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Given that selection removes genetic variance from evolving populations, thereby reducing
exploration opportunities, it is important to find mechanisms that create genetic variation
without the disruption of adapted genes and genomes caused by random mutation. Just
such an alternative is offered by random epigenetic error, a developmental process that
acts on materials and parts expressed by the genome. In this system of embodied
computational evolution, simulated within a physics engine, epigenetic error was
instantiated in an explicit genotype-to-phenotype map as transcription error at the
initiation of gene expression. The hypothesis was that transcription error would create
genetic variance by shielding genes from the direct impact of selection, creating, in the
process, masquerading genomes. To test this hypothesis, populations of simulated
embodied biorobots and their developmental systems were evolved under steady
directional selection as equivalent rates of random mutation and random transcriptional
error were covaried systematically in an 11 × 11 fully factorial experimental design. In each
of the 121 different experimental conditions (unique combinations of mutation and
transcription error), the same set of 10 randomly created replicate populations of 60
individuals were evolved. Selection for the improved locomotor behavior of individuals led
to increased mean fitness of populations over 100 generations at nearly all levels and
combinations of mutation and transcription error. When the effects of both types of error
were partitioned statistically, increasing transcription error was shown to increase the final
genetic variance of populations, incurring a fitness cost but acting on variance
independently and differently from genetic mutation. Thus, random epigenetic errors in
development feed back through selection of individuals with masquerading genomes to
the population’s genetic variance over generational time. Random developmental
processes offer an additional mechanism for exploration by increasing genetic variation
in the face of steady, directional selection.
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INTRODUCTION

Understanding the evolutionary dynamics of embodied1,
locomoting individuals—whether organic, living creatures or
mechanical, manufactured robots—is of central importance to
studies of living systems and robotic systems alike. The full span
of factors and subsystems underlying biological or bio-inspired
evolution, however, cannot feasibly be fully studied solely by
experiments with living organisms (Long, 2012). Consider, for
example, the processes underlying the genotype-to-phenotype
map (G-P map, for short), the developmental processes by which
an individual’s physical form is constructed from its genetic
encoding (Bongard, 2002; Wagner, 2005). Mechanisms within
the processes of transcribing the genotype—not themselves
elements of the genome nor the embodied phenotype, but
extra-genetic or epigenetic processes2 that act on genes in the
G-P map—could have effects on the locomotion of individuals or
on the genetic composition of a population. Controlled
computational experimentation could yield novel insights into
living systems, novel mechanisms for inclusion in the
methodologies of evolutionary robotics (Doncieux et al., 2015),
or both.

In this paper, we present our methodology for investigating
the role of randomness in the G-P map of evolving, locomoting
individuals, and we present the first results of our experiments
with developing, evolving, simulated robots. In particular, our
results include support for a masquerading genome hypothesis
(MGH): The presence of noise in the gene transcription process
of the G-P map can shield genes from the direct impact of
selection, thus increasing genetic variance in populations over
generational time. Moreover, the MGH is distinct from genetic
mutation, acting independently and differently on variance.
There is, however, a fitness cost that accompanies the
increased variance resulting from masquerading genomes.
These results typify embodied computational evolution (ECE),
the employment and study of evolutionary methods using
embodied robots, virtual or material—an approach distinct
from other evolutionary computation approaches, for which
embodiment is not integral. These ECE results provide novel
insight into living systems using computational methods; these
results may also be of interest to evolutionary robotics, for which
increased variance may help avoid convergence on local optima
(Pugh et al., 2015; Pugh et al., 2016), although as we discuss in the
Discussion, the fitness cost may not always be worth incurring for
the added variance.

In organisms, G-P mappings begin with the expression of the
genetic code: triplet codons are modeled canonically as redundant

with respect to the intended amino acid and hence are neutral at
the position of the third base pair with regard to phenotype (for
an alternate model, see (Spencer and Barral, 2012)). The
redundancy of the genetic code is one way to create neutral
genetic variation. Neutral effects with respect to phenotypic
expression may also occur for most other genetic levels and
effects (Paaby and Rockman, 2014), a general phenomenon
called cryptic genetic variation (CGV), which may serve as a
genetic reservoir for future evolutionary change (Zheng et al.,
2019). In populations of bacteria, CGV facilitated adaptation
when the population faced rapid environmental change as
enacted by a change in selection (Lee and Marx, 2019; Zheng
et al., 2019).

As the “cryptic” in its name denotes, CGV increases genetic
variation by “hiding” genes from selection; in the simplest case, if
genes aren’t expressed—a process that begins with the
transcription of DNA into messenger RNA—then they cannot
be selected. Thus CGV aids diversification in the long run by
decoupling a subset of the connections in the G-P map. For the
connections that remain, their mappings can be altered by
epigenetic processes. When noise is introduced into the G-P
map for the neurocontrollers of simulated quadrupedal robots,
the resulting stochastic ontogenesis (SO), a developmental
process, can have surprising and positive evolutionary
consequences (Lee and Marx, 2019). As is true with
populations possessing CGV, populations with SO respond
better, as measured by evolutionary fitness, to changes in the
environment, apparently by providing a reservoir of solutions. In
order to transfer the reservoir of solutions from SO over
generational time, those solutions must have a genetic basis, as
indicated by the presence of higher scoring replicates in SO
populations (Stanton, 2018).

Thus we hypothesize that the epigenetic SO mechanism
increases genetic variation in populations under selection,
hiding some genes from selection in a manner that is
functionally similar to CGV. To test this hypothesis, we evolve
populations of simulated embodied robots under directional
selection, covarying levels of genetic noise created by random
mutation with levels of epigenetic noise created by random
transcriptional error. We then select for improved locomotor
behavior while tracking both genetic and phenotypic variation in
the populations.

We chose to manipulate the bioinspired mechanism of
transcription because it is the first and arguably the most
important stage of gene expression and development. In the
context of evolutionary robotics, transcription has been used
as an explicit factor in body-brain evolution (Krčah, 2012) and
transcription errors have been hypothesized to overcome
premature convergence caused by selection (Borg et al., 2011;
Borg, 2018). In biological organisms, transcription is a massively
parallel, intracellular process in which molecular machines, RNA
polymerases, unfold short portions of DNA and guide the
generation of messenger RNAs. Messenger RNAs, in turn,
transfer information to the cell’s protein-making machinery or
make other types of RNA that function in a range of enzymatic
and regulatory processes. In this manner, RNA polymerases, in
conjunction with several other molecular agents, initiate gene

1There are different usages of the term embodied; we use it in the sense in the sense
popularized by Pfeifer et al. (2005), in which embodied agents are those “realized as
physical systems.” This meaning may include simulated robots, such as those used
here, provided that their bodies and their environments interact according to the
dynamics of physical laws.
2The term “epigenetic” varies widely in meaning. We use it here in Waddington’s
original sense, the processes between the genotype and phenotype (Dupont et al.,
2009; Deichmann, 2016), with emphasis on those processes having no direct effect
on the DNA sequence of the individual in which they occur.
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expression. Hence transcription errors have effects that cascade
throughout the entire G-Pmapping process, altering the course of
development independently from DNA mutation. Intriguingly,
the error rates of transcription and mutation vary dramatically
with species, population size, genome size, tissue type, and
developmental age; the implications of these variations
remains an open and fundamental issue in evolutionary
biology (Lynch, 2010). With this in mind, we designed an
ECE system that allowed us to control the rate of transcription
error, τ, and genetic mutation, μ. In the evolutionary experiments
τ and μ are of the same range and magnitude, which facilitates
meaningful comparisons between the two different types of
noise-making processes.

