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In many real-word scenarios, humans and robots are required to coordinate their
movements in joint tasks to fulfil a common goal. While several examples regarding
dyadic human robot interaction exist in the current literature, multi-agent scenarios in
which one or more artificial agents need to interact with many humans are still seldom
investigated. In this paper we address the problem of synthesizing an autonomous artificial
agent to perform a paradigmatic oscillatory joint task in human ensembles while exhibiting
some desired human kinematic features. We propose an architecture based on deep
reinforcement learning which is flexible enough to make the artificial agent interact with
human groups of different sizes. As a paradigmatic coordination task we consider a multi-
agent version of the mirror game, an oscillatory motor task largely used in the literature to
study human motor coordination.
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movement coordination

1 INTRODUCTION

The number of scenarios involving humans performing joint tasks with artificial agents is expected to
grow rapidly in the near future. Examples, to name just a few, include industrial applications
(Hentout et al., 2019), home automation (Miro et al., 2008), assistive and rehabilitation robotics
(Freeman et al., 2012), search and rescue tasks (Liu and Nejat, 2013).

While different studies exist in the current literature involving dyadic coordination tasks between
one human and one robot or avatar (Lamb et al., 2017; Peternel et al., 2017; Zhai et al., 2017), the
problem of developing control-based cognitive architectures to drive autonomous artificial agents to
interact with a human team remains much less investigated.

Here, we consider as a paradigmatic example of joint motor task between an avatar and a group of
humans a multi-agent version of themirror game. Firstly proposed in the seminal paper by Noy et al.
(2011), the mirror game in its original formulation involves two people coordinating the motion of
their arm or finger so as to produce synchronous patterns. This task has been largely used in the
literature on interpersonal motor coordination and used to develop novel biomarkers for social
disorders such as schizophrenia (Slowinski et al., 2014; Zhai et al., 2016; Zhai et al., 2017) but mostly
in a dyadic coordination setting. As suggested inWiltermuth and Heath (2009), indeed, coordination
tasks such as the mirror game can be used to help patients affected by mental disorders (e.g.,
schizophrenia, autism) to improve their social skills. Furthermore, in Slowinski et al. (2014), it was
shown that the mirror game can be used to extract the so called Individual Motor Signature (IMS), a
time-invariant and unique kinematic signature identifying the motion of each individual.
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Following our recent work, e.g., (Lombardi et al., 2018;
Lombardi et al., 2019; Lombardi et al., 2021), we consider a
multiplayer version of the mirror game where several players are
asked to oscillate their end-effector (e.g., a finger if humans) along
one direction (e.g., back and forth or sidewise) so as to
synchronise their motion while being visually paired with each
other (Lombardi et al., 2019; Alderisio et al., 2017a; Alderisio
et al., 2017b). We noted that this multiagent version of the game is
a suitable task to explore if and how coordination emerges and
how it is affected by the configuration of the group and its spatial
arrangement [see Alderisio et al. (2017a), Alderisio et al. (2017b)
for further details].

A crucial problem when introducing an artificial avatar, or
robot, in the group playing the game [as for instance done in Zhai
et al. (2016), Zhai et al. (2017)] is to design a control architecture
to make the avatar observe the motion of the other group
members and coordinate its motion with them in a natural
“human-like” way (Lombardi et al., 2019; Lombardi et al.,
2021). In this paper we overcome some of the existing
limitations on scalability and flexibility of previous proposed
designs (Lombardi et al., 2019) by developing an alternative
strategy based on deep reinforcement learning. Specifically, our
control framework allows the cyberplayer (CP) to perform the
task with the others while, at the same time, exhibiting human-
like kinematic features. In so doing, our learning algorithmmakes
the CP emulate the kinematic features in terms of velocity
distribution which are typical of the motion of a target human
agent while solving the synchronisation problem with the rest of
the group. Using observational learning, the CP observes how a
target human player performs the group coordination task,
extracting some characteristic features of the observed motion
and building an internal description model to be used to generate
the kinematics of its own motion when replacing the target
human player in the group. Effectively, our learning approach
is able to make the CP generate new motion at unison with the
rest of the group while playing the game with the same kinematic
features as those of the target human player it has been
programmed to mimic. For the multi-agent case investigated
in this paper, we synthesise and validate the control architecture
over simulated human models endowed with human features
gathered from ad-hoc experimental data.

