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Multi-Level Evolution for Robotic
Design

Shelvin Chand* and David Howard

Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia

Multi-level evolution (MLE) is a novel robotic design paradigm which decomposes the
design problem into layered sub-tasks that involve concurrent search for appropriate
materials, component geometry and overall morphology. This has a number of
advantages, mainly in terms of quality and scalability. In this paper, we present a
hierarchical approach to robotic design based on the MLE architecture. The design
problem involves finding a robotic design which can be used to perform a specific
locomotion task. At the materials layer, we put together a simple collection of materials
which are represented by combinations of mechanical properties such as friction and
restitution. At the components layer we combine these materials with geometric design to
form robot limbs. Finally, at the robot layer we introduce these evolved limbs into robotic
body-plans and learn control policies to form complete robots. Quality-diversity algorithms
at each level allow for the discovery of a wide variety of reusable elements. The results
strongly support the initial claims for the benefits of MLE, allowing for the discovery of
designs that would otherwise be difficult to achieve with conventional design paradigms.

Keywords: evolutionary robotics, map elites, optimization, shape grammar, evolutionary algorithms

1 INTRODUCTION

The Multi Level Evolution (MLE) architecture, proposed by Howard et al. (2019), is a three-layer
framework for discovering new robotic designs. Each layer deals with a different aspect, starting with
the lowest tier where materials are discovered, followed by the second layer where the components
are created by considering a combination of materials and geometry, and finally leading to the third
layer where components are combined into specific body plans to form complete robots. The
framework relies heavily on illumination/quality-diversity algorithms which search for high
performing solutions across multiple diverse feature dimensions.

MLE has a number of key potential advantages. Firstly, it has the ability to automatically consider
a huge range of geometric and material combination possibilities. Secondly, it is highly scalable since
all three layers can perform search independently and in parallel. Furthermore, the architecture is
“self-optimising” in that the longer it runs, the more options are discovered for use by the design
algorithms. Finally, it also allows for re-usability due to the separation of search processes between
the layers. Components discovered in one search process can be re-used across design tasks to form
complete robots. MLE search could target a myriad of impact areas, including underwater, mining,
industrial inspection, and remote surveying. Despite these potential benefits, Howard et al. (2019)
did not present any algorithmic implementations or experimental results in their study to verify their
claims.

In this paper we present the first instantiation of the MLE architecture, a hierarchical robotic
design approach with three layers. Instantitation in this context refers to an actual algorithmic
implementation of the MLE framework combined with an evaluation and analysis of its performance
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on an evolutionary robotics task. We focus on the design of multi-
legged robots. At the lowest layer, we provide a library of
materials based on combinations of mechanical properties. At
the components layer, we design robotic limbs by combining the
materials with complex geometry, generated using a shape
grammar. Finally, we put together the evolved legs into a
complete body plan and optimize the controllers for the
desired movement. We test our evolved robots in two different
environments and demonstrate the benefits of our hierarchical
approach. Our approach harnesses MAP-Elites (Vassiliades et al.,
2018) to generate a diversity of designs at each layer, given its
noted success in similar scenarios. In particular, the key intended
contributions of this paper are as follows:

e The first instantiation of an MLE system: a three layer
hierarchical approach to robotic design that explicitly
considers materials, components and complete body-plans.

¢ A new representation for robot legs based on point clouds
and shape grammar, allowing for a wide variety of complex
designs.

o A detailed analysis of the simulation results demonstrating
the envisioned benefits of MLE as detailed by Howard et al.
(2019). The self-optimising nature of the overall
architecture is shown. Cross environment applicability of
the evolved designs is demonstrated by transferring between
two different environments, namely a high friction surface
and a low friction (icy) surface.

The rest of the paper is organised as follows. Section 2
provides background on the relevant literature. Section 3 gives
details on the proposed hierarchical approach for evolving robots.
Section 4 provides experimental details and analysis on the
results. Finally, Section 5 summarizes the findings of the
paper and highlights some future research directions.

2 BACKGROUND

2.1 Evolutionary Robotics

Evolutionary Robotics (Cliff et al., 1993; Nolfi et al., 1994;
Doncieux et al, 2015) as a field of research focuses on
applying principles of natural evolution (ie., selection,
recombination, etc.) to the design of robots whose behaviour
is typically elicited through embodied cognition. This may
involve optimizing the controller (Cully and Mouret, 2016),
the physical design (Collins et al, 2019) or both (Auerbach
and Bongard, 2011). Optimization focusing on body-brain
evolution remains complex since small changes in body design
can lead to the need for major changes in the control strategy, and
vice versa.