It’s important to note that transcription error is not the only
mechanism in a G-P map that might create an MG effect. As
explained below (see Eq. 1), members of the general class of
epigenetic developmental errors operate in a similar fashion, by
definition, nondeterministically. Nondeterminism, however,
could also be present in other elements, including sensors,
fitness metrics, and other results of embodied interaction with
the agents’ environments that affect the mapping of genes to
morphology, performance, and fitness (Arnold, 1983). For
example, in evolutionary robotics, fitness evaluations vary
across a spectrum, from those that include the investigator’s a
priori knowledge about the desired result to those that only
reward agents for how well they completed a task,
independently of how they achieved a given level of
performance (Nelson et al., 2009). For any type of fitness
evaluation, the presence of nondeterminism at that stage of
the mapping may create an MG effect; but randomness in
fitness is a very different mechanism than randomness in
development, and thus, if experiments support this
supposition, it would be tallied as a new type of non-
epigenetic, nondeterministic factor (in Eq. 1).
Nondeterminism in performance arises from the probabilistic
nature of sensors, controllers, actuators, their physical
circumstances, and their interactions (Thrun et al., 2005).
Moving beyond fitness and performance, nondeterminism in
the selection algorithm itself, independent of well-known
random evolutionary mechanisms like genetic drift, might
create an MG effect. Consider the extreme case in which all
individuals, independent of differences in fitness, have an equal
chance of reproducing: random mating would inject
nondeterminism into this part of the evolutionary process. In
the exploratory study reported here, we limit our testing of the
MGH to genetic mutation and transcription error, but our model
and methodology can also be extended to investigate other
nondeterministic mechanisms.

The ECE Model
In constructing the full ECE model, we were mindful of Vicsek
and Zafeiris’ (Vicsek and Zafeiris, 2012) dictum: “A really good
model must both reproduce truly life-like behavior and be as
simple as possible.” Simple models offer general insights into
fundamental processes but lack the details to address specific
cases found in nature. Complex models capture natural variations
but may create process interactions that are difficult to identify

and interpret, creating hidden threats to the model’s validity.
Thus we sought to balance the two, choosing simple yet
biologically realistic features and processes to model life-like
genetics, development, behavior, and evolution of embodied,
locomoting individuals. We provide an overview of the ECE
model here; details may be found in the Methods section.

Starting with genetics, the single-stranded genome of each
agent is 16 kilobases long, with a variable number of genes, from 6
to 55, depending on the evolutionary history of the individual.
Both genetic features are similar to those found in RNA viruses
such as influenza (Eisfeld et al., 2015). Further, the genetic code
uses the codon, a triplet of quaternary digits defined in the
biological case by the classic A, T, G, C nucleotide bases,
along with redundancy of the code. Start and stop codons
demarcate open reading frames, called genes in this study, and
their variable positions permit the number and length of coding
and non-coding regions to vary between genomes and over
generational time. When expressed, each codon produces one
or more transcripts, a process that initiates development. Some
codons affect the expression of other genes, creating
opportunities for epistatic gene interactions.

Development is present, explicit, and simple, with transcripts
making five types of protoparts, determining the duration of the
growth of the protoparts into finished parts, and defining some
properties of the parts. By a set of fixed rules, those parts are
assembled into the embodied robot. The body is composed of two
or more spheres, creating a simple segmented robot; segments are
connected by hinges that may be powered to bend in response to a
stimulus from touch sensors that is propagated through a simple
neural network of at least one complete sensorimotor circuit. The
locomotor behavior is simple terrestrial locomotion on a flat
surface without barriers. Each population is composed of 60
individuals. In a given generation, differences in locomotor
performance are used to select the top half of the population
for reproduction via a fixed truncation process. Reproduction is
simple and asexual, with mutation possible at any of the
base pairs.

This ECE model was built to conduct experiments on the G-P
map in embodied, locomoting individuals that are part of
evolving populations. Specifically, we systematically covaried
the rates of genetic mutation and transcription error. The rate
of point mutations, μ, during reproduction were varied from 0 to
5 × 10–4 per gene per generation, the maximum rate falling in the
range of that measured in RNA viruses, 10–3 to 10–6 (Lynch,
2010). The rates of transcription error, τ, during gene expression
were varied over the same range as μ, facilitating direct
comparisons of the quality and magnitude of the two different
types of noise. Moreover, a fully factorial experimental design
allowed for examination of the interactions of those two different
processes in the G-P map.

Masquerading Genomes From Stochastic
Ontogeny (SO)
By altering the G-P map, SO creates what one can think of as
masquerading genomes (MG). In our model, the developmental
mechanism of SO is transcription error, which creates MG by
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hiding the deterministic fitness of the genome. Sharing
motivation with Stanton (Stanton, 2018), though with a
different experimental design, we formally represent every
individual i as having an evolutionary fitness, ωi, partitioned
into two components: deterministic and non-deterministic
fitness. If the environment around the developing individual is
fully deterministic, as is the case in our experimental paradigm,
then the combination of the genome and the epigenetic error,
where transcription error is but one type of epigenetic
developmental error, can be viewed as fully determining the
individual’s evolutionary fitness:

ωi � f ([genome]i, [epigenetic errors]i) (1)

where [genome]i is the genome of individual i and [epigenetic
errors]i represents the total epigenetic error affecting the
development of individual i. If all epigenetic errors are null,
then it is the case that both the surrounding environment and
the individual’s development are fully deterministic, which results
in the special case of deterministic fitness. When some epigenetic
errors affecting the individual are non-null, ωi results from a
nondeterministic process. Note that any processes resulting in the
formation of the genome—including random mutational
errors—occur prior to the individual’s development and
determination of fitness, and can thus be considered to be part
of deterministic fitness. In the nondeterministic fitness case
studied in our experiments, when random epigenetic processes
(e.g., transcription errors) are operating, these nondeterministic
processes can change the ωi and create a MG.

