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Tactile sensing represents a valuable source of information in robotics for perception of the
state of objects and their properties. Modern soft tactile sensors allow perceiving
orthogonal forces and, in some cases, relative motions along the surface of the object.
Detecting and measuring this kind of lateral motion is fundamental to react to possibly
uncontrolled slipping and sliding of the object being manipulated. Object slip detection and
prediction have been extensively studied in the robotic community leading to solutions with
good accuracy and suitable for closed-loop grip stabilization. However, algorithms for
object perception, such as in-hand object pose estimation and tracking algorithms, often
assume no relative motion between the object and the hand and rarely consider the
problem of tracking the pose of the object subjected to slipping and sliding motions. In this
work, we propose a differentiable Extended Kalman filter that can be trained to track the
position and the velocity of an object under translational sliding regime from tactile
observations alone. Experiments with several objects, carried out on the iCub
humanoid robot platform, show that the proposed approach allows achieving an
average position tracking error in the order of 0.6 cm, and that the provided estimate
of the object state can be used to take control decisions using tactile feedback alone. A
video of the experiments is available as Supplementary Material.

Keywords: object position tracking, object velocity tracking, differentiable extended kalman filtering, machine
learning-aided filtering, humanoid robotics

1 INTRODUCTION

Object perception is one of the key problems of autonomous manipulation as it enables taking
informed decisions based on the state of the object. Recent approaches proposed in the literature deal
with the problem of estimating the 6-dimensional pose of the object from RGB (-D) images using
Deep Convolutional Neural Networks (Xiang et al., 2018; Tremblay et al., 2018; Peng et al., 2019;
Hodaň et al., 2020). These methods are optimal for detecting the pose of the object in absence of
contacts with the end-effector but might suffer in the presence of challenging occlusion, e.g when the
robot interacts with the object (Wen et al., 2020). State-of-the-art methods addressing specifically the
problem of in-hand object tracking either use visual information and concentrates on achieving
robustness to occlusions (Wen et al., 2020) or focus on providing rich and efficient tactile contact
modelling (Liang et al., 2020) that can help explaining complex within-hand object motions.

Among the most typical in-hand object motions, object slipping and sliding are particularly
challenging to be perceived and controlled. For this reason they have been extensively explored and
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studied within the literature on tactile-based perception and
control. In this respect, several works (Meier et al., 2016;
Veiga et al., 2018; Dong et al., 2019) propose methods, often
learning-based, for slip detection and prediction and how to
utilize them for grip stabilization. On the other hand, works
dealing with in-hand object pose estimation and tracking do not
consider the problem, as in (Wen et al., 2020). In Liang et al.
(2020), a physical engine is used to model the tactile interaction
with the object and integrated in an object pose tracker that
explicitly takes into account slippage. The method is tested in
simulation and real-world experiments. However, experimental
results regarding the slippage are not provided for the real-world
scenario and analyzed only in simulation.

In this work we propose an algorithm for tracking the position
and the velocity of an object subjected to in-hand sliding motion
using tactile observations. We do not focus on the more general
problem of object slippage and we restrict our interest to pure
translational sliding motions. We implemented our algorithm as
a differentiable Kalman filter whose internal behavior is learned
end-to-end from ground truth data obtained with visual
feedback.

Our contributions are the following:

• We show how to model tactile sensing in the context of
differentiable Kalman filtering for state tracking of an object
undergoing a sliding motion while avoiding the necessity to
manually write mathematically challenging motion and
measurement models;

• We discuss and show experimentally the importance of
differentiating over time the tactile measurements before
feeding them to the learned filter;

• We provide insights on how to collect labelled data using
Kalman smoothers starting from noisy ground-truth data;

• We provide position and velocity tracking performance
results on experiments carried out on a real humanoid
anthropomorphic hand equipped with tactile sensors.

Results show that the proposed method achieves an average
position error in the order of 0.6 cm and an average velocity error
in the order of 0.05 cm/s when trained on all the objects
considered in our tests. We additionally provide the results of
some practical experiments where the output of the learned filter
is used to stop the object sliding after a given number of
centimeters provided by the user.

The rest of the paper is organized as follows. After a section
where we review the state of the art on both object pose tracking
and slip detection and prediction using tactile sensors, we present
our algorithm for object sliding tracking. We then present the
results of the experiments carried out on the iCub humanoid
robot platform. We conclude the paper with additional remarks
on our work and possible future directions of research.

2 RELATED WORK

Our work is closely related to recent advances in tactile-based
object pose estimation and tracking using neural networks and

deep neural networks. Given our interest in the specific problem
of estimating the position of the object under sliding motion, our
work is also linked to recent approaches on object slip detection
and prediction.

Classical works on tactile-based object pose tracking adopted
Kalman and particle filtering techniques to localize or track over
time the pose of an object being manipulated by the end-effector
of a robotic platform. Bimbo et al. (2015) use particles to
represent the research region of an object pose estimation
algorithm. The particles are initialized according to a visual
prior and then particles showing high fitness with tactile data
are replicated recursively. Vezzani et al. (2017) propose the
Memory Unscented Particle Filter which combines an
Unscented Particle Filter with a windowing based memory
strategy to estimate the 6D pose of a stationary object using
3D tactile contact information. Koval et al. (2015) use tactile
sensing within a Manifold Particle Filter that enforces the non-
penetration constraint between the object and fingers by
sampling the particles from physically plausible configurations
compatible with the measured contact states.

Other works concentrated on the role of tactile sensing in
recovering information on the state of an object being pushed on
a plane by a manipulator. Yu and Rodriguez (2018) model the
planar motion of a pushed object using the concept of limit
surface that maps the forces acting on the object to its velocity
under quasi-static motion regime. This motion model is then
used within a real time optimization framework that fuses visual
and tactile measurements. Suresh et al. (2020) extended this
framework combining Gaussian process implicit surface
regression and factor graph-based pose estimation in order to
jointly estimate the shape and the pose of an object being pushed
using tactile measurements solely.

More recent works exploit the availability of vision-based
tactile sensors (Yuan et al., 2017; Lambeta et al., 2020). These
sensors provide rich contact information in the form of RGB
images capturing the local deformation of soft materials
covering the sensor itself. Given the large availability of
neural and deep neural modules for images processing,
several works have combined learning techniques with the
high dimensional data provided by these kind of sensors.
Sodhi et al. (2020) use the Digit (Lambeta et al., 2020)
vision-based tactile sensor to estimate the pose of a planar
object being pushed by a manipulator. They first learn a
suitable observation model that maps consecutive tactile
images to the relative pose of the sensor. Then, they combine
this information within a factor graph-based optimization
approach for pose estimation. Very recently, Bauza et al.
(2020) combined tactile images acquired with a GelSim
sensor (Donlon et al., 2018) and Convolutional Neural
Networks (CNN) to estimate the pose of an object in contact
with the sensor from a single touch. Vision-based tactile sensors
have also been adopted in (Dong et al., 2019) to detect incipient
slip from changes in the motion field of the tactile images
induced by the contacts with the object. This learning-free
method allows detecting slip with high accuracy and has
been tested in a closed-loop scenario in order to actively
avoid slipping in a bottle-cap screwing/unscrewing experiment.
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Although vision-based tactile sensors provide interesting
performance and have been applied to a notable variety of
different tasks, one problem that limit their adoption is the
size of the sensors implementations. When there is the
necessity to equip robotic hands with tactile sensing, other
solutions based on other working principles and smaller in
size have been preferred, especially in the case of
anthropomorphic multi-finger hands. In this respect, Veiga
et al. (2018) adopt the BioTac (Wettels et al., 2014) liquid-
based deformable sensor in a supervised-learning-based
algorithm that predicts the occurrence of object slipping
starting from high-dimensional tactile data provided by the
sensor. They also show that utilization of the predicted slip as
feedback in a control algorithm allows counteracting slip events
while interacting with previously unknown objects. Similarly,
Sundaralingam et al. (2019) exploit estimated contact points on
the surface of a BioTac sensor and the associated normals in a 3D
Convolutional architecture that learns to estimate the forces
exchanged between the sensor and the manipulated object.
The learned force model is then adopted in a feedback grasp
controller for object lifting and gentle placement.