The seminal work of Sims (1994) evolved complex robots
represented by directed graphs, where the nodes and edges
represented a number of aspects ranging from dimensions of
body-parts to controller specifications. This was followed by a
number of studies (Mautner and Belew, 2000; Hornby and
Pollack, 2001; Auerbach and Bongard, 2010, Auerbach and
Bongard, 2011) which also focused on body-brain evolution.

MLE for Robotic Design

The obvious advantage of this approach is that it automates
the entire design process instead of relying on human engineers,
whose design processes are (comparatively) limited in scope and
may include bias (Auerbach and Bongard, 2011). The entire
design space can be explored leading to sometimes
unconventional, yet optimal or near optimal results. This
approach can be further combined with rapid prototyping to
create real world robots (Lipson and Pollack, 2000). Recent
studies on body-brain evolution focus on the effect of the
environment on design complexities (Auerbach and Bongard,
2014; Miras and Eiben, 2019), similar to the environmental setup
of the experiments used in this article. MLE is envisioned to offer
a solution to specific problems encountered in evolutionary
robotics, particularly regarding re-use of designs (as already-
discovered components may be tweaked or re-used for various
applications without re-running the entire evolutionary process)
and the emergence of complexity (as materials, components, and
robot evolution are separated and can occur independently).

2.2 Modular Robotics

Modular robotics deals with constructing robots by exploring the
arrangement of reusable components (Hornby et al,, 2001). A
number of studies have focused on evolving modular robots.
Hornby et al. (2001) evolved 2D modular robots using an
L-Systems encoding for the morphology. The robots were built
using bars and actuators as the basic re-usable building blocks.
Van Diepen and Shea (2019) used shape grammar to evolve soft
robots which were put together based on combinations of static
hand-designed soft 3D actuated shapes. Miras and Eiben (2019)
used L-Systems to evolve morphologies for modular robots built
using robogen components. The existing literature on modular
robotics mostly focuses on evolving morphologies or controllers
for robots built using hand-designed modular components. MLE
can be considered a modular robotic system that also
automatically designs the components themselves.

2.3 Quality-Diversity Algorithms

Ilumination algorithms are different from traditional
evolutionary algorithms in the sense that they focus on
achieving quality through diversity. These algorithms typically
return a collection of solution that cover the feature space.
Novelty search (Lehman and Stanley, 2008; Lehman and
Stanley, 2011a) is an illumination algorithm which rewards
novelty and diversity. The algorithm replaces the fitness
function with a novelty metric which creates pressure towards
further exploration of the search space and generation of
solutions which exhibit novel behavior with respect to
solutions within the current population and those previously
encountered and stored within an archive. One limitation of
novelty search is that since there is no drive towards functionality,
this may result in solutions which are diverse in behavior or
characteristics but not functional and hence of limited use. To
solve this problem the authors extend novelty search by
combining it with the concept of local competition (NSLC)
(Lehman and Stanley, 2011b) within a multi-objective
paradigm. Local competition creates a performance pressure
within niches encouraging better, more functional solutions
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within each niche. In this way, novelty search encourages the
discovery of new niches while local competition allows for
performance improvement within those niches.

Another type of illumination algorithm is MAP-Elites
(Mouret and Clune, 2015). For each solution x, MAP-Elites
maintains an objective value f (x) and a N-dimensional feature
vector characterising the solution across the various features of
interest. For this reason a feature or behavior function b(x) also
needs to be defined which computes x’s value across the N feature
dimensions. The algorithm starts by generating a set of random
solutions and computing their objective and feature values. These
solutions are then placed into the appropriate cells in the feature
map. In case of a cell having more than one solution, only the
highest performing solution (in terms of objective value) is
retained. From here on, the solutions within the feature map
undergo recombination to generate new solutions which are
evaluated and then assigned to appropriate locations in the
feature map. This process is repeated until termination.