With evolutionary experiments that systematically covary τ
and μ, our model shows that by adding a nondeterministic SO
component to the deterministic process of the G-P mapping,
transcription errors create MGs. MGs, in turn, increase both
genetic and phenotypic variance of the population. The
evolutionary experiments were conducted with an 11 × 11
factorial design, with the independent variables τ (11 levels)
and μ (11 levels), producing 121 different conditions. Each
condition has ten replicates: ten different populations of 60
robots evolved over 100 generations. In every population and
every generation, each individual robot is tested in a dry
terrestrial world, a simple flat plane in which ωi is measured
as the Euclidean distance that the robot locomotes from start to
stop. Selection was directional and constant; populations that
undergo adaptive evolution have higher mean fitness, a result of
their collective improvement in locomotion.

These experiments produced 7.26 × 106 individuals. For each
individual, we tracked 11 properties: identification, parentage,
generation, fitness, genetic variance (two types), and number of
body parts: joints, neurons, sensors, and wires. This yielded an
enormous database of nearly 8 × 107 points. With a data set of
this size, the opportunities for analysis are manifold. In this
initial work, we develop the ECE model and present a high-level
examination of MGs, specifically the influence of μ and τ on
genetic variance, H, of the population. Unlike the additive
genetic variance that must be inferred in biological
populations, we can measure genetic variance directly using
the Hamming distance between every pair of individual
genomes in a given population. The sum of all pairwise

Hamming distances, H, serves as our measure of the genetic
variance of the population.

METHODS

This ECE modeling system consists of three bioinspired models
that work in concert: 1) a genetic system that encodes
morphological and regulatory traits as triplet codons, mutates
the genomes, and replicates the genome for reproduction; 2) a
developmental system that expresses over time the genome as sets
of transcripts, creates random errors in the transcripts, processes
those transcripts to create finished parts, and then uses a fixed set
of rules to assemble the parts into individual robots; and 3) an
evolutionary system that tests the behavioral performance of the
individuals in a population with a physics simulator and selects
the best for reproduction.

Genetic System
The robotic genome was designed to mimic certain properties of
biological genomes. The biological genome uses the codon, a
triplet of quaternary digits defined in the biological case by the
classic A, T, G, C nucleotide bases. Each codon is expressed as an
RNA transcript; each transcript maps to a particular building
block (amino acid) fromwhich an organism is constructed during
development. Because there are only 21 amino acids but 64
possible quaternary triplets, redundancy in coding occurs
when mapping from codons to components. We used a
similar structure, substituting digits from 0 to 3 for the
nucleotides (Figure 1).

In generation 0, each genome was initialized as a random
string of 6,000 codons (18,000 quaternary digits). Codons fall into
four categories (Figure 1): part, feature, magnitude and start/
stop. There are five different part types: spheres, joints, sensors,
neurons, and wires. Feature codons are the most numerous. In
combination they determine, for example, the size of the finished
sphere part (feature codons 002 and 003). Magnitude codons are
not part specific; they combine to control the relative duration of
developmental processes. The start and stop codons are not
expressed; they delimit the beginning and end of a gene. Only
codons inside of the start-stop boundaries are expressed. The
genome is mutated only during reproduction, which follows
selection and occurs before the development of the next
generation of robots (see Evolutionary Experiments section).
For each digit in the genome, the mutation operator uses a
random number generator and, based on the mutation rate for
that population, alters the digit.

In each gene there may be one or more part codons. Only the
first part codon after the start codon was expressed. In contrast,
all feature and magnitude codons in the gene were expressed, and
they formed a pool of regulatory elements. The interaction of the
pool of expressed regulatory elements with the expressed part
type determined the final size and configuration of the part.

Developmental System
In development, the genotype-to-phenotype (G-P) mapping
began with the expression of each gene as a set of transcripts
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based on the triplet codons. These transcripts specified the
protoparts and regulatory elements to be used in building the
robot (Figure 2). At this initial stage of gene expression,
transcription errors alter the digits of the codon with a
probability determined by a random number generator and
the transcription error rate for that population. An essential
feature of these transcription errors is that they are epigenetic,
occurring to products of the genome, leaving the genome itself
unaltered.

As in biological systems, the set of transcripts, the
transcriptome, is used by the developmental process to
build the agent over time, where time is represented by
update cycles. The G-P mapping unfolds in time by taking
each gene’s protopart and growing it into the finished part,
with the duration of the growth and functional properties of
the part determined by the transcribed regulatory elements
(Figure 2). Every transcript has a genetic basis and may
contain an epigenetic alteration of that genetic expression.
The two types of errors compared in this study impact the
same final process: the development of the body parts from
protoparts.

The development of body parts involves the expression of
codons and the interactions of their transcripts. For example,
feature codons 002 and 003 create two counter-acting transcripts,
sphere: size+ and sphere: size- (Figure 1). The final size of a sphere
depends additively on the total number of transcripts produced.
Other pairs of counter-acting codons perform analogous roles to
determine the properties of the five types of parts (Figure 2). The
expression of these feature codons is regulated by the transcripts
of the magnitude codons. For example, the transcript of
magnitude codon 230 allows one hundred transcripts from a
gene’s feature codons to be expressed. Note that the magnitude
codons have only positive values; as transcripts they operate
additively to determine the total number of feature transcripts.
Each feature codon in the gene is expressed each update cycle
until the limit has been reached for the number of feature
transcripts set by the pool of magnitude codons. Recognizing
the importance of epistasis in cryptic genetic variation (Zheng
et al., 2019) we built a type of epistatic gene interaction into our
G-P system: every update cycle, each gene randomly contributes
10% of its newly expressed feature and magnitude transcripts to a
general pool; each gene then randomly pulls 5% of the transcripts

FIGURE 1 |Genetic code and mutation errors for embodied robots. Inspired by the genetic code of lifeforms, this genetic code uses triplet codons to signify parts,
features of the parts, magnitudes of the parts, and start and stop codons. In an individual, these codons are expressed as transcripts (see Figure 2) if they occur between
the start and stop of a gene. Each individual has a genome that is 18k bases long, allowing for 6k possible codons andmultiple genes. Point mutations are random. They
occur by changing, for example (see red text), the first digit of the codon from 3 to 2, which changes the codon from 322 to 222, turning a feature codon into a
property codon. Point mutations occur only when the genome of a parent is replicated to make the genome of an asexually reproduced offspring.
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from the pool. This epistasis effect was held constant across trials,
since it was not the focus of this initial investigation.

Time also figures into the assembly stage of development
(Figure 3). When a part is finished it is placed in a part pool in the
order in which it was constructed relative to other parts of that
type (Figure 2). The first part of that type completed was the first
from that pool used for assembly of the robot. The rules for
assembly specify a building process that takes place in three steps
(Figure 3): 1) connect spheres with joints until either part is
depleted or when all joint mounts are used, 2) add neurons and
sensors to open mounts until parts or mounts are depleted, and 3)
add wires until parts or open connectors are depleted.
Importantly, development may abort under two conditions: 1)

if two or more spheres cannot be created or connected; and 2) if
the neural network created by the wires fails to connect at least
one sensor to one joint. In either of these cases, the robot cannot
move, and it was given a fitness score of 0.