In our work, we follow a similar path as (Veiga et al., 2018;
Sundaralingam et al., 2019) as we use magnetic-based soft tactile
sensors within a learning architecture in order to estimate
physical quantities that explain the relative motion between
the object and the sensor. However, we are not interested in
detecting the slip directly or provide an interpretation of the
interaction in terms of forces. Instead, we are interested in a
simpler kinematic interpretation, i.e. in estimating the position
and the velocity of the object while it slides between several
fingers of an anthropomorphic hand, starting from the tactile
measurements. To this end, we adopt a Kalman filtering
approach, which makes our work related to classical works on
object pose tracking and estimation. Given the complex nature of
the relationship occurring between the tactile sensors and the
object motion, we take inspiration from recent advances in
differentiable Kalman filtering (Kloss et al., 2020; Lee et al.,
2020) in order to learn suitable motion and measurement
models from ground truth data.

3 MATERIALS AND METHODS

3.1 Description of the Sensors
In this work, we study the problem of tracking the position and
the velocity of an object during sliding motion from tactile
measurements using differentiable, i.e. learned from data,
Kalman filters. In order to better contextualize and justify the
necessity to learn a tracking algorithm from data, in this section
we present the sensors that we adopted in the present study.

The typology of sensors that we consider are deformable soft
tactile sensors. The sensing principle is the following: when
external forces deform the sensor, due to the interaction with
the object, the deformation is sensed by an electronic circuit such
that the change in the output signal over time is correlated with
the relative motion between the sensor and the object. In the case
of magnetic sensors, a magnet is embedded on the surface of the

sensor, and a Hall effect sensor detects changes in the magnetic
field, as pressure deforms the surface of the sensor. In particular,
in this work we use the uSkin sensor (Tomo et al., 2016), and in
particular a special version of the uSkin sensor that has been
adapted (Holgado et al., 2019) for the anthropomorphic hands of
the iCub humanoid platform (Metta et al., 2010).

The main sensing module of size 6 × 6 × 3.8 mm, shown in
Figure 1A, consists of (from the bottom):

• a PCB board hosting the Hall effect sensor chip;
• a single soft silicone skin cover;
• a neodymium magnet;
• a flexible textile cover (realized with a high friction grip
tape).

Integration of the above sensing module on the fingertips of
the iCub hands is achieved with a suitable fingertip adapter
(Holgado et al., 2019) (Figure 1B). The adapter hosts two
sensing modules that follow the original curvature of the
fingertip assembly and are mounted with an angle of 6° and
49° approximately with respect to the vector normal to the surface
of the fingertip. A top layer of grip tape is finally placed over the
whole assembly in order to provide good friction properties and
protect the underlying sensors. The final assembly is shown in
Figure 1C.

Once mounted on the fingertips of the iCub robot, the sensors
allow measuring the interaction between the fingertips and the
object. Specifically, when the external forces deform the silicone
skin that holds the magnet, the motion of the magnet generates a
change in the magnetic field that is sensed by the sensor mounted
on the PCB. The actual output of the sensor consists of three
channels that are proportional to the sensed magnetic field. Given
the 3D nature of the output signal, the sensor output measures the
following type of interactions between the object and the
fingertip:

• normal interactions, such as normal forces exerted by the
robot when grasping an object;

• lateral interactions, such as lateral and shear forces
occurring when the object slides between the fingers of
the robot.

In the present study, we are interested in exploiting the 3D
nature of the tactile signals in order to track over time the position
and the velocity of an object while it is involved in a sliding motion
between the fingertips of the multi-fingered anthropomorphic
hand. Given the considerable complexity of the relationships
occurring between the object motion and the output of the
sensors, involving, among the others, the physics of rigid and
elastic objects and that of magnetic fields, we propose to adopt a
Machine Learning signal filtering approach to tackle this problem.

3.2 Problem Definition
Given a stream of noisy tactile measurements {τt}1≤ t ≤Nτ

, our goal
is to track the 1D position of the object pt and its velocity vt along
the z coordinate of the robot root frame while the object is sliding
between the fingertips of the robot hand. We are not interested in
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solving the localization problem for the object, hence we assume
that p0 � 0. A complete description of the state of the object is
given by the state vector

xt � pt
vt

( ) ∈ Rn, (1)

where n � 2 is the state size. In order to track the state xt, we adopt
a Kalman filtering approach (Kalman, 1960) that approximates
the posterior distribution of the state given the tactile
measurements up to time t p (xt|τ1:t) with a Gaussian distribution

p ̂(xt |τ1:t) � N xt; μt , Pt( ). (2)

The belief on the state of the object is updated recursively by
means of a prediction step, that leverages prior information in the
form of a predefined motion model, and a correction step, that
incorporates a new tactile measurement τt according to a
predefined measurement model.

Motion and measurement models are usually first principles
models, i.e. they are obtained form the combination of suitable
physical laws that describe the system of interest. However,
deriving such models is not always possible if the system is
considerably complex or the working principles are not
completely known. This is the case for the majority of the
tactile sensors adopted in the literature. Nevertheless, recent
advances in differential Kalman filtering (Haarnoja et al., 2016;

Kloss et al., 2020), allows learning the required models from
experimental data.

In this work, we decided to adopt a differentiable Extended
Kalman Filtering framework (dEKF), for the following reasons:

• the possibility to learnmotion and measurement models for
the adopted tactile sensing system from ground truth data in
the form of state-dependant neural networks;

• the ability of the EKF to handle non-linear relationships
between state and measurements, as those modeled by
neural networks;

• the recognized superiority (Kloss et al., 2020; Lee et al.,
2020) in terms of performance and interpretability of
differential Kalman filters over unstructured alternatives
like LSTMs.

In the remainder of this section, we describe the proposed
algorithm in details.

3.3 Extended Kalman Filtering
In this section we recall the working principles of the Extended
Kalman Filter algorithm for tracking of the state vector xt given
generic measurements zt. The algorithm assumes that the belief
about the state is modelled as the posterior distribution p (xt|z1:t),
given all the measurements z1:t up to the instant of time t. The
posterior is approximated using a Gaussian distribution

FIGURE 1 | In (A), the exploded view of the sensing module. In (B), the CAD model of the fingertip adapter for the iCub finger hosting two sensing modules. In (C),
the final assembled fingertip adapters with the grip tape cover. In (D), the experimental setup with the iCub humanoid robot left hand equipped with uSkin deformable soft
tactile sensors.
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p ̂(xt |z1:t) � N xt; μt , Pt( ), (3)

under the assumption that the state xt evolves according to a
Markovian dynamic model of the form

p(x|xt−1) � N (xt; f (xt−1),Qt), (4)

and the measurements zt are conditionally independent given xt
and normally distributed, i.e.

p(zt |x1:t , z1:t−1) � p(zt |xt) � N (zt; h(xt),Rt). (5)

f and h are generic non-linear differentiable functions while Qt

and Rt are referred as the process and measurement noise
covariance matrix respectively. Eq. 4 and Eq. 5 can be
expressed in functional form, resulting in the following motion
model

xt � f (xt−1) + wt−1,
wt ∼ N (0,Qt), (6)

and measurement model

zt � h(xt) + ]t ,
]t ∼ N (0,Rt). (7)

At each instant of time t, the previous belief

N (x; μt−1, Pt−1) (8)

is updated according to the model in Eq. 6 producing the
predicted mean μ−t and covariance P−

t of the state:

μ−t � f (μt−1)
P−
t � Fx(μt−1)Pt−1Fx(μt−1)T + Qt−1

(9)

where Fx(μ) � zf (x)
zx

∣∣∣∣x�μ. A new measurement zt is then
incorporated via the measurement model in Eq. 7 according
to the following correction step:

Pz,t � Hx(μ−t )P−
t Hx(μ−t )T + Rt ,

Kt � P−
t Hx(μ−t )T Pz,t( )−1,

z−t � h(μ−t ),
μt � μ−t + Kt(zt − z−t ),
Pt � P−

t − KtPz,tKT
t .

(10)

Kt is usually called the Kalman gain, Pz,t is the measurement
covariance matrix, z−t is the predicted mean of the measurement
and Hx(μ) � zh(x)

zx

∣∣∣∣x�μ. The actual estimate x
̂
t is extracted as the

mean μt of the approximate posterior p ̂(x|z1:t).