This algorithm has been successfully used for tackling
problems with 2-6 feature dimensions (Cully et al, 2015).
Extending beyond 6 feature dimensions is a challenging task
since the feature cells increase exponentially leading to a
reduction in selection pressure. To counter this, Vassiliades
et al. (2018) proposed Centroidal Voronoi Tessellations (CVT)
MAP-Elites which divides the feature map into desired number of
maximally spread niches. CVT MAP-Elites behaves the same as
the original MAP-Elites with the only exception being the way in
which the feature map is structured. Essentially what CV'T does is
partition the feature space into regions with each having a
centroid. The closest centroid to a given solution determines
the region into which it will be placed. MAP-Elites and its variants
have been used in a number of different applications, including
robotics (Nordmoen et al., 2020), video games (Fontaine et al.,
2019) and routing logistics (Urquhart and Hart, 2018).

Multi-objective optimization based approaches (Clune et al.,
2013; Brandéo et al., 2020) have also been used in the quality-
diversity space. The algorithm in (Brandio et al., 2020) for
example achieves diversity in the design space as a
consequence of seeking diversity within the trade-off between
objectives. In this work, we use CVT-MAP-Elites for maintaining
solution libraries, however, the quality-diversity literature
presents many different options to consider for future research.

2.4 Shape Grammar

Shape grammar is a generative design procedure which uses
shape primitives encoded into design rules to generate more
complex shapes. This was initially proposed by Stiny and Gips
(1971) and has since been used in a number of different fields
including architectural design (Downing and Flemming, 1981),
computer graphics applications (Stiny, 1982) and robotic design
(Van Diepen and Shea, 2019). Robots designed using shape
grammar are usually expressed as a sequence of rules where
the rules express the physical arrangement and structure of the
robot. Van Diepen and Shea (2019) presented a shape grammar
based approach for the design of soft robots. Their manually
designed rules focused on small building blocks and their
activation patterns, offsets, material properties, etc. Zhao et al.

MLE for Robotic Design

(2020) proposed a graph grammar based approach for automated
design of robots to traverse given terrains. At the core of the
grammar are a set of pre-defined building blocks for the robot
expressed in the form of shapes, sizes, connection angles, etc. The
grammar itself is manually designed to ensure fabrication
feasibility. In both the above cases the grammar has been
manually designed by human experts. However, due to the
obvious limitations of what a human expert can consider in a
limited time, this approach significantly limits the design
exploration.

3 METHODOLOGY

3.1 Overall Architecture

The method presented in this paper uses a hierarchical approach
to robot design and is the first instantiation of the MLE
Architecture. The bottom layer is the materials layer, which
consists of a set materials with pre-generated mechanical
properties. Above that is the components layer where robot
legs are designed using a combination of point clouds and
shape grammar. The geometric leg shapes are also assigned
materials which are picked from the materials layer. Finally,
the robot layer combines the legs into body plans to form
complete robots which can perform locomotion tasks.
Optimization at the components and robot layer are done
using CVT-MAP-Elites (Vassiliades et al., 2018).

3.2 Materials Layer

The materials layer is composed of a set of pre-loaded materials.
In reality materials are characterised by a number of complex
characteristics. However, for simplicity, in this research we
consider a material to be characterised by two main
properties, namely coefficient of friction and coefficient of
restitution. For both we consider four discrete values, [0.25,
0.50, 0.75, 1.0]. As a result we end up with 16 different
combinations of the two properties and hence 16 different
materials. In future research, it would be worth considering
more complex characteristics, and potentially evolving
materials (Howard et al., 2019).

3.3 Components Layer

3.3.1 Representation

A solution in the components layer is made up of various
elements with shape grammar at the core. First, we have a set
of base shapes (irregular polygons). Each of these shapes are
constructed using a point cloud. For each point cloud we generate
10 random points and perform a convex hull to get the final form
of the irregular polygon. This is repeated for however many base
shapes that are needed. The point cloud representation is inspired
by the work of Muehlbauer et al. (2017) in which they used point
clouds to define and evolve 3D architectural shapes. Each of the
base shapes are then assigned a material from the materials
archive and two edges are identified (randomly) for in-ward
and out-ward connection with other shapes. Each of the base
shapes are also assigned an ID from 1 to n where # is the total
number of base shapes.

Frontiers in Robotics and Al | www.frontiersin.org

June 2021 | Volume 8 | Article 684304


https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Chand and Howard

MLE for Robotic Design

DT G

} § 4

Ay

FIGURE 1 | An example of a randomly generated grammar with three
base shapes. Arrows represent the transformation eg., each occurrence of
shape three is replaced with a combination of shapes 2 and 3 as given by the
rule. Orientations have been changed in some cases depending on
connecting edges.