Evolutionary Experiments
The experiments were organized in a repeated-measures fully
factorial design of 11 μ levels and 11 τ levels, for a total of 121
conditions. The error rates for μ and τ were identical values: 0,
0.0005, 0.0010, 0.0015, 0.0020, 0.0025, 0.0030, 0.0035, 0.0040,
0.0045, and 0.0050.

Each population had a fixed size of 60 robots. In generation 0,
each genome was generated randomly. There were 10 replicate

FIGURE 2 | Transcription errors and their impact on early development. Each gene is expressed once during development, making one transcript that is a protopart
and multiple transcripts that encode the part’s properties and developmental duration. The protopart develops into a finished part by having property transcripts add to
or subtract from the growing part’s properties incrementally over time. The duration of the process—and thus the extent of the incremental effects—is determined by the
magnitude regulatory elements (see Figure 1). As parts are finished, they are added in sequence to the individual’s part pool. Early development is complete when
all the expressed protoparts have been turned into finished parts. Shapes of parts as represented here are simplifications of the 3D shapes simulated. Not all properties of
the parts are represented graphically.
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populations, which means that 600 starting genomes were
produced. Each of the 121 conditions started with the same 10
replicate populations. Note that this repeated-measures design,
with replicate population as the repeated-measures variable,

avoids a confound that would be introduced if all 1,210
populations were different in generation 0.

Each population was evolved for 100 generations with
individuals selected for locomotor performance. The simulated

FIGURE 3 | Robot assembly during late development. Step 1: Drawing from the part pools (rectangular boxes), development assembles the robot’s body by first
connecting a pair of spheres with a joint. This process is repeated until unused spheres, joints, or open joint mounts (empty orange squares) are depleted. Step 2:
Development adds neurons (filled green circles) and sensors (filled blue triangles) to themounts on the spheres (empty circles and triangles) until the unused parts or open
mounts are depleted. Step 3: Unless depleted or without open connections, wires placed to link sensors to neurons, sensors to motors, and sensors to motors.
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environment was flat, dry, empty, and terrestrial. Each robot was
given 501 time steps to locomote, and the linear Euclidean
distance between its final and initial locations was used as the
measure of fitness. This linear distance ignores total length of the
path, which, if convoluted, can be substantially greater than the
linear distance. Locomotion was driven proximally by the
combined action of the robot’s motorized joints in response to
stimuli from the robot’s touch sensors. The position of any joint
connecting two spheres was the output of the neural network
produced in response to input from the touch sensors on the
outside of body spheres. The position of each was calculated each
time-step of the simulation and normalized to the range [-π, π].
The relative movement of all of the spheres and their interaction
with the substrate determined the robot’s overall locomotor
behavior (see Supplementry Video S1).

Each population was subjected to truncation selection: the 30
robots with the highest fitness scores reproduced asexually. The
three highest-ranked robots each made four children, robots
ranked 4–9 each made three children, robots ranked 10–18
each made two children, and robots ranked 19–30 each made
one child, resulting in a new population of 60 individuals. In
contrast to randomized or random-weighted reproduction
algorithms, this fully deterministic method was chosen in part

so that the elements of randomness in our design were restricted
to only the genetic mutation and epigenetic transcription
processes. Truncation selection has two desirable features that
are put to use in this study (Crow and Kimura, 1979): 1) it is the
most efficient form of directional selection and 2) it reduces the
mutational load on the population. The reduction of mutational
load likely makes it easier to detect the genetic effects of
transcription error.

Bullet Physics libraries (https://bulletphysics.org; v2.82) were
used to simulate the robots and the environment. Simulations
were run on a system76 Gazelle Professional computer with an
Intel® Core™ i7-4710MQCPUs@2.50 GHz. Thework of themodel
was split between two applications: a Python (v2.7.6) program
handled development, selection, and reproduction; and a C++

program (compiled with g++ v4.8.4 using gnu++11) simulated
robots in the physics engine environment. The random number
generators used were RandomState instances from Numpy (v1.8.2).

RESULTS

A total of 1,210 evolutionary runs (10 replicate populations × 121
conditions) of 100 generations produced 7.26 × 106 individual

FIGURE 4 | Diversity of evolved robots. (A) Simple morphology with low fitness. This is an 8th-generation agent with two spheres, one joint, four neurons, one
sensor, and six wires. Lacking amotor, the robot did not locomote. Its non-zero fitness of 0.10 m is an artifact of its large diameter. (B)Complicatedmorphology with low
fitness. This is a 92nd-generation robot with 16 spheres, 15 joints, four neurons, five sensors, and three wires. The robot locomoted, but had too many moving parts to
do so in an efficient linear fashion. Fitness of 24.49 m. (C) Intermediate morphology and fitness. This is a 56th-generation robot with seven spheres, six joints, seven
neurons, 10 sensors, and six wires. The robot executed a single jump. Fitness of 199.80 m. (D) Simple morphology and high fitness. This is a 83rd-generation robot with
four body spheres, three joints, seven neurons, five sensors, and eight wires. It locomoted by continually flipping itself over (see Figure 5). Fitness of 1,068.83 m. Note
that of all the parts, only spheres are shown here since their configuration dominates the external morphology.
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robots. The evolved diversity in morphology ranged from simple
two-sphere individuals to those with 16 spheres (Figure 4). The
most effective locomotion, and hence highest fitness, was
produced by relatively simple morphologies with sensorimotor
connections that permitted the rhythmic alternative flipping of
the two main spheres (Figure 5). Comparison of the locomotion
of three of these individuals is available on Supplementary
Video S1.

To test the hypothesis that the rate and pattern of adaptive
evolution could be altered by the two independent variables,
mutation rate μ and epigenetic error rate τ, the mean fitnesses
ω of the 1,210 populations were analyzed in two steps. All
statistical tests were conducted using SPSS (version 25 on
Mac OS 12.12.6). First, the evolution of each population in
each condition was summarized by the coefficients from a
third-order polynomial regression of individual fitness (60
individuals) onto generation (100 generations):

ω � A + Bx + Cx2 + Dx3. Second, an 11 × 11 (11 levels of μ
and τ) repeated-measures ANOVA was run on each of the
four regression coefficients. Because the set of ten replicates
was identical at the start of all 121 conditions, population was
the repeated measures variable. Note that this repeated-
measures design avoids a confound that would be
introduced if all 1,210 populations were different at the
start of evolution.

