variable between groups.

The range of participants included in the study also adds some
limitations. Our primary goal was to understand how changes to a
creative systemwould generalize across a broad population.We did
not factor in concerns between cultural groups that may take place,
such as between Japan and United States (Fraune et al., 2015),
however our study did not find any significant variation between
origin country. Additionally, our ability to generalize is restricted
by only collecting participants on MTurk, who it has been shown
do not always represent standard population samples, such as in
the case of participants health status (Walters et al., 2018). Finally,
our sample size of 106 participants was under the total that would
be required to detect an effect size of 0.50 with 0.80 power at an
alpha level of 0.05, which requires a sample size of 128.

7 CONCLUSION

The paper presents a new generative system for emotional
musical prosody that is implemented in Shimon, a creative
robot. We explore how a robot’s response outside of its key
creative task—such as musical improvisation—alters the
perception of the robot’s creativity, animacy,
anthropomorphism, perceived intelligence, and likeability. Our
research questions focus on how prosody compares to text-to-
speech in a creative system for each of these HRI metrics.

We found that by addressing the habitability gapwewere able to
increase user ratings for the key creativity ratings; novelty and
coherence, while maintaining ratings for expressivity across each
implementation. Our results also indicated that by communicating
in a form that relates to the robot’s core functionality, we can raise
likeability and perceived intelligence, while not altering animacy or
anthropomorphism. These findings clearly indicate the impact of
developing interactions surrounding a creative performance, such
as initial meetings and gaps between creative interaction.

Our results present wide ranging implications and future
concepts for the development of creative robots. The
importance of design outside primary tasks should not only be
considered for creative robots, but across HRI. These findings

indicate that embodiment and external design choices alter not
only the impression of the robot, but the impression of its primary
functions. We also believe this work indicates the importance of
audio design, and the impact on perception that changes to audio
alone can have on a system. By designing audio for the system
task and not relying on default audio methods it is possible to
drastically change the perception of a robotic system.
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