¥

FIGURE 2 | The resulting outcome from using the Grammar in Figure 1
and a starting point (axiom) = 2 with three iterations. Each shape is connected
to the next one using a fixed joint or revolute joint.

Next, a set of rules are generated based on these base shapes.
These rules will be iteratively applied to form a complete leg from
these base shapes. A transformation rule is generated for each of
the base shapes in the form of A — [B] or A — [B,C] where A is
the ith base shape and B and C are base shapes chosen from the
set of all base shapes. This essentially means that in every
iteration, all occurrences of A will be replaced with [B,C]
where shapes B and C are connected to each other (in the
case of the second rule). B and C can be different from each
other, same or even equal to A. Next an axiom is determined by
randomly picking a base shape ID which will start the leg shape
generation process. In every iteration, the rules are applied by
replacing elements from the left hand side (LHS) of the rule with
those from the right hand side (RHS). The two different types of
rule RHS allow us to vary the length of the leg. Example of a
randomly generated shape grammar is given in Figures 1, 2.

FIGURE 3 | A sample leg design. The average of the two angles
determines the complexity of the leg.

These designs are then converted into 3D meshes. This is done by
adding a constant height to each of the shapes (building blocks)
within a leg design and converting it into a 3D trimesh.

This representation has a number of advantages. Firstly, it is
fairly simple and easy to understand and implement.
Furthermore, fairly complex shapes and structures can be
formed by combining a relatively small set of point-cloud
meshes. The angles at which these meshes are connected allow
for complex movement which would be difficult to achieve when
using standardized or regular shapes such as cubes (Lassabe et al.,
2007) or spheres (Auerbach and Bongard, 2011).

3.3.2 Recombination

The evolutionary process at the components layer uses four
mutation operators. The first operation replaces a randomly
selected base shape and all its properties (connection edges)
with a new randomly generated shape. The second operation
replaces a randomly selected rule with another randomly
generated rule. The third operations replaces the current
axiom with another one, selected randomly from the set of
base shapes. Finally, the last operation selects a base shape at
random and replaces the assigned material with a new one from
the materials archive. The choice of operation is determined
randomly.

3.3.3 Fitness and Features
The fitness function used here is also taken from (Muehlbauer
etal., 2017). This function (Eq. 1) averages the volume to surface
area ratio across all m individual meshes (building blocks) that
make up a leg. It ensures that the evolved shapes that make up a
leg are compact, by maintaining an appropriate proportion
between volume and surface area. Essentially it tries to avoid
really long flat shapes which are not ideal from a design
perspective. The features used by MAP-Elites are mean
friction across the m building blocks, mean restitution across
the m building blocks, leg size and leg complexity.

Leg complexity is measured as a function of the angles formed
between the centroids of the shapes that make up the leg. To
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FIGURE 4 | An example of a complete robot. The colors denote friction
values. Green = 0.25, Red = 0.5, Blue = 0.75, and Yellow = 1.0. The cross-
section (maroon) is always given a default friction value of 0.5. The robot initially
starts in a flat position but can move in several ways including crawling,
jumping, walking and so on.

calculate this we consider a window of three shapes and keep
moving this window till we reach the end of the leg. These angular
values are averaged and assigned as leg complexity. The term
“complexity” here is used loosely since the measure itself isn’t
linearly indicative of complex designs. For example values close to
180 will indicate straight long legs which would be considered the
most simple form of design. But as we move away from 180 we get
to see more variation and a bit more complexity in terms of
unorthodox overall leg shapes and structures. If a leg is composed
of only 1 or 2 shapes, we assign default value of 180. This
calculation is illustrated in Figure 3. Leg length is measured as
the length of the line connecting all the centroids of the different
shapes that form the leg.

m

Fitness = z

i=1

Volume; /
SurfaceArea;

@

3.4 Robot Layer

3.4.1 Representation

A robot is defined by a body plan and a controller. The body-plan
consists of a rectangular cross-section and a set of legs. We limit
the number of legs between 2 and 6. The length of the cross-
section is determined based on the number of legs (2 legs = 1 unit
length, four legs = 8 unit length, 6 legs = 16 units length). The legs
themselves are picked from the component layer archive and
applied to the body-plan in a symmetrical manner (left and right).
The leg designs in the components layer are not actuated. Hence,
here we also evolve the joint movement-type between each of the
individual blocks in a leg as well as between the leg and the cross-
section. Each joint can be of type revolute or fixed. The revolute
joints can allow movement in either the x or z direction. An
example of a complete robot is given in Figure 4.