We wish to emphasise that the novel algorithm we developed
to solve this problem can be particularly relevant in those
applications, such as health care, where having autonomous
artificial agents able to perform coordination tasks with
humans can be useful. For example, to enhance the
development of exergames involving a mix of human and
artificial players coordinating their motion (Freeman et al.,
2012; Pirovano et al., 2016).

A preliminary approach to solve the problem was presented
in our previous work (Lombardi et al., 2019). In Lombardi et al.
(2019), we adopted a different learning approach where the
learning agent plays against an “average” player in what boils
down to a dyadic interaction between the agent and an average
of his neighbours. Therefore, Lombardi et al. (2019) can be seen
as an intermediate step between the dyadic case proposed in our
earlier works and the multi-agent case investigated in the

current manuscript. However, the main drawback of this
approach is the assumption that the other players in the
group adjust their motion on a real time average of the
positions of their neighbours. This is clearly not the case
with human players who tend to adjust their motion
reciprocally in a number of different ways. To overcome this
limitation, the algorithm we present in this paper extracts the
main features of the players motion directly from the data.
Moreover, to make the approach scalable, we present a training
strategy which is independent from the number of players the
CP is connected to while playing.

2 PREVIOUS WORK

Using the deep Q-network (DQN) learning algorithm (Mnih
et al., 2015), the cyberplayer in Lombardi et al. (2019) was
synthesised as an artificial agent able to train itself by
observing a specific target player (TP) in order to extract his/
her kinematic motor characteristics from the data.

The Deep Q-network strategy exploits an artificial neural
network (ANN) to approximate the optimal action-value
function Q* characterising the reinforcement learning
approach. Contrarily to traditional supervised learning, in the
DQN approach the loss function used to train the ANN is
iteratively updated through the network’s weights (Russell and
Norvig, 2003; Mnih et al., 2015; Sutton and Barto, 2018).

In our setting, the DQN architecture was designed as follows:

• the state space is chosen as xd[x, .x, y ̄, y ̄̇], where x, .x[ ] are
the position and velocity of the CP, while [y ̄, y ̄̇] the mean
position and mean velocity of the neighbours of the target
player in the group;

• the action space is the set of acceleration values discretised in
the range −u ̄, u ̄[ ] with u ̄ being the maximum possible
acceleration;

• the reward function was selected as:

ρd − a x − yTP( )2 − b .x − .yTP( )2 − ηu2, (1)

where yTP,
.yTP[ ] are position and velocity of the target player, u is

the control action, the constant weights a � 1 and b � 0.1 are used
to tune the position error and the velocity error respectively, while
the constant weight η � 10–4 is used to tune the control effort;

• the policy π is an ϵ-greedy policy as in Sutton and Barto
(2018);

• the neural network considered to approximate the action-
value function Q was designed as a fully connected [64, 32]
feed-forward network with 4-nodes input layer (one node
for each state variable) and 9-nodes output layer (one node
for each action value).

The main drawback in the solution proposed in Lombardi
et al. (2019) is the explicit use of the mean of the position and
velocity of the neighbours as variables in the state of the CP.
Considering such a feature it is implicitly assumed that a human
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player first estimates the mean of his/her neighbours and then
tries to minimise the error between himself/herself and such
estimated mean.

In the next section, to overcome this issue, we will remove
such an assumption in the design and implementation of the
CP. Specifically, the whole state of the neighbours of the CP will
be considered and used as input to the neural network, leaving
to the learning algorithm the task of extracting the main
kinematic features of the target player the CP is asked to
emulate.