The analysis did not detect a statistically significant interaction
term for μ and τ on the B, C, and D coefficients of (Table 1); the
interaction term for A, the constant in the regression model, was
significant. The main effect of μ on ω is significant only for the A
and B coefficients, suggesting that the evolutionary effect of
genetic mutation on fitness is linear over generational time.
The main effect of τ on ω is significant for all four
coefficients, suggesting that the evolutionary impact of
epigenetics on fitness is more complicated than that of
mutation. These results are evidence that changes in μ and τ
1) alter the rate and pattern of adaptive evolution, 2) exert their
influences on ω independently, and 3) act on ω in different ways
(Figure 6). Most importantly, the non-linear effects of τ on ω
show a pattern of initial constant acceleration until generation 20,
deceleration until generation 70, followed by secondary
acceleration (Figure 6D). The secondary acceleration of ω
demonstrates that any convergence that may have begun,
indicated by deceleration, was only temporary. This secondary
acceleration does not occur over time with the isolated effects of μ
(Figure 6C).

To test for the presence of epistasis—the non-additive
interactions of genes—third-order polynomial regression was
performed on fitness and the number of genes, grouped by μ
and then τ (Figure 7). No matter the grouping or the magnitude
of μ or τ, the pattern is similar: strong negative epistasis occurs
after a peak of 30–40 genes. At a lower number of genes, simple

FIGURE 5 | An embodied robot locomoting. View from overhead. Robot
from Figure 4D, with high fitness, locomotes by continually flipping one
sphere over the other. The arrow indicates both the magnitude and the
orientation of the locomotor velocity. Video of robots locomoting is
available in supplemental materials.

TABLE 1 | Adaptation over 100 generations of directional selection, statistical
analysis of regression coefficients in four repeated-measures ANOVAs.

Coefficient Effect F (df) P Partial η2

A μ 26.92 (4.7, 42.4) 0.000 0.749
τ 26.33 (4.1, 37.2) 0.000 0.745
μ × τ 3.42 (6.0, 53.6) 0.006 0.275
Population 1,170.64 (1, 9) 0.000 0.992

B μ 10.84 (3.5, 31.1) 0.000 0.546
τ 28.45 (4.0, 36.3) 0.000 0.760
μ × τ 1.94 (5.5, 49.6) 0.098 0.178
Population 421.18 (1, 9) 0.000 0.979

C μ 3.16 (4.2, 37.8) 0.023 0.260
τ 7.82 (3.7, 33.4) 0.000 0.465
μ × τ 1.41 (5.3, 47.8) 0.234 0.136
Population 197.42 (1, 9) 0.000 0.956

D μ 1.69 (4.1, 37.3) 0.170 0.158
τ 4.99 (3.3, 29.7) 0.005 0.356
μ × τ 1.28 (6.1, 56.7) 0.280 0.125
Population 173.5 (1, 9) 0.000 0.951

All tests and degrees of freedom (df) were corrected for lack of sphericity using
Greenhouse-Geisser. Population is the repeated-measures variable. To account for four
ANOVAs conducted on the same data set, the significance threshold after correction by
Bonferroni was 0.0125 (0.05/4). Significant p values under Bonferroni are bolded.
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additive effects are present, and these are not normally considered
to be epistasis (Phillips, 2008).

To investigate the evolutionary outcomes in more detail, the
final generation, 99, was examined. For statistical analysis, the
conditions with 0 μ and τ were removed because they were
outliers by more than 3 SE relative to the nearest values from
other conditions; their removal does not alter the qualitative
results that follow. To further assess the effects of μ and τ onω99, a
10 × 10 ANOVA was performed. Both μ and τ were significant
main effects (p < 0.05), with the effects size test ηpartial for τ nearly

twice that of μ (0.295 v. 0.136). The interaction effect was not
significant. To illustrate the nature of the independent effects, the
estimated marginal means were regressed against the error rates;
as error rates of μ and τ increase, ω99 decreases (Figure 8A). Note
that low rates of τ are associated with greater levels of ω99 than μ
at the same levels. The trend is reversed at intermediate error
levels, and both converge at the highest error levels.

To test the hypothesis that τ increases genetic variance, H, a
10 × 10 fully factorial ANOVAwas performed on the final genetic
variance, H99. Both μ and τ were significant main effects (p <

FIGURE 6 |Mutation and transcription error impact adaptive evolution differently. Whether color-coded by the (A) rate of mutation, μ, or the (B) rate of transcription
error, τ, themaximum fitness of all 7.26 × 106 individuals in the 10 replicate populations increases over generational time. Note that the only difference between A and B is
the color-coding. The polynomial regression lines (3rd order) toward the bottom of A and B are expanded in (C) and (D), showing the adaptive trends, with one exception
(μ � 0.0000), over time. Mutation and transcription error alter adaptation in very different ways. Low but non-zero levels of μ are associated with the fastest rates of
adaptation (C). Populations with μ � 0.0000 (violet curve) show relatively slow and even declining rates of adaptation. Statistically, all mutation effects are significantly
linear and not curvilinear (see Table 1). Contrast that with transcription error, where lowest levels of τ (violet) are associated with the fastest rates of adaptation. All
transcription error effects are significantly curvilinear (see Table 1). Even though μ lacks statistically significant second- and third-order coefficients, the full third-order
model is graphed to facilitate comparison between mutation and transcription error.
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0.05), with the effects size test ηpartial for μ an order of magnitude
greater than for τ (0.223 v. 0.021); the interaction effect was not
significant. To illustrate the nature of the independent effects, the
estimated marginal means were regressed against the error levels.
Results show that as error levels of μ and τ increase, H99 increases
(Figure 8B). Note that low levels of τ are associated with greater
magnitudes of H99 than μ at the same levels; the range of
increased H99 associated with τ is correlated with the relative
increase in ω99 (compare Figures 8A,B).

To test the hypothesis that τ increases phenotype variance,
SDω, measured as the standard deviation of the collection of
individual ωi values for each population, a 10 × 10 fully factorial

ANCOVA was performed; ω99 was treated as a covariate to
remove the effects of the correlation of SDω, and ω99. Both μ and τ
were significant main effects (p < 0.05), with the effects size test
ηpartial for μ three times that for τ (0.176 v. 0.054). The interaction
effect was significant as well with an ηpartial of 0.133. To show the
independent effects, the estimated marginal means were
regressed against the error levels; as error levels of μ and τ
increase, SDω increases (Figure 8C). Note that low levels of τ
are associated with greater magnitudes of SDω than μ at the same
levels; the range of increased SDω associated with τ is correlated
with the relative increase in ω99 and H99 (compare
Figures 8A–C).