3.4 Object Motion Modelling
The motion model in Eq. 6 provides a priori information on the
state of the object at time t given the state at the previous instant
of time t−1. We adopted a hybrid approach that combines the
physical notions of position and velocity with a neural network.
Our models is as follows:

xt � pt
vt

( ) � f (xt−1) + w,

� pt−1 + vt−1ΔT

vt−1 + NNθ1(xt−1)( ) + w,

w ∼ N (0,Q).

(11)

The positional part pt is updated using a constant velocity
model (Bar-Shalom et al., 2002) where the elapsed time ΔT is
assumed equal to the sampling period of the algorithm. Instead,
the change in velocity between consecutive instant of times vt −
vt−1 is modelled as the output of a neural network NNθ1 with
parameters θ1 given the state at the previous instant of time xt−1:

vt − vt−1 � NNθ1(xt−1). (12)

The process noise covariance matrix Q ∈ R2×2 is also considered
as a parameter to be trained.

The rationale behind our choice is the following. For the positional
part, we know that the position is the integral of the velocity.
Therefore we can utilize this knowledge in the model without the
necessity to learn it from the data. Conversely, the change in velocity
during a sliding motion might be challenging to model from first
principles, and for this reason, it is preferable tomodel it with a neural
network that is trained using ground-truth data.

The description of the motion model is completed by the
specification of the Jacobian Fx(μ) that is needed for the execution
of the Kalman prediction and correction steps. It can be readily
evaluated as:

Fx(μ) �
1 ΔT

zNNθ1(p, v)
zp

∣∣∣∣∣∣(p,v)�μ 1 + zNNθ1(p, v)
zv

∣∣∣∣∣∣(p,v)�μ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

Here, p(μ) and v(μ) are the positional and velocity part of the

mean μ respectively. The partial derivatives
zNNθ1(p,v)

zp

∣∣∣∣∣∣(p,v)�μ and

zNNθ1(p,v)
zv

∣∣∣∣∣∣(p,v)�μ can be evaluated using automatic differentiation

once the structure of the neural network NNθ1 is defined.

3.5 Tactile Measurements Modelling
The measurement model in Eq. 7 provides a description of the
relationship between the state of interest and the output of the
sensors. In this work, the adopted sensors are tactile sensors,
described in Section 3.1, each producing a 3D signal

τ j �
τ j,x
τj,y
τ j,z

⎛⎜⎜⎝ ⎞⎟⎟⎠ ∈ R3, (14)

proportional to the displacement of the j-th sensor elastic
membrane during the interaction with the object. Given L
tactile sensors, they can be expressed in a single vector

τ �
τ1
«
τN

⎛⎜⎝ ⎞⎟⎠ ∈ R3L. (15)

We remark that out approach does not depend on the number
of signals produced by the single tactile sensor, hence in the
following we will refer to τ ∈ RML as the vector of the signals
produced by all the sensors where M, in the specific case of the
adopted sensors, resolves to 3. Conversely, we make the
assumption that the output of the sensors does not change
over time if there is no relative motion between the object and
the sensors. In this respect, we claim that it would be difficult to
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associate the tactile measurements directly to the object state,
especially the velocity part, using an instantaneous relationship as
in Eq. 7. Indeed, if the object does not move, the signal of the
sensor is constant, and any possible value assumed by the sensor
would need to be associated with a zero velocity. Given that this
kind of association is ill-posed we propose instead to use, as a
measurement, the first derivative _τ of the tactile signal. As a
consequence, if the signal of the sensor does not change it can be
unambiguously associated with a zero velocity and vice versa.

In order to specify the actual measurement function h(x),
considering the complexity of the measurement process that
depends on the specific nature of the tactile sensors and their
working principle, we propose to use a neural network NNθ2 with
parameters θ2 to be trained using ground truth data. The resulting
measurement model is:

zt � NNθ2(xt) + ] ∈ R,
] ∼ N (0,R). (16)

The measurement noise covariance matrix R ∈ R is also
considered as a parameter to be trained.

The goal of the network NNθ2 is to predict a 1-dimensional
feature given the state x. In order to make the feature comparable
with the actual measurement _τ, we employ a secondary network
NNθ3 with parameters θ3 that maps the measurement _τ to a
measured feature z � NNθ3( _τ). Given the above assumptions, the
Kalman correction step in Eq. 10 becomes

Pz,t � Hx(μ−t )P−
t Hx(μ−t )T + R,

Kt � P−
t Hx(μ−t )T Pz,t( )−1,

zt � NNθ3(τ ̇t),
z−t � NNθ2(μ−t ),
μt � μ−t + Kt(zt − z−t ),
Pt � P−

t − KtPz,tKT
t .

(17)

The description of the measurement model is completed with
the specification of the Jacobian Hx(μ) � zNNθ2(x)

zx

∣∣∣∣x�μ that can be
obtained analytically using automatic differentiation.

In summary, the adopted measurement model uses two neural
networks in order to 1) map the actual measurement _τ to a 1-
dimensionalmeasured feature z and 2)map the predicted state μ−t to a
1-dimensional predicted feature z−. The two networks are not trained
separately as the target feature and its characteristics are not known a
priori. Instead, they are trained jointly such that the best intermediate
feature for the filtering task is learned from ground truth data.

3.6 Tracking Framework
The tracking process can start after the specification of suitable initial
conditions for the mean of the state μ0 and the associated covariance
P0. We are not interested in localizing the object, i.e. knowing its
absolute position in the robot root frame, rather to its relativemotion
from the beginning of the experiment. For this reason, we initialize
the positional part of the mean p (μ0) to zero. Regarding the velocity
part, we do not assume any external source of information that can
provide insights on the initial object velocity. As a consequence, we
also set the initial velocity v (μ0) to zero.

An overview of the proposed architecture is presented in
Figure 2.

3.7 Training Procedure
The set of parameters of the differentiable filter that need to be
trained are:

• The weights θ1 of the neural network that models the
velocity increments of the object as part of the motion
model in Eq. 11;

• The weights θ2 of the neural network that extracts feasible
measurement predictions, given the predicted state, as part
of the measurement model in Eq. 16;

• The weights θ3 of the neural network that extracts feasible
measurement features from the actual tactile measurement _τ;

• The process noise covariance matrix Q associated to the
motion model in Eq. 11;

• The measurement noise covariance matrix R associated to
the measurement model in Eq. 16.

In order to train the parameters θ1, θ2, θ3, Q and R we adopted
an end-to-end learning procedure. Following prior work (Lee
et al., 2020), we assume the following inputs to the procedure:

• a set X of N ground truth sequences {xgtt,i}, where i is the
sequence index, containing the full state xt of the object
involved in a sliding motion. Each trajectory is T steps long;

• a set Y of N measurement sequences {τ̇ t,i} that are
compatible with the states xt,i both physically and in
terms of the signal length T.

Each sequence in X and Y is then divided in sub-sequences of
length Ts < T. Each sub-sequence starts at t � t0,s with s indicating
a sub-sequence. Given a batch size B < N and a selection XB of B
sequences among the N available, a set of B filters, that share the
same parameters, are initialized with samples extracted from the
ground truth distributions

p(xgtt,i) ∼ N (xgtt,i, P0), (18)

with t � t0,s and i ∈ XB. Then, the state of the filters is updated
using the associated measurements from YB for Ts steps via
Kalman prediction and correction. The performance on a
given sub-sequence is evaluated using a MSE loss of the form:

Ls � 1
(TS − 1) × B × n

∑
i∈X(B)

∑t0,s+Ts
t�t0,s+1

xgtt,i − μt,i( )T xgtt,i − μt,i( )⎛⎝ ⎞⎠.

(19)

The loss Ls is finally used to correct the parameters θ1, θ2, θ3,Q
and R via back-propagation. When the procedure has been
repeated for all the sub-sequences and for all the possible
choices of B sequences among the N available, the training
epoch is completed and a new epoch can be processed.

4 IMPLEMENTATION DETAILS

In this section we provide essential details necessary to train the
proposed differential filter for object position and velocity
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tracking. After a short description of the iCub humanoid platform
in Section 4.1, we describe in Section 4.2 how we collected the
training and testing data via experiments of controlled sliding of
several objects. Next, in Section 4.3 we explain how the collected
data have been post-processed in order to be used as ground-
truth data for the training and testing procedure. Finally, in
Section 4.4, we describe the structure of the networks NNθ1, NNθ2

and NNθ3 that represent a core part of the proposed differentiable
filter and the adopted training strategy.