3 CYBER PLAYER SYNTHESIS

3.1 Architecture
As already recalled in Section 1, the aim of this paper is to design
a CP able to learn and exhibit the same motor kinematic features
of a target agent when playing the mirror game task with a group
of other agents. The group of interacting agents is implemented
through the formalism of complex networks, where each agent is
represented as a node while the visual coupling with the others as
edges in the graph.

The problem is formalised by considering a set X of all possible
states in which the environment can be (state-space), a setU of all
possible actions that the agent can take (action-space), an
auxiliary function Q that estimates the value of taking a
specific action from a specific state in terms of expected
returns defined by a reward function. Specifically the action
space U and the policy π are defined as in Lombardi et al.
(2019) and reported in Section 2, while the reward function
and the state space are detailed as follows:

• the weights of the reward function in Eq. 1 are selected
empirically to maximize the performance of the CP and they
are a � 0.7 and b � 0.3;

• the state space is the vector xd[y, y ̇,Δy,Δy ̇], where the
subvector [y, y ̇]d[yi, y ̇i] with i � 1, . . . , N is the position
and the velocity of the neighbours of the CP, while the
subvector [Δy,Δy ̇]d[(x − yi)], [(x ̇ − y ̇i)], with again i � 1,
. . . , N, is the error in position and in velocity between the
CP and each neighbour i.N is the number of the neighbours
of the CP, i.e., the number of group members the CP is
directly connected with.

A specific challenge of the proposed architecture is that the
state space of the CP changes depending on the number of its
neighbours and hence, on the specific network topology
connecting the players in the group. In order to have a
cyberplayer able to play the mirror game in any group
configuration (i.e., with any number of neighbours, say M, up
to a maximum of, say, N), we consider a fixed size state space
vector capable of supporting N neighbours. We denote with M
the set of the effective neighbours of the CP, and with M ≤ N its
cardinality. Notice that such a hypothesis is not restrictive, as N
can be chosen arbitrarily.

Specifically, considering for each i � 1, . . . , N:

• if player i ∈ M, the subvector [yi, y ̇i, x − yi( ), (x ̇ − y i̇)] will
be included in the state vector of the CP;

• if player i ∉ M, the subvector [x, .x, 0, 0] will be included
in the state vector of the CP. We term such player i as a
“ghost” neighbour. Notice that, setting the subvector
corresponding to the ghost neighbour with the same
position and velocity vector of the CP, means that such
subvector will not contribute to the computation of the
reward function and therefore will not influence any
decision made by the CP.

The ANN considered to approximate the Q function is
designed as a feed forward network with (Figure 1):

• an input layer with N different nodes representing the
maximum number of players connected to the CP and
hence the dimension of the stack state vector;

• three hidden layers, made of 100, 50 and 50 nodes
respectively, each implementing a sigmoidal activation
function. The number of layers and that of their nodes
were found heuristically by trial-and-error to maximise the
performance and convergence time of the learning
algorithm;

• an output layer with nine different nodes, one for each
action variable in the action space. The neural network
returns an action-value qu for each action available in the set
U. Then, the action corresponding to the maximum q-value
is chosen as control input.

3.2 Implementation
The Deep Q-network algorithm is known to be unstable or even
to diverge when a nonlinear function approximator (ANN) is
used to estimate the Q-function (Mnih et al., 2015; Sutton and
Barto, 2018). Such instability is caused by the presence of
correlation in the observation sequence and between the
estimated network Q and the optimal target network Q*,
resulting in the loss of the Markov property. To overcome this
issue, the correlation in the observation sequence is removed by
introducing an experience replay mechanism, where the observed
states used to train the ANN are not taken sequentially but are
sampled randomly in batch from a circular buffer (Mnih et al.,
2015). Also, the correlation between the current estimate of the
function Q and the target optimal network Q*, used in the loss
function, is reduced updating the latter at a slower rate instead of
at each iteration.