The controller is defined by a sinusoidal wave (Veenstra and
Glette, 2020) as given in Eq. 2. A represents the amplitude, w
represents the frequency, ¢ represents the phase and D;
represents the joint offset for joint j on the right hand side of
the robot. Since the legs are attached in a symmetrical manner, we

MLE for Robotic Design

only have to compute offsets for one side and these can be applied
to both the corresponding joints on each side. All variables are
bounded between -1 and 1 and optimized using a 1 + 1EA
(Droste et al., 1998). The total number of variables depend on the
size of the robot and number of non-fixed joints. The output
represents the desired change in joint position for joint j at time
step t. This value is scaled to the appropriate movement range
given in Table 1.

y(t); = Asin(wt + @) + D; (2)

3.4.2 Recombination

The evolutionary process at the robot layer uses four mutation
operators. First operation chooses a leg at random and replaces it
with another one from the components archive. This change is
applied symmetrically. The second operation mutates the joint
type from the options given above. The third operation mutates
the number of legs and hence legs are randomly added or deleted
to reflect the new size of the robot. Finally, the last option keeps
the design as it is and re-optimizes the controller. The choice of
operation is determined randomly.

3.4.3 Fitness and Features

The goal of this design process was to discover robots which can
move seamlessly across a given environment/surface. A 1+ 1 EA
(Droste et al., 1998) was used to search for control strategies
which would maximise this movement. For each evaluation of a
candidate controller, the robot designs were loaded into the
simulator and the movement (based on the controller) were
recorded. In the end, the candidate controller resulting in the
greatest movement across the desired surface was picked.

TABLE 1 | Parameter choices.

Parameter Value
MAP-Elites
Batch size 100
Generations [Robot layer] 1,000
Generations [Component layer] 20, 100, 1,000
Initial Batch size 1,000
Niches 1,000
Initial proportion of filled niches 0.1
Shape Grammar
Point Cloud size 10
Number of base shapes 3
Grammar iterations 3
Simulation Environment
Time (steps) 30 sec (7,200 steps)
Ground friction 0.05, 0.9
Ground Restitution 0.05, 1.0
Robot Body-Plan
Number of legs 2,4,6
Joint upper limit (radians) 0.2
Joint lower limit (radians) -0.2
Joint delta movement (radians) [-0.05, 0.05]
Controller Evolution via 1+ 1 EA
Trials (runs) 1
Iterations 20

Variable limits [-1,1]
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Components Layer

FIGURE 5 | A conceptual diagram for the MLE instantiation illustrating
the robot and components layer.

The fitness of the controller, which is the distance covered in the
x-direction, was taken to be the fitness of the overall robot. The
features used by MAP-Elites are the average friction coefficient,
restitution coefficient and leg size across all legs. If at any point the
robots step outside the given y-boundary or changes orientation
beyond an allowed threshold, the simulation is stopped and that
particular candidate controller is assigned fitness of 0. This is done
to avoid situations where the robot starts moving diagonally or
simply tries to rotate around to gain distance.

Algorithm 1 | Methodology

1: Initialize algorithm and environmental parameters (P) > Outlined in Table 1
2. Build materials library (/)
3 C' < MAP_Elites(P, M)

1> Optimize at the components layer and return components library(C')
& R+ MAP _Elites(P,C) i

> Optimize at the robot layer and return robot library(R)

A summary of the overall structure is give in Figure 5 and in
Algorithm 1. One of the obvious benefits of this layered approach is
the modularity, in the sense that the materjals archive and the
components archive can be re-used. For example, one would only
have to generate the components library once and this can be re-used
for designing robots across different tasks. This would save time that
would otherwise be spent on re-running the optimization algorithm.

4 EXPERIMENTS AND RESULTS
4.1 Experimental Setup

All simulations were run using the robotic simulator PyBullet.
Robot designs were loaded into the simulator and the controller
outputs were used to control the movement. Two different
environments were used. First one is a high friction flat
terrain characterised by friction = 0.9 and restitution = 1.0.
The second one is a icy flat surface with fiction = 0.05 and
restitution = 0.05. Friction on the robot and the environment only
applies in terms of lateral friction. All self-collision was turned off
for simplicity. 10 independent runs were done for each
environment. As mentioned earlier, both the components and
robot layer are modelled using CVT-MAP-Elites.