4.1 iCub Humanoid Platform
The robot platform adopted in this work is the iCub humanoid
platform (Metta et al., 2010). The hands of the iCub are endowed
with nine joints that can be controlled using several control
modes in order to decide the position of the fingertips. In this
work, we only control the position of the thumb, index and
middle fingers using voltage inputs. Each finger is equipped with
two uSkin sensing modules mounted on the adapter that we
described in Section 3.1. Furthermore, a RGB camera system is
mounted on the head of the robot in order to track with ArUco
markers (Garrido-Jurado et al., 2014) the actual position of the
object so to collect training data and evaluate the performance of
the algorithm. The experimental setup is shown in Figure 1D. In
the top left panel of the same figure, we report the reference frame
attached to each sensing module.

4.2 Dataset Collection Procedure
In order to train the networks NNθ1 in Eq. 11, NNθ2 and NNθ3 in
Eq. 17 and the trainable covariance matrices Q in Equation 11
and R in Eq. 16, it is required to collect a set X of ground truth
sequences {xgtt,i} of the object of interest under sliding motion and
the associated set Y of tactile measurements {τ̇ t,i}. To this end, we
setup a repeatable controlled sliding experiment using the thumb,
index and middle fingers of the iCub robot hand. In this
experiment, the object of interest is manually placed on a table
in front of the robot in a fixed starting pose. The arm of the robot
is moved near the object, in a fixed pose, such that the hand can

grasp the object. Once the object has been grasped, the robot arm
moves up and then the fingers are controlled in a way such that
the object either remains approximately stationary or slides
between the fingers.

4.2.1 Controlled Object Sliding
We are not interested in precisely control the object sliding, i.e. its
position or its velocity during the sliding, rather to collect data on
any kind of object sliding in terms of object position and velocity,
along the direction orthogonal to the table, and sensors output.
For this reason, we developed a simple PI closed-loop control
algorithm in order to indirectly control the force exerted by each
finger on the surface of the object held by the robot hand.
Considering the kinematics of the iCub robot hand, the
placements of the two sensors on each finger and the
reference frame attached to each sensor (as in Figure 1A), we
found experimentally that the object sliding could be controlled
by changing the grip force, indirectly affected by regulating the z
channel of the first sensor mounted on the index and middle
fingers, in the following indicated as τindexz and τmiddle

z , and the z
channel of the second sensor mounted on the thumb finger, in the
following τthumb

z . In fact, these channels are proportional to the
displacement of the sensor membrane in a direction that is
approximately orthogonal to the surface of the object. Hence,
regulation of those signals allow deciding the degree of stability of
the grasp and, eventually, to start and stop the object sliding.

In order to regulate each signal to a desired set-point, we
designed three independent closed-loop control systems, one per
finger, using a proportional-integral (PI) controller running at
100 Hz. Specifically, we set the voltage Vf of the proximal joint of
the finger according to the following control law:

Vf � kp,f (τ f
z,des − τfz) + ki,f ∫(τ f

z,des − τfz) dt, (20)

where f ∈ {index, middle, thumb}, kp,f is the proportional gain for
the finger f, ki,f is the integral gain for the finger f, τfz is the z tactile

channel for the finger f and τfz,des is the desired value for the finger

FIGURE 2 | Overview of the proposed differentiable filtering architecture for object sliding tracking. σ indicates the ReLU activation function.
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f. The distal joints of each finger, instead, have been regulated to
suitable configurations using the iCub built-in joint position
control loops.

We remark that, in order to execute the controlled sliding
experiment, we adopted specific precautions to be sure that when
releasing the object, after modifying the grasp strength, it would
only slide downwards without unregulated rotations. Specifically,
we added weight to each object in order move the center of mass
of the object below the contact points and we chosen the position
of the object such that contact points, resulting from the grasp,
would not allow the development of unbalanced torques.

4.2.2 Design of Grasp Strength Trajectories
The choice of the desired values τfz,des has been realized taking
inspiration from a former work on hierarchical grasp control
using tactile feedback (Regoli et al., 2016). Given a desired grasp
strength gdes in Newton, in this work the forces F

f
des exerted by the

fingers on the object are partitioned as follows:

Findex
des � Fmiddle

des � gdes
2
, Fthumb

des � gdes. (21)

We replicated a similar reasoning by defining a generalized
grasp strength in the space of the sensors output, τg,des, and
assigning the following desired values:

τindexz,des � τmiddle
z,des � τg,des

2
, τthumb

z,des � τg,des. (22)

We concluded the design of the desired references by assigning
a periodic smooth trajectory to the desired grasp strength τg,des
such that it moves alternatively between a maximum value τg,max

and a minimum value τg,min. The two values have been chosen,
for each object considered in the present study, such that when
the grasp strength is regulated to the maximum value the object
does not move. Conversely, when it is regulated to the minimum
value the object slides noticeably between the fingers of the robot
hand. An example of the commanded and achieved trajectory for
the index andmiddle fingers is shown in Figure 3. Figure 4 shows

the outcome of the controlled sliding experiment using a box-
shaped object.

4.2.3 Description of the Collected Data
During each experiment, the position of the object pAt ∈ R,
expressed in the robot root frame and projected along the
direction orthogonal to the table, is acquired at 30 Hz using an
ArUco marker placed on the top of the object such that it is
visible from the RGB camera system mounted on the head of
the robot. All the tactile signals coming from the setup are also
recorded at the same frequency. We collected the x, y and z
coordinates of the first sensor mounted on the index and
middle fingers and the same coordinates of the second
sensor mounted on the thumb finger in a vector τ ∈ R9

composed as follows:

τ �
τindex

τmiddle

τthumb

⎛⎜⎜⎝ ⎞⎟⎟⎠ (23)

where τindex ∈ R3, τmiddle ∈ R3 and τthumb ∈ R3. Our choice to use
the first sensor for the index and middle fingers and the second
sensor for the thumb finger depends on the fact that, given the
kinematic structure of the iCub hand and specific experiment that
we designed, these are the specific sensors that are actually in
contact with the surface of the object.

4.3 Data Post-Processing
Before the collected data can be used for training purposes, it
needs to be further processed as explained in the following.

4.3.1 Object Position and Velocity
As explained in Section 3.7, the training procedure requires the
availability of the ground truth state of the object xgtt,i for each
experiment i. Although the position of the object pAt,i, acquired
using an ArUco marker, is available, it cannot be directly
employed. In fact, the signal produced by the marker
estimation system is considerably noisy to be used as a label.

FIGURE 3 | Comparison between the desired grasp strength and the achieved grasp strength for the index and middle fingers during the execution of a controlled
sliding experiment.
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Furthermore, it does not provide the velocity of the object that we
require.

In order to provide an almost noise-free ground-truth signal
for both the position and the velocity of the object, we relied on a
linear Kalman Smoother (Bar-Shalom et al., 2002). This
algorithm, given suitable motion and measurement models,
provide an estimate xsmt of the state of interest at each instant
of time t given all the measurements z0:T up to the final instant of
time T. Using all the measurements is possible because the
smoothing procedure is executed offline after the actual data
collection. In our case, we set the state to be smoothed xsmt to be
equal to the state of interest xt as defined in Eq. 1:

xsmt � psmt
vsmt

( ) ∈ R2. (24)

As motion model, we adopted a simple constant velocity
model with Gaussian noise (Bar-Shalom et al., 2002):

xsmt � psmt
vsmt

( ) � psmt−1 + vsmt−1ΔT

vsmt−1
( ) + wsm,

wsm ∼ N (0,Qsm)
(25)

with ΔT the sampling time of the algorithm.
We drive the Kalman smoother using the ArUco estimate pAt

as the measurement zsmt (after removing the first sample from the
signal such that the position of the object starts from zero). The
measurement process is easily modelled as:

zsmt � psmt + ]sm,
]sm ∼ N (0,Rsm). (26)

Given the smoothed state xsmt,i for the i-th experiment, we
define the ground-truth trajectory xgtt,i as

xgtt,idxsmt,i . (27)

An example of the outcome of the smoothing procedure is
shown in Figure 5 where the ArUco estimate is compared with
the smoothed estimate xsmt|T and the estimate xsmt|t that we could
have obtained using a linear Kalman filter. For the velocity
component, we also compare with the velocity obtained by
finite differentiation of pAt . As it can be seen, the smoothed
estimate contain less noise than the ArUco estimate and the
filtered estimate. Furthermore, the smoothed velocity vsmt|T has less
delay than the filtered counterpart and is significantly more
reliable than using finite differences.