In the DQN the loss function is iteratively changed because the
predicted output itself depends on the network parameters θk at
every instant k. Namely, the loss function is chosen as:

Lk θk( ) � E rk + cmax
uk+1

Q xk+1, uk+1, θk−1( ) − Q xk, uk, θk( )( )
2

[ ],
(2)

which represents the mean squared error between the current
estimated Q function and the approximate optimal action-value
function.
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After having initialised the ANN with random values and
instantiated an empty buffer for the experience replay
mechanism, the training of the CP is performed iteratively until
convergence is achieved according to the following “termination
criterion”: RMSTP,yi − RMSCP,yi





 



≤ ϵ ∀i ∈ M, where RMSTP,yi
and RMSCP,yi are the root mean square error between the
position of the neighbour i and, correspondingly, the position
of the CP and the target player, while ϵ is a non-negative parameter.

Our algorithm reports a time complexity of O(N) where N is
the number of nodes (players) in the network. Specifically, let the

complexity of the first layer of a feed forward NN be O(P · M)
where P is the cardinality of the input layer (number of the
neighbours) andM is the number of the hidden nodes of the first
layer. Since we consider M constant, we have O(P · M) � O(P).
Also, considering that the ghost neighbours do not play a role in
the NN, the major contribution to the complexity comes from the
number of the effective neighbours (independently from the
implemented topology). Hence, in the worst case the number
of neighbours P �N − 1 and so the resulting complexity is O(P) �
O(N − 1) � O(N).

FIGURE 1 | Control architecture of the cyber player playing the mirror game in a group. At each iteration k, the DQN controller observes the state of the game and
chooses the control input u according to the estimated neural network. The process evolves in a new state and the CP receives a reward r. The set of reward, previous
and current state are then used to update the weights of the neural network.
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4 TRAINING SETUP AND VALIDATION

4.1 Training
As the learning process typically requires a very large dataset, real
data acquired during live sessions of the mirror game between
human players might be difficult to collect.

To overcome this problem, we use a practical way to train the
CP, proposed in Lombardi et al. (2019), Lombardi et al. (2021). In
this setup, enough synthetic data are generated by making several
“virtual trainers” (VT) perform group sessions of the mirror game
against each other. Each VT is driven by a model-based
controlled architecture embedding in its core a stochastic
model capturing human-like kinematic characteristics [see
Lombardi et al. (2018) for more details]. Specifically the
motion of the VT is generated by a controlled nonlinear HKB
oscillator (Haken et al., 1985):

x ̈ + (αx2 + β
.
x2 − c) .

x + ω2x � u, (3)

where x, x ̇ and x ̈ are position, velocity and acceleration of the
VT, respectively, α, β, c are positive empirically tuned
damping parameters while ω is the natural oscillation
frequency. The control input u is chosen as solution of an
optimal control problem having the following cost function
(Zhai et al., 2016):

min
u
J tk( ) � θp

2
x tk+1( ) − r p̄ tk+1( )( )2 + θσ

2
∫tk+1

tk

x ̇ τ( ) − r σ̇ τ( )( )2 dτ+
θv
2
∫tk+1

tk

(x ̇ τ( ) − r ̄̇p τ( ))
2

dτ + η

2
∫tk+1

tk

u τ( )2 dτ,
(4)

where r p̄, r ̄̇p are the mean values of the position and the
velocity of the VT’s neighbours, i.e., the agents it is
connected with, η tunes the control effort, [tk, tk+1]
represents the optimisation interval, while rσ is the
reference signal coming from a stochastic model of the
Markov chain (MC) aiming at modelling the human
individual motor signature and derived from data gathered
from ad-hoc experimental sessions [as done in Lombardi
et al. (2018), Lombardi et al. (2021)]. Finally, θp, θs, θv are
positive control parameters satisfying the constraint θp + θs +
θv � 1. By tuning appropriately these parameters, it is possible
to change the VT configuration making it act as a leader,
follower or joint improviser in the mirror game [more details
are in Zhai et al. (2016), Zhai et al. (2017)]. It has been proved
that the MC-based control architecture can be carefully tuned
such that the VT generates trajectories with the same
kinematic characteristic of the human player on which the
Markov chain has been trained (Zhai et al., 2017; Lombardi
et al., 2021). The main advantage of such a training approach
is that with few virtual trainers it is possible to synthesise a
cyber player general enough to play the mirror game with any
player while exhibiting the desired human motor signature.
The use of virtual trainers is a simple method to generate as
much synthetic data as needed by the learning algorithm.