FIGURE 7 | Epistasis creates non-additive fitness. All 7.26 × 106 individuals evolved vary in the number of genes from 6 to 55. Whether color-coded by the (A) rate
of mutation, μ, or the (B) rate of transcription error, τ, the fitness of individuals appears to be greatest at intermediate levels of genes. Note that the only difference between
A and B is the color-coding. The polynomial fits (3rd order) toward the bottom of A and B are expanded in (C) and (D), showing the non-linear relation between number of
genes and individual fitness and the different fitness peaks under different rates of μ or τ. The sharp drop-off in fitness as the number of genes increases after the
peak demonstrates negative epistasis.
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FIGURE 8 | Transcription error and mutation increase genetic variation in the face of directional selection. Analysis of generation 99, the final generation, shows the
cumulative impact of continuous directional selection. Points are estimated marginal means ± SE of ten populations generated by the fully factorial 10 × 10 ANOVAs.
Polynomial regressions are shown for descriptive purposes only. (A) Final mean fitness of the population decreases significantly (main effects, p < 0.05) with increasing
levels of mutation and transcription error. The interaction of the main effects was not significant. (B) Final genetic variation within populations increases significantly
(main effects, p < 0.05) with increasing levels of genetic mutation and transcription error. The interaction of the main effects was not significant. (C) Final fitness variance
within a population, as measured by the SD of fitness. Final fitness variation increases significantly (10 × 10 ANCOVA, mean fitness as a covariate) with significantly
increasing levels of genetic mutation and transcription error. The covariate and the interaction of the main effects were significant as well (p < 0.05).
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Finally, the fitness cost of μ and τ on ω99 were evaluated
(Figure 9). Except for 0.0005 and 0.0010 levels of μ, as τ increases
the ω99 decreases (Figure 9A). The relationship between μ and
ω99 is more complex; low to intermediate levels of μ, from 0.0005
to 0.0035, cluster consistently with the highest fitness over the
range of τ. The absolute cost of τ, measured as a loss of ω
(difference relative to ω at τ0), is consistently high across the
range of τ for the three lowest μ; the smallest costs across levels of
τ are the populations with the highest μ (Figure 9B).

Data for ω and H are available upon request. Please note that
data on the evolution of body parts are being evaluated for a
separate publication and will be released when that work is in print.

DISCUSSION

Our simulated embodied computational evolution (ECE) system
develops individuals and evolves populations of embodied and
behaviorally autonomous robots using bioinspired features and
mechanisms. Each individual possesses a genome of 18,000
quaternary bases encoding information in triplet codons
(Figure 1). Development begins with the expression of an
individual’s genes into transcripts that map information about
body parts and the assembly of those parts onto a process of

construction (Figures 2, 3). In each generation, the
morphologically variable adults (Figure 4) are tested in a
locomotor task, with the relative individual fitness scores
determining differential reproduction in the population. Selected
individuals reproduce asexually with random genetic mutations of
the genome transmitted to the offspring. As offspring develop,
epigenetic errors occur as errors of transcription. This ECE
system allows researchers 1) to model and to experiment on the
mapping of the genotype to the phenotype (G-P map) of simulated,
embodied populations that interact with their environments, and 2)
to address questions about the relative influence and interaction of
genetic and developmental processes on the evolution of populations
of mobile agents. These are abiding, fundamental issues in
evolutionary systems for which the ECE approach offers traction.

In building this system, we were guided by a foundational
question in evolutionary disciplines from evolutionary biology to
evolutionary robotics: How has biological evolution created an
enormous variety of lifeforms? Workers in evolutionary robotics
have shown that the action and interaction of selection and
mutation are insufficient 1) to avoid premature convergence
on adaptive peaks and 2) to expand the diversity of behaviors
and morphologies [for review, see (Stanton, 2018)]. Evolutionary
biologists have arrived at the same conclusion by comparing
genomic with quantitative genetic approaches (Charlesworth,

FIGURE 9 | Final mean fitness (generation 99) of the population varies with mutation and transcription error. Note that these data are descriptive, and no statistical
tests were conducted. Means are the mean fitness of the ten populations in each condition. Curves are second-order polynomials fit by least-squares regression. (A)
Final mean fitness. Except for 0.0005 and 0.0010 levels of mutation, as transcription error increases, the final mean fitness of the population decreases. The relationship
between rate of mutation and fitness is more complex; low to intermediate levels of mutation, from 0.0005 to 0.0035 cluster consistently with the highest fitness
over the range of epigenetic errors. Each point is the mean of all individuals across all ten populations. (B) Cost of transcription error. The absolute cost of transcription
error, measured as a loss of fitness (difference from fitness at 0 transcription error), is consistently high across levels of transcription error for the three lowest rates of
mutation; the smallest loss across levels of transcription error occur in the populations with the highest rate of mutation.
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2015). In response to the limitations of selection and mutation,
workers have developed algorithms that search for novelty and
diversity (Lehman and Stanley, 2008; Lehman and Stanley, 2011;
Brawer et al., 2017) and introduce stochastic ontogenetic noise
into the G-P map (Stanton, 2018). To help understand these
alternative evolutionary mechanisms and their interactions with
selection and mutation, this current work tested the following
hypothesis: Random epigenetic error increases genetic variation
in evolving populations.

To test this hypothesis we evolved populations of embodied
robots under directional selection, covarying levels of genetic
noise created by random mutation, μ, and levels of epigenetic
noise created by random transcriptional error, τ. The μ and τwere
of the same range and magnitude, which facilitated meaningful
comparisons between the two different types of random error-
making processes. We selected for improved locomotor behavior
while tracking mean fitness, phenotypic variation, and genetic
variation in the populations. We ran 121 different pairwise
combinations of μ and τ in 10 different starting populations of
60 individuals over 100 generations. The results were clear:
random errors in transcription increase genetic variation
(Figure 8B).

As verified by the experimental results (Table 1; Figure 6),
transcriptional errors act independently from genetic mutation,
providing an additional degree of freedom for researchers
engaged in evolutionary search. The functional difference
between these two mechanisms can be characterized by their
effects on the relation between a genome and its fitness (Eq. 1):
epigenetic errors introduce a nondeterministic process in the
mapping of genotype to phenotype and the phenome to fitness.
The nondeterminism creates masquerading genomes (MG) that
“hide” genetic variation behind a phenotypic “mask.” In this way,
epigenetic errors create cryptic genetic variation, which can be a
critical feature of populations and their ability to respond
adaptively to changes in selection (Zheng et al., 2019).