4.3.2 Derivative of Tactile Measurements
As discussed in Section 3.5, using the tactile signal τt as a
measurement would result in an ill-posed measurement
function zt � h (τt). For this reason, the first derivative of the
tactile signal _τt is used instead. Given that the actual sensors do
not provide the derivative as one of the outputs, we decided to
adopt a linear Kalman filter to estimate the derivative. The state of
interest is given by

xt,τ � ⎛⎝ τ ̂t
τ. ̂t
⎞⎠ ∈ R18 (28)

We adopted a simple constant velocity motion model of the
form:

FIGURE 4 | Outcome of the controlled sliding experiment with the box-shaped object.
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xt,τ � ⎛⎝ τ ̂t
τ. ̂t
⎞⎠ � τ ̂t−1 + τ. ̂t−1ΔT

τ. ̂t−1
( ) + wτ ,

wτ ∼ N (0,Qτ)
(29)

with ΔT the sampling time of the algorithm. The filter is fed with
the tactile measurements zt,τ � τt that are easily modelled with the
following measurement process:

zt,τ � τ ̂t + ]τ ,
]τ ∼ N (0,Rτ). (30)

The filtered derivative τ. ̂t is evaluated for each experiment i so
as to provide the set Y of the measurement sequences { _τt,i}
required for the training process as per Section 3.7, i.e.

_τt,idτ. ̂t,i. (31)

We remark that the filtered derivative is also used online, once
the differentiable filter has been trained, to provide the input
measurements to the algorithm.

4.3.3 Data Normalization
We perform data normalization on each scalar component of the
tactile measurement _τt,i ∈ R9 separately by dividing it by the
maximum absolute value of the component among all frames
t ∈ {0, . . . , T} and all experiments i ∈ {0, . . . , N} such that the
normalized components are within −1 and +1.

We applied a similar procedure on the ground truth state xgtt,i.
Specifically, we divided the velocity component vgtt,i by the maximum
velocity among all frames and all experiments such that the
normalized velocity is between −1 and +1. Given that the position
and the velocity are connected by a differential relationship, i.e

vgtt,i � d
dt
xgtt,i, (32)

we divided the position component pgtt,i by the same maximum
velocity, to avoid altering such relationship.

4.4 Network Architectures
In this section we provide a concise description of the inner
architecture of the networks NNθ1, NNθ2 and NNθ3. Furthermore,

we explain how we handle the trainable noise covariance matrices
Q and R.

4.4.1 Neural Networks
We followed prior work of Lee et al. (2020) to take inspiration for
the design of the architectures. For the network NNθ1 in Eq. 11,
we first feed the state xt−1 through a multi-layer encoder with the
following structure:

• 1 linear layer with 64 units;
• 1 ReLU activation;
• 1 linear residual layer.

The extracted feature is then passed to a shared stage
composed by:

• 1 linear layer with 64 units;
• 3 linear residual layers;
• 1 linear layer with 64 units with output size equal to 1,

where the structure of the linear residual layer is as follows:
• 1 linear layer with 64 units;
• 1 ReLU activation;
• 1 linear layer with 64 units;
• 1 summation junction with the input to the residual layer;
• 1 ReLU activation.

We remark that consecutive linear layers in the shared stage
cannot be unified in a single linear layer because the residual
linear layer contains nonlinear activation functions in the output.
We also remark that the output of the last layer of the shared stage
has size equal to 1 since it needs to be summed up to the previous
velocity vt−1 as per Eq. 11.

The reason for using a shared stage is that, in case an input ut to
the system is available, a secondary multi-layer encoder can be used
to extract features from ut (Lee et al., 2020). The features can be
concatenated with those extracted from the state xt−1 and then
passed to the shared stage. Given that in this work there are no
available inputs, we directly feed the state features to the shared stage.

The same structure as above has been used for the networks
NNθ2 andNNθ3. Also for these networks, the output size of the last
layer equals to 1 as it is the size chosen for the measurement
feature in Eq. 16.

FIGURE 5 | In (A), comparison between the ground truth position from the ArUcomarker detection system pA
t , its filtered version psm

t|t and its smoothed version psm
t|T

obtained using a Kalman filter and smoother respectively. In (B), comparison between the ArUco velocity signal obtained using finite differences, filtered and smoothed
version.
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The structure of the network NNθ! is summarized in Figure 2
together with the interconnections with the other networks NNθ2

and NNθ3 throughout the filtering architecture. The inner
structure of the linear residual layer is also represented in the
bottom left part of the same figure.

4.4.2 Noise Covariance Matrices
Following prior work (Lee et al., 2020), we directly learn
the Cholesky decomposition of the noise covariance
matrices LQ ∈ R2×2 and LR ∈ R1×1. In order to take into
account this choice, we evaluate the covariance matrix Q as
LQLTQ and the covariance matrix R as LRLTR , according to the
definition of the Cholesky decomposition, in the actual
implementation of the Kalman prediction and correction
steps in Eqs. 9, 10.

4.5 Training Protocol
We use backpropagation through time to train our object
tracking algorithm end-to-end over subsequences of increasing
length TS. Specifically, we perform the training according to the
following protocol:

• 5 epochs with TS � 2 steps;
• 5 epochs with TS � 4 steps;
• 5 epochs with TS � 8 steps;
• 5 epochs with TS � 16 steps;
• 5 epochs with TS � 32 steps.

4.6 Software Implementation
We implemented the software for controlling the iCub robot and
collecting the data using the middleware Yet Another Robot
Platform (YARP) (Metta et al., 2006). The differentiable EKF has
been implemented using the open-source library for creating and
training differentiable Bayesian filters in PyTorch (Paszke et al.,
2019) from the authors of (Lee et al., 2020). Our software
implementation will be made publicly available for free with
an Open Source license online1.

5 RESULTS

In this section we present the results of several experiments aimed
at evaluating the performance of the proposed method.

We executed controlled sliding experiments as described in
Section 4.2.1 using three objects of different shape and
materials in order to collect data for training and testing
purposes. We then post-processed the data, as per Section
4.3, and used it to train the proposed differentiable filter for
object position and velocity tracking. We evaluated the
performance of the algorithm on both the training and
testing sequences in terms of the Root Mean Square Error
(RMSE) of the estimated state with respect to the ground truth
position and velocity. Additionally, we provide the results of
several ablation studies aimed at assessing:

• Possible changes in performance when a subset of the x, y
and z tactile channels is used instead of the full set;

• The necessity of using the derivative of the tactile
measurements _τ instead of the plain measurements τ as
we hypothesized in Section 3.5.

• The generalization capabilities of the algorithm when
trained using data of one object in the group and tested
on the remaining ones;

• The relevance of the object weight in the training procedure.

Qualitative results on position and velocity tracking
performance and considerations on the training and online
inference times are also provided.

In a second set of experiments, we tested the possibility to use
the output of the learned filter in a practical application.
Specifically, we performed the same controlled sliding
experiment, as described in Section 4.2.1, while altering the
default control commands in order to stop the object sliding
after a pre-defined number of centimeters decided by the user. To
this end, we compare the positional estimate, provided by the
differentiable filter, to a threshold in order to decide when to stop
the object sliding by increasing the grasp strength.

Overall, the aim of our experiments is not only to assess the
ability of the training procedure to provide reasonable performance
on the task of position and velocity tracking during sliding but also
the effectiveness of the proposed method in a robotic scenario
where the output of the learned filter is used to take decisions on
the grasping strength using tactile data solely.

5.1 Data Collection
The objects that we adopted in our experiments are shown in
Figure 6. From the left:

• a box-shaped object made of paper;
• a water bottle made of plastic;
• a mustard bottle made of rigid plastic;

The bottles have been filled such that their weights is
approximately 180 g. This weight has been chosen such that it

FIGURE 6 | Picture of the objects used in the experiments. From the left,
the box-shaped object, the water bottle and the mustard bottle.