Note that the offline tuning parameters is needed only for the
virtual trainers used during the training.

To train the CP to emulate a target VT while coordinating its
movements in the group, we built a group of four different VTs
performing trials of the mirror game while interconnected through
a random graph. A new random graph is generated at each training
trial. EachVTwas synthesised and ad-hoc parameterised in order to
emulate the behaviour of the human player whose trials were used
to train the Markov chain embedded in its architecture. In
particular, we experimentally built six different MCs (one for
each VT) and parameterised each VTi (ω, θp, θs) as follows:
VT1: (ω � 0.75, θp � 0.8, θs � 0.15); VT2: (ω � 0.4, θp � 0.8,
θs� 0.15); VT3: (ω � 0.5, θp� 0.8, θs� 0.15); VT4: (ω � 0.75, θp� 0.8,
θs � 0.15); VT5: (ω � 1, θp � 0.75, θs � 0.2); VT6: (ω � 0.8, θp � 0.85,
θs � 0.1); VT7: (ω � 0.5, θp � 0.75, θs � 0.2). The parameters (α � 1, β
� 2, c � −1, θv � 0.05, η � 10–4) were set equal to all VTs.

In the deep learning algorithm the CP was trained to emulate
VT4 (any other VT can be used). In particular the group with
VT1, VT2, VT3 and VT4 was used during the training, whereas the
group VT4, VT5, VT6 and VT7 was used for the validation.

The experience replay was implemented with a buffer of
200.000 elements, batches of 32 sampled states were used to
train the feed forward neural network at each iteration. A target
network updated every 150 time steps was considered in the Q-
function, with a discount factor c � 0.95 and a learning rate of 0.1.

In Figure 2 the training curve is reported showing for each
trial the RMS error of the position between the VT and each
neighbour (in blue), and between the CP and the same neighbour
(in red).

4.2 Validation
The validation was performed comparing the performance of the
CP with that of the target VT. Specifically VT4 and CP performed
60 trials of 60 s of the mirror game connected with VT5, VT6 and
VT7 in a random graph. A new random graph was generated at
each trial. A sample session trial is depicted in Figure 3. The CP
successfully tracks the mean position of the group meaning that it
has correctly learned the same strategy implemented by the
virtual trainers. Notice that such a strategy was not encoded in
the CP, which learned it by only observing the target VT and its
neighbours.

Quantitatively, the performance was evaluated in terms of:

1) relative phase error defined as ΔΦ � Φy ̄ −ΦCP/VT4, where
ΦCP/VT4 is the phase of the CP and VT4 respectively while
Φy ̄ is the average of that of the neighbours. The phase was
estimated taking the Hilbert transform of the corresponding
position signal (Kralemann et al., 2008);

2) RMS error between the position time series of the CP (or VT4)
and the mean position time series of its neighbours;

3) time lagwhich describes the amount of time shift that achieves
the maximum cross-covariance between the position time
series of the CP (VT4) and the average of that of the
neighbours. This can be interpreted as the average reaction
time of the players (Orfanidis, 1988). Since the maximum
cross-covariance achieved by the CP and VT4 can be highly
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different from each other while keeping same time lag values,
we reported also the maximum cross-covariance K in position
as metric of interest;

4) group synchronisation index introduced in Richardson et al.
(2012); Alderisio et al. (2017a) and defined as:

ρg(t)d
1
P

∑P
k�1

ej(ϕk(t)−ϕk̄)
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ ∈ 0, 1[ ], (5)

where ϕk t( )dθk(t) − q(t) is the relative phase between the kth
player and the group phase at time t, ϕ

̄

k is ϕk(t) averaged over
time, and P is the number of the players. The closer the
synchronisation index is to 1, the higher is the level of
synchronisation in the group.