MLE for Robotic Design

In our experiments we focus on two key aspects. First is the
self-optimizing nature of the MLE architecture. This is done by
having different termination conditions for the components
layer. We consider 20 generations, 100 generations and 1,000
generations as the three termination conditions. We then try to
evaluate the quality of solutions that are produced in the robot
layer when working with component archives which have been
formed in runs with these three termination conditions. Next we
try to assess the cross environment applicability of the evolved
robots. We take robots which have been trained on the high
friction surface and evaluate them on the icy surface. The idea is
to identify the types of designs that perform well on both
environments while only being explicitly trained on one.

MAP-Elites at the robot layer is always run for 1,000 generations
in all cases. Both the components and robot layer are divided into
1,000 niches. All other parameter choices are summarized in
Table 1. The code for this research is available online'. All the
experiments were performed on the CSIRO HPC cluster. Two
different environments and three different termination conditions
at the components layer resulted in six different setups. With 10
runs for each setup, we had a total of 60 evolutionary runs executed
in parallel. Each run was on a separate node with 20 cores each. A
typical evolutionary run took about 5 days.

4.2 Results

Through the experimental results, we aim to show the
aforementioned benefits of the MLE architecture, namely, self-
optimization and cross-environment applicability through the
generation of re-usable components.

4.2.1 Self-Optimization
Figure 6 shows the best and median performance for the two
environments with varying levels of computational budget
allocations for the components layer. The results indicate that
locomotion across a high friction surface is relatively easier in
comparison to a low friction surface. Robots evolved on high
friction surface exhibited higher fitness values in both the best and
median cases. Low friction surfaces tend to be more difficult and
require much more intelligent control strategies to be able to navigate.
The MLE architecture is self-optimizing in nature and hence
the accuracy/efficacy of the model improves as time passes
(represented here with an increase in computation budget). In
our experiments we observe an increase in quality of solutions at
the robot layer as more and more generations of computational
budget is assigned to the components layer. This is much more
apparent for the robots evolved specifically for the high friction
surface. A lower computational budget means that the coverage of
the components library will be less. This would result in fewer
options for the robot layer to utilize in terms of building complete
robots. Having to work with a smaller components library can be
restrictive and will affect the overall quality of the solutions.
Figure 6C depicts the case where the components layer was
allocated 1,000 generations. For the high-friction surface, the
benefits are very clear, especially in the case of the best solutions

'https://bitbucket.csiro.au/scm/cha778/mle.git
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FIGURE 6 | Performance across 10 runs at the robot layer with varying levels of computational budget at the components layer (A: 20 Generations, B: 100
Generations, C: 1,000 Generations). The plots show median and best performance across the two environments with 95% confidence interval. HF = High Friction
Environment, LF = Low Friction Environment, B = Best, M = Median. Fitness is the distance covered in the x-direction.
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FIGURE 7 | MAP-Elites archive coverage for the two different
environments across the 10 runs.

found across generations. Slight improvements are also visible for
the low friction surface. Based on this, for the rest of the paper we
focus on results obtained using 1,000 generations at both the
components and robot layer.

4.2.2 Coverage and Evolved Behavior
For a typical run the coverage (percentage of occupied cells) of the
feature map (Figure 7) at the robot layer is around 90 percent.
This coverage would be sufficient for providing engineers or
decision makers with a wide array of options to choose from.
Figure 8A-C shows pair-wise feature-fitness plots for a typical
run on the high-friction environment. CVT-MAP-Elites divides the
feature space into maximally spread niches which are not typically in
the form of perfectly sized boxes or cubes. Instead, each niche can
have a different shape or form depending on the location of the
feature centroids. Hence, only for visualization purposes, we have

discretized the feature space into a grid with equi-sized boxes/
squares. This not only makes it easier to visualize, but also helps
highlight any inherent trends. We have aggregated the solutions
(from the 1,000 niches) into 100 discrete boxes. This means that each
box will represent an average of several solutions which fall into that
discrete combination of features. It must be noted that the data is
normalized between 0 and 1 so a friction value of 0 does not refer to 0
friction but rather the minimum value of 0.25. The same applies to
the two other features.