1https://github.com/robotology/dekf-tactile-filtering
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is within that maximum allowed payload for the wrist of the
iCub robot hand. Furthermore, this weight allowed us
executing the controlled sliding experiments while avoiding
excessive maximum normal forces between the fingertips and
the object at the moment of stopping the sliding motion. Given
that the box-shaped object is made of paper, hence more
delicate, we reduced the weight to 100 g in order to reduce
the exchanged forces at the moment of stopping the sliding
motion and avoid altering its shape. ArUco markers have been
applied on all the objects in order to track their position over
time as discussed in Section 4.2.3. The collected data will be
made publicly available for free online2.We executed 1003

experiments of controlled sliding for each object with the
purpose of collecting training and testing data. Each
experiment has been collected at 30 Hz and lasts

approximately 1 min. We used half of the sequences for
each object as training data and the remaining sequences
for testing. The maximum and minimum values τg,min and
τg,max that we adopted for the three objects are:

• 300 and 600 for the box-shaped object;
• 800 and 1300 for the water bottle;
• 800 and 1500 for the mustard bottle.

Sample signals from the ArUco marker detection system and
of the tactile sensors output are shown in Figure 7.

5.2 Results on Position and Velocity
Tracking
5.2.1 Evaluation Metrics
In order to evaluate the performance on pose and velocity
tracking we adopted the Root Mean Square Error (RMSE)
metric (Bar-Shalom et al., 2002) over the entire trajectory

FIGURE 7 | Data traces for one of the data collection experiment performed using the mustard bottle. The tactile signals correspond to the raw sensor reading
using arbitrary units.

2https://github.com/robotology/dekf-tactile-filtering
3The number of experiments for the object “mustard bottle” amounts to 75.
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averaged on a set of N trials. Given the positional error at time t
for the i-th trial

ep,i(t) � pt,i − pgtt,i, (33)

the RMSE is defined as:

RMSE(ep)d1
N

∑N
i�1

����������
1
T

∑T
t�1

ep,i(t)2
√√⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ (34)

The error RMSE (ev) on the velocity part is similarly defined.
We also considered the mean of the maximum absolute error

over the entire trajectory averaged on a set of N trials as an
evaluation metric. For the positional part, it is defined as:

max(ep)d1
N

∑N
i�1

max
t
|ep,i(t)| (35)

The maximum error max (ev) on the velocity part is similarly
defined.

5.2.2 Training and Testing Errors
In Table 1, we report the RMSE and max errors on position and
velocity tracking for each object on the training and testing sets.
For each object we trained the differentiable filter using data
belonging to the training set of that object only. The numerical
results show that the training RMSE error in position is below
0.5 cm on average with a maximum average error of 0.845 cm.
The performance degrades only slightly on the testing set: the
testing RMSE error is below 0.6 cm on average, that we deem as
fairly accurate, with a maximum average error of 1.117 cm.

The training RMSE error in velocity is below 0.04 cm/s with a
maximum average error of 0.136 cm/s. The performance slightly
reduces on the testing set with RMSE errors below 0.05 cm/s and
a maximum average error of 0.179 cm/s.

We notice that the best performance is achieved with the water
bottle object, while for the mustard bottle it degrades more than
other objects. We found experimentally that this condition
depends on the fact that the sliding experiment has a larger
variability in its outcome for this object than others once we fixed
the trajectory τg of the generalized grasp strength over
experiments trials.

5.2.3 Relevance of Tactile Channels
In Table 2 we considered the outcome of several training
experiments where we do not feed the entire tactile channel
set, i.e. {τ f

x , τ
f
y , τ

f
z } for each finger f, but only a subset. We recall

that, given the choice of the reference frame attached to each
tactile sensor (Figure 1), we are expecting that the actual
information on the sliding motion is stored in the x and y
channels. On the other hand, the information stored in the z
channel, while still useful in general, should not be necessary to
estimate the sliding motion.

As can be seen from the numerical results on the testing set,
the performance achieved using the xy configuration is similar to
that achieved using the xyz configuration but slightly better in
terms of positional error. On the other hand, the velocity error is
lower for the xyz configuration but the difference is less
remarkable. The numerical results also show that if we only
feed the z channel to the differentiable filter, the performance
degrades such that for two objects out of three the maximum
error in position is more than 1 cm.

The fact that the filter is able to produce a reasonable estimate
even when using only the z channel depends on the fact that the
evolution of this channel is constrained by the closed-loop
controller, as we explained in Section 4.2.1. When the
maximum generalized grasp strength τg,max is commanded, the
object should not slide. Viceversa the object slides, with
increasing velocity, when the commanded signal shifts towards
τg,min (Figure 3). However, in practice, it might happen that even
when the minimum grasp strength is commanded, the object
does not slide or barely slides (e.g. because it touches parts of the
fingers or of the hand that prevents the sliding motion). In these
cases, using the information stored in the z channel only, at
training time, would make the training procedure ill-posed.
Indeed, the same configuration of the z channel would be
associated to two totally different outcomes. As an example,
when the minimum grasp strength is commanded there will
be trials where the associated ground truth velocity is mostly zero
and other trials where it is non-zero. This conditionmight explain
why the performance achieved using only the z channel is still
reasonable but worst than the other configurations. In Figure 8,
where we report qualitative results on position and velocity
tracking within one experiment from the testing set, it can be
seen that using the z channel only might actually produce non-
zero estimated velocities when the object is actually non sliding,
which is undesirable.

Given the above reasoning, the overall outcome of the results
reported in Table 2 is that the best channel configuration in terms
of positional error is the xy configuration. Furthermore, by
excluding the z channel we reduce the probability of feeding
the differentiable filter with ill-posed input-output pairs at
training time, which is undesirable.

TABLE 1 | Position and velocity RMS and maximum training and testing errors using the full (xyz) set of the tactile channels for all the fingers.

Training error using xyz tactile channels Testing error using xyz tactile channels

ep (cm) ev (cm/s) ep (cm) ev (cm/s)

Metric RMSE max RMSE max RMSE max RMSE max

Bottle 0.200 0.413 0.024 0.086 0.264 0.548 0.028 0.110
Mustard 0.715 1.419 0.048 0.212 0.977 1.882 0.063 0.286
Box 0.422 0.702 0.025 0.109 0.460 0.811 0.034 0.142
Mean 0.446 0.845 0.032 0.136 0.567 1.080 0.042 0.179
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5.2.4 Necessity of the Derivative of the Tactile
Measurements
In Table 3 we report the numerical results of several training
experiments where we feed the differentiable filter with the raw
tactile measurements τ instead of its derivative _τ as discussed in
Section 3.5. For these experiments we used the final configuration
with the xy tactile channels as discussed in the previous sections.

The numerical results demonstrate the necessity to adopt the
derivative of the tactile measurements instead of the plain
measurement. The RMSE positional error is reduced by ∼60%
on average and the maximum error by ∼50%.

Although the performance degrades considerably, it seems
from the numerical results that it is still possible to train the pose
and velocity tracking task using the plain tactile measurements.
However, as shown in Figure 8, the actual shape of the estimated
signal, while it tries to resembles the ground truth, is different in
certain key aspects. At the beginning of the experiment, when the
object is still not sliding, the slope of the estimated position is
wrong and it reaches a non zero position almost instantaneously

in a neighbourhood of t � 0. This is confirmed by the estimated
velocity where, at t � 0, an initial spike in the velocity is reported.
Furthermore, the shape of the estimated velocity does not follow
the actual profile of the ground truth velocity while it tries to
follow the mean velocity.

5.2.5 Generalization Capabilities
In Table 4 we report the outcome of several experiments where
we tested the possibility of running the learned filter on a given
object using the model trained on a different one. For these
experiments we used the final configuration with the xy tactile
channels as discussed in the previous sections.

Using the model trained on the data of objects bottle and
mustard, the average performance on the RMSE positional error
is in the order of 0.7 cm. By comparing with the performance in
the ideal case, where we test on each object using the correct
model (as in Table 2), we can see that the RMSE positional error
approximately increased by an amount of 0.2 cm which we
consider as a good compromise.

TABLE 2 | Position and velocity RMS and maximum testing errors using several configurations of the tactile channels (xyz, xy and z).

Testing error

ep (cm) ev (cm/s)

RMSE max RMSE max

Channels xyz xy z xyz xy z xyz xy z xyz xy z

Bottle 0.264 0.284 0.674 0.548 0.549 1.320 0.028 0.030 0.056 0.110 0.117 0.152
Mustard 0.977 0.706 0.754 1.882 1.423 1.613 0.063 0.067 0.084 0.286 0.301 0.303
Box 0.460 0.492 0.442 0.811 0.811 0.810 0.034 0.038 0.042 0.142 0.147 0.148
Mean 0.567 0.494 0.623 1.080 0.928 1.248 0.042 0.045 0.061 0.179 0.188 0.201

A bold entry indicates the best result among the available alternatives.