The number of trials chosen for the validation was the result of
the statistical power analysis carried out taking as metric the
group synchronisation index and a reference power of 0.9. Mean
and standard deviation are reported over the total number of
trials for eachmetric both for VT4 and for CP. Before running any

statistical test, we removed the outliers classifying them as the
data points that were 2.5 times the standard deviation away from
the mean. Since the data were not normally distributed, we
performed the Wilcoxon t-test as a non-parametric test
reporting the following results:

• Relative phase error ΔΦ. CP: − 5.127e−4 ± 0.032; VT4:
−2.506e−4 ± 0.023 (W (54) � 732, p � 0.753, effect-size �
−0.049).

• RMS position error. CP: 0.062 ± 0.018; VT4: 0.054 ± 0.006
(W (54) � 606, p � 0.171, effect-size � −0.213).

• Time lag. CP: − 0.021 ± 0.031; VT4: −0.034 ± 0.051 (W (54)
� 469.5, p � 0.096, effect-size � −0.264).

• Maximum cross-covariance K. CP: 0.881 ± 0.064; VT4:
0.887 ± 0.024 (W (54) � 801, p � 0.798, effect-size � −0.040).

• Group synchronisation index ρg. CP: 0.821 ± 0.086; VT4:
0.804 ± 0.046 (W (54) � 593, p � 0.139, effect-size � −0.230).

A p-value > 0.05 was computed for all the metrics of interest
showing that no significant difference exists between the CP and

FIGURE 2 | Training curve showing the convergence of the algorithm. The root mean square error in position (y-axis) is reported for each trial (x-axis) both between
the target VT4 (in blue) and (A) VT1, (B) VT2, (C) VT3, and between the CP (in red) and the same players.

FIGURE 3 | Sample trial of a group session. (A,B)Position time series of the target VT4 and of theCPwhile playingwith the other virtual trainers. Different colours are used for
different players. (C,D) Position time series of the target VT4 (in blue) and of the CP (in red) reported together with the mean position of the neighbours (in dashed black).
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the player it is emulating (boxplots are depicted in Figure 4).
Codes and data can be found at https://github.com/
diBernardoGroup/CyberPlayer_DQN/.

5 CONCLUSION

In this work, we addressed the problem of synthesising an
autonomous artificial agent (called cyber player) able to
coordinate its movement and perform a joint motor task in a
group scenario. In particular, a multiplayer version of the mirror
game was used as oscillatory joint task. To achieve our goal we
used a DQN approach to train the CP taking as input the state
(position and velocity) of its neighbours in the network.
Contrarily to what we have previously done in Lombardi et al.
(2019), where the mean position of the neighbours was extracted
a priori and used as input to the neural network, in the proposed
architecture we overcame this limitation by letting the learning
algorithm extract directly from the data the strategy implemented
by the players. To avoid that such an approach could lead to an
undesired dependency of the CP on a specific network topology
and making the algorithm not general for any network, we
approached the problem by sizing the CP neighbours to a

maximum number. Such value is a control parameter that can
be selected according to the connectivity we aim at designing for
the CP. In the case the CP has an effective lower number of
connected agents, we increase the number of neighbours
artificially by introducing “ghost neighbours” that do not alter
the learning and decision process but allow the algorithm to cope
with randomly selected network structures (and hence a random
number of CP’s neighbours up to N).

The effectiveness of the algorithm was shown numerically
by comparing its performance with that of a target VT while
playing in a group of four human emulating agents over
different group configurations. Furthermore, statistical
analysis proved that no statistical difference exists between
the CP and the target VT therefore showing that the CP is
effectively able to perform motor interactions in a group with
the same motor features exhibited by the target agent.
Ongoing work is being carried out to validate the CP when
interacting with a real group of people in an experimental
setting, as already done for the dyadic interaction in
Lombardi et al. (2021).
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