While it is tempting to think of this cryptic genetic variation as
solely neutral in the classical sense of a point mutation in a
redundant position in a codon, the effect of cryptic genetic
change—deleterious, neutral, or beneficial—depends on how
that genotype is mapped through development. In the case
presented here, if the nondeterministic effects of
transcriptional errors are present, then the phenotypic effect of
the genetic change—whatever its valence—is randomized with
respect to the individual’s fitness (Eq. 1). With higher rates of
transcriptional error, the accumulation of mutations is not
prevented by selection; this makes the system robust to
mutations and increases its long-term evolvability (Masel and
Trotter, 2010). The trade-off for mutational robustness is an
immediate reduction, relative to populations with less robustness,
in the population’s mean fitness and response to selection (see
next paragraph). In this ECE model, we did not directly test for
the benefits of mutational robustness; if mutational robustness
were in play, a random change in environment would have
greater negative effects on populations with lower rates of
transcriptional error. But one could extend this model to let
the rate of transcriptional error itself evolve. When rates of
mutation are high and mean fitness of the population is

depressed, selection may restore fitness by evolving mutational
robustness (Franklin et al., 2019); thus in the case of this ECE
model, we would predict that the rate of transcriptional error
would increase in response to high, fixed mutation rates. This
would be a test of the “survival of the flattest” hypothesis, where
so-called “flat” genotypes, with low fitness and high robustness,
may out-compete “fit” genotypes, which possess high fitness and
low robustness (Wilke et al., 2001; Franklin et al., 2019).

As predicted by the mutational robustness hypothesis, MGs in
this ECE system and their cryptic genetic variation incur a cost: as
the magnitude of τ increases, the mean fitness, ω, of the
population decreases (Figures 8A, 9). This loss of fitness is
offset in two ways: 1) genetic variance is increased
(Figure 8B) and 2) phenotypic variance is increased
(Figure 8C). Increasing variance of both types enhances the
response of populations to selection, which acts on phenotypes
directly and genotypes indirectly. It is crucial to note that
mutation as an engine of genetic variation also incurs a
similar cost: as the rate of mutation, μ, increases, the
population’s mean fitness decreases (Figure 6C). Like
transcription error, high μ serves to keep both genetic
(Figure 8B) and phenotypic (Figure 8C) variance high after
99 generations of selection. While the costs and benefits are
similar by the measures of population variance, it is worth
keeping in mind that mutation scrambles adapted genomes
but transcription errors do not. This difference at the level of
individuals should lead to differences in the populations’ long-
term adaptation and is the reason that we predict that the MG
effect is, in fact, an example of mutational robustness (Wagner,
2005). Indeed, transcription errors cause the evolutionary
trajectories to accelerate their adaptation late in our
experiments, near generation 90 (Figure 6D); recall that the
second-order coefficients that offer the statistical evidence for
that late acceleration in ω are significant for τ but not for μ
(Table 1). We did not measure whether that acceleration is a
continuation of local convergence or the discovery of a different
adaptive peak.

Even with these costs, populations under steady selection
retain the ability to explore, avoid final convergence, and find
new solutions. First, the parallel adaptation of 121 types of
population, differentiated by the magnitude of τ and μ, shows
a variety of evolutionary trajectories that probe the search space
in different ways (Figure 6). Second, the statistically isolated
impact of the epigenetic errors on the pattern of serial adaptation
for any single population over generational time is curvilinear: an
initial increase in τ slows and then accelerates (Figure 6B). These
parallel and serial effects work, in part, because τ maintains and
increases genetic variation even when μ is low and selection is
steady and directional (Figure 7B). Thus random epigenetic
errors alter the evolutionary behavior of populations in
principled ways that augment the tools we have to investigate
adaptation and diversity.

We note that random transcription error is but one possible
type of developmental epigenetic error. Stanton (Stanton, 2018)
added Gaussian noise to the evolved weights of neural networks,
which increased absolute fitness under a variety of environmental
conditions in simulated quadrupedal robots. Our robotic system
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and experimental design differed from that of (Stanton, 2018) in a
number of ways; most importantly, the selection pressure and
environment were held constant while μ and τ were
systematically covaried. Moreover, our system showed a trade-
off in fitness with increasing epigenetic error rather than the clear
benefit in Stanton (2018), a difference that we are eager to explore.
Finally, by covarying both types of error our experimental
protocol allows the direct comparison of the evolutionary
consequences of genetic and epigenetic error.

The importance of epigenetic errors in adaptive exploration
signals the general importance of modeling an explicit
relationship between the genotype and the phenotype as
mediated by development and its feedback effects on
evolution. This relationship unfolds over developmental time
as the G-P mapping process. By including genetically encoded
regulatory elements (feature and capacity codons, Figure 1), the
system presented here allows for the G-P process itself to evolve.
This aspect of our system is thus consistent with calls to
acknowledge and permit developmental systems, and not
simply adult phenotypes, to be the focus of evolutionary
investigations (Northcutt, 2002; Pfeifer and Bongard, 2006).
The evolutionary importance of development, all else being
equal, is demonstrated by the significant impacts of the
transcription errors on adaptation (Figure 6) and genetic and
phenotypic variation (Figure 8).

Design Decisions and Scope
When interpreting the results of these experiments, it is
important to keep in mind a number of important limitations
of this ECE model. Some of the most consequential decisions
made in the formulation of the ECE model are highlighted here.
We recognize that those decisions foreclose the exploration of
other mechanisms and effects; with this in mind, we offer several
ideas for further studies, as well as ideas for studies of
mechanisms and effects not in the immediate focus of this
research.

Simplifications and abstractions. This ECE model of genetics,
development, behavior, and evolution is a simplification of even
the simplest biological systems. While the genome size and
number of genes are similar to the magnitude seen in RNA
viruses, the expression of those genes in our model initiates a
cascade of just a few processes relative to those seen in cells
(Figures 2, 3). Moreover, developmental processes are abstracted
away from their chemical foundations, as is seen in the post-
translational assembly of the body, which occurs deterministically
(Figure 3). Furthermore, the simple bodies of the robots, with
only touch sensors for inputs, eliminates the possibility of
evolving novel goals with respect to the environment. The
environment, for that matter, is flat and featureless, lacking
objects, other agents, and any detectable stimulus gradients.
The benefit of these simplifications and abstractions is that
they permit a clear analysis of how variations and interactions
of mutation and transcription error impact the evolutionary
dynamics of a population of simulated, embodied, locomoting
robots.

Beyond these simplifications and abstractions, the tight focus
of this study’s experimental design—on mutation, transcription

error, and their interactions—leaves other mechanisms
unexplored. As noted in the Introduction, the problem for the
scientist is that nondeterminism impacts all or nearly all parts of
the mapping of genotype to fitness and the population’s collective
evolutionary response. Thus we recommend that decisions about
what nondeterministic factors to explore depend on the
hypothesis to be tested. For example, an evolutionary
roboticist might hypothesize that in terms of producing MG
effects, aggregate fitness evaluations are equivalent to behavioral
fitness evaluations (Nelson et al., 2009) when the latter includes
nondeterminism. The experimental design might focus, as we
have done here with transcription error, on covarying the
putative causal mechanism—the amount of a priori
deterministic information in the fitness evaluation—with a
primary genetic operator, mutation, leading to a two-way
factorial statistical design. In another example, a biologist
might borrow from the field of genetic algorithms (Whitley,
1989) to hypothesize that since selection is, by definition, a
deterministic mechanism, otherwise identical populations of
embodied individuals can generate different evolutionary
responses based solely on their differences in reproduction.