FIGURE 8 | Comparison of the position and velocity trajectories for several configuration of the tactile measurements with the ground truth state for the object
mustard bottle.
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Conversely, if we use the model trained on the box the
performance on the other two objects degrades consistently with
per object RMSE errors above 2 cm and overall RMSE error above
1.8 cm. This outcome can be explained by the fact that the grasping
strength regime for this object (between τg,min � 300 and τg,max �
600) is different enough as compared to that of the other two objects.
Even if we excluded the z channel from the training set, nothing
prevents the normal interaction between the fingertip and the object
surface to partially project also on the x and y channels.

Nevertheless, in Table 4 we show that it is possible to train the
differentiable filter on all the objects of interest (indicated as all in
the table) and achieve the best performance. While this
configuration requires collection of training data for all the
objects of interest, it allows using a single model online
without the necessity to know the identify of the object being
manipulated by the robot.

In Table 5, we report the results of another experiment aimed
at understanding the relevance of the object weight in the training
procedure. We considered the scenario in which the object has
weight wtarget and the training data is available for two
neighbouring weights w1 and w2, such that w1 < wtarget < w2.
In this experiment, the network is trained using data
corresponding to the weights w1 and w2 and object position
and velocity tracking performance are then assessed using the
testing data corresponding to the target weight wtarget. As
baseline, we compare to the case in which the network is
trained using the data corresponding to the target weight wtarget.

We executed the aforementioned experiment using the box-
shaped object and considered as weightsw1 � 100 g,w2 � 150 g and
wtarget � 125 g. 50 experiments were collected for each weight, 10 of
whichwere used for testing. In order to have a fair comparison with

the baseline configuration, we fixed the number of experiments
used for training. Specifically, when training using the target
weight, we used all the 40 experiments designated as training
data. When training using the neighbouring weights, we used 20
experiments from the training data corresponding to the weight w1

and 20 experiments corresponding to other weight w2. We
executed the tracking experiment using both xy and xyz tactile
channels configurations, in order to discuss potential effects of
using also the z channel when the weight at test time is different
from the weight at training time.

As can be seen from Table 5, the tracking performance
achieved when using the model trained on the neighbouring
weights remains quite acceptable, especially in the case of the xyz
configuration. In this configuration, the RMSE and maximum
positional errors increase by approximately 0.03 and 0.15 cm
respectively with respect to the baseline, while the RMSE and
maximum velocity errors increase by approximately 0.03 cm/s
and 0.12 cm/s respectively. In the case of the xy configuration, the
drop in performance is more noticeable: the RMSE and
maximum positional errors increase by approximately 0.22
and 0.35 cm, while the RMSE and maximum velocity errors
increase by approximately 0.03 cm/s and 0.21 cm/s. The results
in the same table show that using the xy configuration still
represents the most indicated solution if training data of the
target weight is available (confirming the results discussed in
Section 5.2.3). On the other hand, using the xyz configuration
helps generalizing to weights unseen at training time.

5.2.6 Qualitative Results
In Figure 8we provide qualitative results on position and velocity
tracking for one of the experiment involving the mustard bottle in

TABLE 3 | Comparison between position and velocity RMS and maximum testing errors when using plain tactile measurements as compared with their time derivative.

Testing error using xy tactile channels

ep (cm) ev (cm/s)

RMSE max RMSE max

Measurement τ _τ τ _τ τ _τ τ _τ

Bottle 0.381 0.284 0.648 0.549 0.033 0.030 0.109 0.117
Mustard 2.698 0.706 4.045 1.423 0.107 0.067 0.401 0.301
Box 0.699 0.492 1.199 0.811 0.049 0.038 0.158 0.147
Mean 1.259 0.494 1.964 0.928 0.063 0.045 0.223 0.188

A bold entry indicates the best result among the available alternatives.

TABLE 4 | Position and velocity RMS testing errors using different combinations of training and testing sets. The model name “all” indicates a training set consisting in the
union of the training sets of all the objects.

Testing error using xy tactile channels

RMSE ep (cm) RMSE ev (cm/s)

Trained on Bottle Mustard Box All Bottle Mustard Box All

Tested on

Bottle 0.284 0.600 2.040 0.519 0.030 0.080 0.092 0.041
Mustard 0.978 0.706 2.930 0.664 0.077 0.067 0.114 0.066
Box 0.800 0.821 0.492 0.676 0.062 0.067 0.038 0.051
Mean 0.687 0.709 1.821 0.620 0.056 0.071 0.081 0.053

A bold entry indicates the best result among the available alternatives.
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several configuration of the differentiable filter. Specifically, we
compare the ground truth signal with the estimates obtained
using the xy tactile channels in three cases:

• using the model trained on the data from the mustard
experiments;

• using the model trained on all the objects, indicated as all;
• using the plain tactile measurements instead of their
derivatives.

We also compare with the model trained on the data from the
mustard experiments in the case of using the z tactile channel
only. We report the evolution over time of the position pt and
velocity vt and their errors ep,t and ev,t.

Overall, the configuration that best follows the actual profile of
the object position and velocity is given by the model trained on
all the data. The model that uses only the z tactile channel fails in
estimating the correct velocity in the final part of the experiment.
Conversely, the model using the plain tactile measurements fails
to estimate the correct position in the initial part of the
experiment and completely fails to estimate the actual velocity
of the object.

5.2.7 Training and Inference Time
Although our software implementation uses the GPU-enabled
machine learning framework PyTorch (Paszke et al., 2019), we
executed our experiments using CPU computations, instead of a
GPU, as we found that both training and inference time were
lower. This outcome is expected given that our application does
not involve images as input to the network architecture, which
typically require the use of GPUs to reduce both training and
inference times.

Taking into account the number of experiments whose data is
used for training (Section 5.1) and the adopted training protocol
(Section 4.5), the training procedure for a single object completes
in 22 min and 55 s. The time required for smoothing both the
training and testing data, as per the Section 4.3.1, amounts to 52 s
while in order to evaluate the derivatives of the tactile
measurements for all the experiments, as per the Section
4.3.2, the required time amounts to 5 min and 14 s.

Regarding inference times, the overall filtering pipeline can
run at 119 Hz (including the time required to evaluate the
derivatives of the tactile measurements), providing real-time
state feedback for robot control purposes.

All the presented experiments were executed on an Intel i7-
9750H multi-core CPU.

5.3 Results on Using the Learned Filter in a
Practical Scenario
In this section, we discuss the possibility of using the learned filter
in a pratical scenario to take decisions based on the state of the
object xt, while it is sliding. We considered the scenario in which
the object needs to slide by a given amount of centimeters,
indicated as ptarget, specified by the user. To this end, we
adopted the same control architecture for controlled object
sliding that has been described in Section 4.2. However,
instead of alternating between the maximum grasp strength
τg,max and the minimum grasp strength τg,min indefinitely until
the end of the trajectory, as in Figure 3, we use the tracked
position pt from the filter to decide when to stop the object sliding
by applying the maximum strength τg,max. The resulting desired
grasp strength τg,des is selected as follows:

τg,des � alternates between τg,min and τg,max if pt < ptarget
τg,max otherwise{

(36)

5.3.1 Evaluation Metrics
In order to evaluate the performance of the experiment we use the
followingmetrics.We define the decision error edecision as the absolute
error between the filtered position pt and the ground truth pgtt at the
instant of time in which pt ≈ ptarget, averaged on N trials of the
experiment. The decision error accounts for the error committed
when the maximum grasp strength is applied and the object stops
moving, and depends on the positional error of the filter.

Next, we define the target error etarget as the absolute error
between the real position of the object pgtt and the target position
ptarget 10 s after the decision to stop the sliding, averaged on N
trials. The target error measures the effectiveness of the overall
strategy in stopping the motion of the object when the target
position is reached.

Finally, we define the long-term error elong−term as the absolute
error between the filtered position pt and the ground truth p

gt
t 10 s

after the decision. This error evaluates the ability of the filter to
remain stable after the maximum grasp strength has been applied.
This ability is not necessarily granted as the desired grasp
strength, modified as in Eq. 36, has not been adopted at
training time.