Figure 8A-C reveal some interesting trends. Firstly, robots with
shorter legs tend to perform poorly. This is obvious as longer legs
allow for more range of motion including the ability to lift the
cross-section off the floor which would minimize friction force
from the floor. The effect of the material properties is a bit less
straightforward. There seems to be a sweet-spot in the middle. The
controller optimization strategy plays an important role in this.
Regardless of the material properties, it will try to find controller
parameters that can get maximum movement from the robot.
However, material properties on the extremes can be a bit of a
problem. For example, a robot with very low frictional properties
would not be able to make a proper grip with the environment and
will have to rely solely on sliding/crawling movements while robots
with very high frictional properties may be held back due to the
strong resistance from the environment. Having an average friction
close to the middle (not too high, not too low) seems to allow the
robots to gain maximum movement. It must be noted that the
material properties shown in the plot are an average across all the
blocks in all the legs. Hence a robot may have a combination of
high and low friction blocks. Robots located in the middle region
can benefit from both types of blocks and combine lift and forward
thrusting movements with sliding and crawling. Alternatively the
controller optimization may also try to cancel out the effects of
unwanted blocks by creating a lifting motion to avoid interaction
with the environment. However, this places additional burden on
the controller optimization process which may not always yield the
desired outcome.
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x-direction. All feature values have been normalized between 0 and 1.
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FIGURE 8 | Pair-wise feature-fitness plots for the high friction surface. Plots A, B, and C show an aggregated view of how performance varies across the feature
space. Plots D, E, and F show the effect of transferring the same solutions on to the low friction surface. Fitness refers to the distance covered by the robot in the

Movements observed here are different from a traditional
hexapod since the different pairs of legs on a robot can be of
different sizes, complexity and material composition in
comparison to other pairs.

4.2.3 Cross Environment Performance

It is important to analyze the robustness of the evolved robots,
i.e, how well do robots evolved specifically for high friction
surfaces perform on low friction surfaces. Plots D, E, and F in
Figure 8 illustrate the change in fitness when solutions evolved
for the high friction surface are transferred to the low friction
surface. It is important to note that the reason we have chosen to
focus on high friction to low friction environmental transfer as
opposed to vice-versa is because we consider the high friction
environment to be slightly easier. This is visible from the fitness
values given in Figure 6. Hence, we feel that it is of greater interest
to see how solutions transfer from a simpler to a more complex or
difficult environment.

First thing to note is that the loss in fitness is negative in nearly
all cases since the low friction environment is expected to be more
challenging. Secondly, we see that solutions with shorter legs
continue to perform badly when transferred onto a different
environment. As mentioned earlier, the shorter legs severely limit

FIGURE 9 | Best performing solution on the high friction surface. Covers
102.22 units in the x-direction. Normalized Friction = 0.57, Normalized
Restitution = 0.57, Normalized Average Leg Size = 0.47.

the range of motion and this is a factor that will limit movement
regardless of the type of environment. Next we see that solutions
in the mid-friction/restitution region which performed really well
on the high friction surface, tend to transfer poorly onto the low
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FIGURE 10 | An example of a solution which transfers well to a different
environment. This solution had a fitness of 42.14 on the high friction surface
and when transferred to the low friction surface it was able maintain a
reasonable fitness value of 36.14. Normalized Friction = 0.71,

Normalized Restitution = 0.35, Normalize Average Leg Size = 0.41.

fiction environment. It may be because of material properties or
control behaviours that are too specific to the high friction
surface. The solutions that tend to perform the best are those
which are directly surrounding the “sweet-spot” region. These are
solutions that perform reasonably well on both environments.

We pick two solutions for further analysis. These two are given
in Figures 9, 10. The colors denote friction values. Green = 0.25,
Red = 0.5, Blue = 0.75, and Yellow = 1.0. The cross-section
(maroon) is always given a default friction value of 0.5. The robot
in Figure 9 is the best performing solution on the high friction
surface. The movement of this robot is mainly guided by the two
middle legs. They lift the cross-section off the floor and create
forward thrusting motion to move the robot forward. The legs in
the middle are mostly made up of high friction building blocks
(blue blocks with friction coefficient of 0.75), which when
combined with the control parameters allow the robot to
make a good grip with the surface without much resistance.
The leg movements are fast, which allow the robot to cover quite a
lot of distance in a short amount of time. This same robot when
transferred to the low friction surface performs very poorly. The
legs are not able to create a proper grip with the surface which
causes it to create rotating side-ways motion. As mentioned
earlier, if a robot rotates beyond a certain threshold, we
immediately stop the simulation and assign fitness of 0. This
robot ends up suffering from this exact same problem and hence
is assigned fitness of 0 on the low friction surface.