Population size. The fluctuation and magnitude of population
size play key roles in evolutionary dynamics. Each of the ten
replicate populations was coerced in our reproduction algorithm
to be of constant size (n � 60). In organisms, population size often
fluctuates wildly, with small numbers creating bottlenecks that
dramatically reduce genetic variance and effective population
size, key parameters in extinctions (Gillespie, 1998). While
holding size of the population constant may be unrealistic, a
small population size is not; it is often the case that mere tens of
individuals are seen in founder populations or populations
nearing extinction. But it is important to recognize that in
populations of fewer than 100 haploid individuals, reductions
in population size drastically alter the critical mutation rate, the
threshold above which individuals with greater mutational
robustness are favored over individuals with greater fitness
(Aston et al., 2013). In our system of 60 haploid, asexual
individuals, we did not measure critical mutation rate and so
cannot address whether our intentional changes in mutation rate
shifted the population from the evolution of the fittest to the
evolution of the “flattest” (Wilke et al., 2001; Franklin et al., 2019).
Both fluctuating population size and changes in critical mutation
rate offer intriguing opportunities for the next set of experiments
using this ECE model.

Selection. When interpreting the results of these evolutionary
experiments, it is important to keep in mind that we applied the
most efficient form of directional selection: truncation (Crow and
Kimura, 1979). We chose a fixed threshold of 50% fitness of the
population, and thus the genomes of 50% of the population are
not represented. When τ is zero, truncation selection would
remove genomes that map deterministically to phenotype and
to fitness, creating the largest possible evolutionary response
ceteris paribus. This is what we see (Figure 6): as τ increases,
the evolutionary response to selection decreases, as seen in the
reduced slopes of the polynomial regressions at any particular
generation. This reduced response is caused by the blurring of the
truncation threshold, as some less fit genomes are selected
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because their phenotypes have been relatively improved by
epigenetic transcriptional error. Thus the rate of
transcriptional error is a principled way to alter truncation
selection from a step function to a more gradual threshold. It
is worth noting that other forms and patterns of selection exist
that are likely to alter the evolutionary dynamics that we see here.
For example, disruptive and stabilizing selection would,
respectively, increase and reduce the genetic variation of the
population by focusing selection on different parts of the fitness
distribution. Moreover, at the level of choosing individuals,
probabilistic methods, like roulette wheel reproduction, would
further act to blur the clear line of truncation selection.

Time, equilibrium, and convergence. For each of the 1,210 runs
(10 replicate populations run in 121 experimental conditions), a
total of 100 generations were run. It is important to recognize that
100 generations is an arbitrary window. At the same time, natural
populations of locomoting vertebrates show rapid and significant
adaptive changes in a few to tens of generations (Stuart et al.,
2014; Reznick et al., 2019).

Related to the issue of the number of generations (see previous
paragraph) is the lack of equilibrium or convergence of any of the
populations over generational time (Figure 6). While it is important
in evolutionary computation to have algorithms that find local
optima in the search space, we had a different goal: Our primary
focus was on computationalmethods for simulating the evolutionary
behavior of living systems, to gain insight into incompletely
understood aspects of biological evolution. It is worth noting that
natural populations are open dynamical systems, inherently unstable
(Gregorius, 2001). Thus by demonstrating only temporary stability
near generation 50, our populations show the kind of on-going
change that we expect out of rich natural systems. As with any real
population, it would be intriguing to extend this model further into
its own evolutionary future.

Epistasis and the evolution of genes. Epistasis, the interaction
between genes, is a ubiquitous phenomenon in living systems, but
one that makes it daunting to understand the role of individual
genes (Phillips, 2008). Genes in natural systems operate as part of
an interacting, fluctuating genetic network, and we have captured
some of that complexity in our ECE model. Epistatic effects were
part of every agent’s developmental system—10% of every gene’s
feature and magnitude transcripts were placed in a pool from
which other genes drew (see Developmental System section,
Methods). These coded epistatic effects were held constant in
our experiments manipulating τ and μ. We therefore had
anticipated that they would be a constant factor in the
evolutionary system. Indeed, as measured by the relation of
the number of genes to fitness, epistatic effects are similar
across the experimental treatments (Figure 7). But we did not
anticipate the strong negative epistatic effects that are seen when
the number of genes is greater than 30 or 40. Clearly, something
interesting is occurring.

The analytical challenge in understanding epistasis is that the
number of interactions scales with the square of the number of
genes (Phillips, 2008). Hence, for every individual agent, which
may have as many as 55 genes, there may be over 3,000
interactions as it develops within our system. In addition, keep
in mind that the ECE model does not fix the number or size of

genes; both are free to evolve as indicated by the genetic code
(Figure 1), a variation that complicates analysis. In future studies,
the ECE system could be modified to track the interactions
among genes by source-tagging the feature and magnitude
codons that move into the collective pool. Moreover, one
could manipulate the amount of epistasis as an independent
variable to test the open hypothesis that epistasis slows
evolutionary change (Phillips, 2008). The more daunting issue
is conceptual: how does one understand an interaction between a
pair of genes that is part of a larger interaction network that
includes not just the genomic map but also the G-P map and its
mapping onto fitness? ECE modeling offers a principled way to
investigate those molecular dynamics while retaining the essential
larger context of embodied individuals behaving autonomously
as part of a population that is evolving.

SUMMARY

The novel system described here creates populations of simulated,
embodied robots that operate with 1) a genetic system that
encodes morphological and regulatory traits; 2) a
developmental system that expresses over time the mapping
between genotype and phenotype, allowing for epigenetic
errors in the process; and 3) an evolutionary system that tests
the behavioral performance of the individuals in a population and
selects the best for reproduction. The explicit dynamics of this
system take place on all three temporal scales of evolution
(Franklin et al., 2019): behavior, development, and evolution.

Evolutionary and developmental mechanisms balance and
adjust the adaptive and exploratory behavior of populations.
Mutation, the sole genetic operator modeled here, and
transcription error, the sole epigenetic operator, are
independent and complementary mechanisms—they adjust the
rates of adaptation, as measured by the change in mean fitness of
the population, with lower levels of both errors associated with
higher initial rates of adaptation (Table 1; Figure 6). When
considering only the final mean fitness of the populations, their
impact is dramatic (Figure 8). Small, non-zero transcription
errors are associated with higher fitness than mutation of the
samemagnitude (Figure 8A); as transcription error andmutation
increase, fitness falls, with populations possessing intermediate
levels of mutation having greater fitness than those with
comparable levels of transcription error.

Armed with epigenetic transcription errors, the evolving
populations not only counteract the tendency of directional
selection to remove genetic variance, but they can also
increase that genetic variance. Systematic exploration of those
epigenetic errors demonstrates a new mechanism to be used in
conjunction with selection and mutation for the exploration of
the adaptive landscape.
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