5.3.2 Discussion of the Results
We executed 20 experiments for each object with different
targets pt, namely −1.5 cm for the box and −2.5 for the two

TABLE 5 | Position and velocity RMS testing errors for the box-shaped object with a weight of 125 g when training using data corresponding to the target weight (125 g) or
the combination of weights (100 and 150 g).

ep (cm) ev (cm/s)

RMSE max RMSE max

Channels xyz xy xyz xy xyz xy xyz xy

Trained on

125 g 0.490 0.394 0.929 0.7741.121 0.041 0.046 0.156 0.155
100 and 150 g 0.521 0.615 1.077 0.7741.121 0.071 0.074 0.276 0.368
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bottles. The experiments have been executed using the tactile xy
channels. In the case of the box, we also repeated the
experiment using the full xyz configuration in order to
discuss potential effects of this configuration on the tracking
performance in presence of grasping strength profiles not seen
at training time.

In Table 6 we report the results of the experiment in
terms of the errors edecision, etarget and elong−term. As can be
seen, the decision and target errors are in the order of
fraction of centimeters and not higher than 0.66 cm.
These results are in accordance with our findings on the
position tracking performance and suggest the effectiveness
of the proposed solution if the requested precision is in the
order of approximately half a centimeter or higher.
Conversely, the long term errors are slightly higher,
especially for the mustard and the box-shaped objects.
This fact is also confirmed by the qualitative results that we
report in Figure 9.

On the left side of the figure we report the outcome of
one experiment with the box-shaped object in the case of
using the xy channels of the tactile sensors. After the sliding
motion of the object is stopped and the desired strength
changed to the maximum value τg,max, the filter starts
diverging over time.

On the right side of the same figure, we report the outcome
of another experiment with the box-shaped object when all the
tactile channels of the sensors are adopted. As can be seen, the
target position is similarly reached and the output of the filter
remains stable even many seconds after the motion of the
object has been stopped. This comparison suggests that using
the z channel at training time, while not crucial for the position
tracking performance, as discussed in the previous section,
might help generalizing to configurations of the grasp strength
profile not seen at training time. Our reasoning is also
confirmed by the numerical results in Table 5, where, in
the case of the box-shaped object, the long term error
reduces by approximately 50%.

We also executed several experiments with the box-shaped
object when considering different weights as done in Section
5.2.5. We used the xyz tactile configuration that helps
generalizing to weights and grasp strength profiles unseen at
training time, as discussed in the previous sections. Similarly to
Section 5.2.5, we trained the network using two neighbouring
weights, namely 100 and 150 g, and executed the experiment with
a target weight of 125 g. As baseline, we executed the experiment
using a model trained on the target weight. We executed 20
experiments for each configuration and we report the averaged
metrics in Table 6. As can be seen, even when using a model
trained on weights different from the target one, the performance,
while degrading with respect to the baseline, remains quite
reasonable with decision, target and long-term errors of
approximately 0.3, 0.4 and 0.3 cm respectively.

6 ASSUMPTIONS AND LIMITATIONS

The present work would not have been possible without relying
on several assumptions and approximations that we discuss in
this section in order to identify aspects to be further investigated
in future research.

6.1 Handling of Object Rotations
In this work, we intentionally focus on the problem of tracking
pure translational sliding motions instead of general slippage
motions involving rotations of the object.

Similarly to other works from the slip detection literature
(Veiga et al., 2018), our data collection procedure (Section 4.2) is
not designed to capture object rotations. While ground-truth data
for object translational motions can be easily collected even by
using a simple marker and a limited amount of data post-
processing, rotations during slippage might be of limited and
subtle magnitude, hence more difficult to collect due to the noise
in the marker pose detection process. Furthermore, in-hand
object rotations heavily depend on the position, eventually
discontinuous, of the contact points with respect to the object
center of mass and on the inertial properties of the object.
However, a precise control of the contact points, useful to
achieve a repeatable data collection procedure, is out of scope
of the present work. Nonetheless, we deem important to study
how to account for object rotations in the proposed architecture
and we plan to investigate this in future research.

6.2 Handling of External Disturbances
In the present work, we tackle the problem of object sliding
tracking in the scenario of in-hand object manipulation in
which gravity is the only external force applied to the object.
We remark that this scenario is not unrealistic and that it is
adopted by other works, e.g. in the literature on tactile-based
object manipulation and perception (Meier et al., 2016; Bimbo
et al., 2015; Liang et al., 2020; Suresh et al., 2020). We deem it is
important to address this scenario first before considering the
more general case in which other forces and external
disturbances act on the object.

TABLE 6 | Decision, target and long-term errors for several objects with different
weights, several targets and configurations of the tactile channels.

Object Bottle Mustard Box

Target −2.5 cm −2.5 cm −1.5 cm
Weight 180 g 180 g 100 g
Tactile channels xy xy xy xyz
edecision (cm) 0.459 0.656 0.330 0.216
etarget (cm) 0.386 0.547 0.274 0.207
elong−term (cm) 0.418 1.101 0.748 0.357

Box

−1.5 cm
125 g 125 g

(Trained on 100 and 150 g)
xyz

0.160 0.312
0.223 0.409
0.181 0.281
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6.3 Characteristics of the Considered
Objects
In this work, we considered two prism-shaped objects (i.e. the
box-shaped object and the water bottle made of plastic) and
one object with non-convex shape, i.e. the mustard bottle. The
former are characterized by a constant cross section such that
the fingers can slide freely on the object surface while avoiding
to be blocked by irregular changes in the object shape. While
the mustard bottle presents some irregularity in the shape of
the lateral edges, we limited our experiments to the case in
which the fingers slide along the wider surface of the bottle.
Although we believe that tracking the sliding motion along
irregular surfaces would be useful, we recognize that this
problem is connected more with the ability of the fingers
controller to follow an irregularly-shaped surface rather
than the ability of the filtering architecture to process the
signal produced by the sensors in that scenario.

Regarding the size, and especially the length, of the objects, in
this work we considered objects having at least one direction with
a non-negligible length (see Figures 1, 4) as compared to that of
the palm of the hand of the adopted robotic platform, i.e. the iCub
humanoid robot. The reason behind this choice is mostly
practical, as we are interested in the problem of estimating the
sliding motion of the object, hence it is required to have objects
that could actually slide between the fingers of the hand for a
certain number of centimeters. We remark that this assumption
does not prevent the possibility to use the proposed pipeline with
objects that are smaller than those adopted in our experiments, as
long as the desired tracking precision stays within the average
position error achieved by our pipeline, i.e. 0.6 cm.

6.4 Application to Closed-Loop Control
In the experimental section of this work, we provide the results of a
simple practical application where the output of the proposed
pipeline is used to stop the sliding motion of the object after a
certain number of centimeters provided by the user.We use a simple
thresholdingmechanism to achieve this behavior. A natural question
arising from our experiments is whether it is possible to control the
motion of the fingers continuously, using the feedback from the
learned filter, in order to control the sliding velocity of the object and
track a desired reference velocity. Furthermore, we deem important
to understand whether the learned differentiable motion model in
Eq. 11 can be utilized in the synthesis of the aforementioned control
systemusingmodel-based control techniques.We plan to investigate
these aspects in future work.

7 CONCLUSION

In this paper we proposed an approach for tracking the 1-D
position and the velocity of an object undergoing translational
sliding motion between the fingers of an anthropomorphic hand
equipped with tactile sensors. We showed how to collect clean
labelled data directly on a real humanoid robot and train a
differentiable Extended Kalman filter end-to-end for the task
of position and velocity tracking.

Experiments using a real anthropomorphic hand equipped
with tactile sensors, and integrated on the iCub humanoid
robot platform, show that our approach allows achieving
position tracking errors in the order of 0.6 cm on average,
and that the proposed method can be used effectively to
control the sliding of the object using tactile feedback alone.

FIGURE 9 | Sample trajectories from one of the experiments on using the learned filter in a practical scenario with the box-shaped object. In (A), the results are
shown when using the xy tactile channels, in (B) when using the xyz tactile channels.
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As future work, we propose to extend the presented algorithm in
order to take into account the possible 3D rotation of the object
during the slidingmotion. Furthermore, we propose to the utilize the
learned motion and measurement models to synthesize a controller
for precise object velocity control during the sliding motion.
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