The robot in Figure 10 has a fitness value of 42.14 on the high
friction surface and 36.14 on the low friction surface. It performs
reasonably well on both surfaces. Just like the previous robot, it
uses the pair of legs in the middle to create forward thrusting
motion in order to move forward. The motion however is much
slower and well coordinated. This maybe because the middle legs
have the highest frictional properties (yellow blocks with friction
coefficient of 1.0) and the resistance from the ground can have a
slowing down effect. This solution when transferred to the low
friction environment out-performs all other solutions within the

MLE for Robotic Design

final archive. The long high friction legs are able to make a better
grip with the surface and utilize the (albeit limited) resistance to
make steady forward movements.

In summary, it is apparent that the archive contains solutions
which perform well on both environments despite only explicitly
being training on one. It may be that some of the emergent
behaviors are universal in nature and transfer well across
environments. Even though the environments are different in
terms of material properties, they are also similar in the sense that
they are both flat terrains. Designs which are able to perform
reasonably well across both environments are able to model their
behavior well for a flat terrain. The inherent diversity of the
archive also helps since it maintains designs with wide ranging
characteristics that may be useful in alternate environments.

4.2.4 Comparison With Manual Design

We also wanted to demonstrate how a manually designed robot
would compare against the designs discovered by the multi-level
optimization. This would involve designing all the components
manually except for the controller which would be optimized
using the procedure outlined in Section 3.4.1. Here we consider a
robot (Figure 11) with three legs on each side. The legs are
constructed using four square polygons and are created using
upper-mid-level material properties (Friction = 0.75 and
Restitution = 0.75). The cross-section is 16 units in length.
When evaluated under the same environmental conditions,
this robot performs poorly in both environments. It covers
2.75 units in the high friction environment and only 0.22
units in the low friction environment. This shows that
designing a robot with so many design variables is definitely
non-trivial. It also shows the efficiency of our proposed shape
grammar and material selection approach. Optimizing and
connecting irregular polygons at different angles helps produce
better movement. Having legs made up of a combination of
material properties also helps.

4.3 Limitations

The hierarchical design paradigm presented in this paper has a
number of limitations. Firstly, the control system is fairly
simplistic. It does not accept environmental input such as

FIGURE 11 | Baseline design. Legs are constructed using four cubes
with each having upper-mid-level material properties (friction = 0.75,
restitution = 0.75).
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sensor data or movement direction (Gangapurwala et al., 2020),
and the overall function itself is fairly basic. We are aware that this
may impose certain limitations on the complexity of the evolved
behaviours. However, we wanted to keep all other components as
simple as possible in order to keep the focus of the study on the
multi-level architecture and its perceived benefits. In future
research we will be using more sophisticated control strategies
combined with meaningful sensor data.

The materials library used in this research is also fairly basic in
that it only considers two mechanical properties ie. friction and
restitution. In reality, materials are characterized by many different
features. The main reason for this simplistic approach is the inherent
limitations with robotic simulators in not being able to accurately
model physical materials. In future research we will consider using
co-simulation and data driven modelling to improve the accuracy
with regards to materials. In any case, our proposed hierarchical
optimization strategy clearly demonstrates how physical materials
can be effectively included in the design process.

Despite these limitations we strongly believe that the research in
this paper makes a significant contribution to the evolutionary
robotics  literature. The MLE framework provides a
comprehensive library of evolved components and overall robot
morphologies, giving the decision maker a wide range of options to
choose from. The legs discovered at the components layer can be
reused when searching for optimal robot designs across different
environments. This would save considerable computation time.
Other benefits with relation to self-optimization and cross
environmental applicability have already been detailed above.

5 CONCLUSION

In this paper we presented a bottom-up hierarchical approach to
robotic design. A library of materials characterized by friction and
restitution were presented at the materials layer. At the
components layer, these materials were combined with shape
grammar to form robot legs of varying complexity and size.
Finally at the robot layer, the legs were combined into a body plan
to form complete robots.

These evolved designed were tested on two different
environments characterized by varying levels of friction and
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