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Remote teleoperation of robots can broaden the reach of domain specialists across a wide
range of industries such as home maintenance, health care, light manufacturing, and
construction. However, current direct control methods are impractical, and existing tools
for programming robot remotely have focused on users with significant robotic experience.
Extending robot remote programming to end users, i.e., users who are experts in a domain
but novices in robotics, requires tools that balance the rich features necessary for complex
teleoperation tasks with ease of use. The primary challenge to usability is that novice users
are unable to specify complete and robust task plans to allow a robot to perform duties
autonomously, particularly in highly variable environments. Our solution is to allow
operators to specify shorter sequences of high-level commands, which we call task-
level authoring, to create periods of variable robot autonomy. This approach allows
inexperienced users to create robot behaviors in uncertain environments by
interleaving exploration, specification of behaviors, and execution as separate steps.
End users are able to break down the specification of tasks and adapt to the current
needs of the interaction and environments, combining the reactivity of direct control to
asynchronous operation. In this paper, we describe a prototype system contextualized in
light manufacturing and its empirical validation in a user study where 18 participants with
some programming experience were able to perform a variety of complex telemanipulation
tasks with little training. Our results show that our approach allowed users to create flexible
periods of autonomy and solve rich manipulation tasks. Furthermore, participants
significantly preferred our system over comparative more direct interfaces,
demonstrating the potential of our approach for enabling end users to effectively
perform remote robot programming.
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1 INTRODUCTION

Effective teleoperation of robots—broadly, a remote human controlling a robot at a distance
(Niemeyer et al., 2016)—is critical in scenarios where automation is impractical or undesirable.
When a person operates a remote robot, they must acquire sufficient awareness of the robot’s
environment through sensors and displays, be able to make decisions about what the robot should
do, provide directions (control) to the robot, and evaluate the outcomes of these operations. These
challenges have been addressed with a wide range of interfaces that span a continuum of levels of
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autonomy (Beer et al., 2014), ranging from direct control where
the operator drives the moment-to-moment details of a robot’s
movements, to asynchronous control, where operators send
complex programs to the robot to execute autonomously,
e.g., space exploration where robots receive programs for a
day’s worth of activities (Maxwell et al., 2005). The choices
of level of control provide different trade-offs to address the
goals of a specific scenario. In particular, longer-horizon control
offers better robustness to communication issues and provides
long periods of idle time for the operator while the robot is
executing the commands. However, it also limits the
opportunities for the human to react to unexpected
situations during the program execution and requires
significant huamn expertise to design robust behaviors and
advanced sensing skills for the robot. On the other hand,
more direct control allows operators to react quickly and
easily to uncertainty, but demands constant attention from
the operator, often relies on dedicated hardware, and requires
a fast and stable connection to ensure that the tight real-time
loop between the operator and the robot is maintained.

Our goal is to provide effective telemanipulation for end-user
applications, such as home care, light manufacturing, or
construction. In such scenarios, high level robot autonomy of
autonomy would be desirable, as this would reduce the operator’s
workload, however there remains situations where a fully
autonomous behavior cannot be created. Users have domain
knowledge, they can analyze the robot environment and
determine appropriate actions for the robot, but they have no
expertise in creating robot programs. Building a system
supporting teleoperation for these novice users presents a
number of challenges, the system needs to 1) be easy to use,
2) support active perception (Bajcsy, 1988), 3) support
specification of robot behaviors adapted to the current state of
the environment, and 4) allow for periods of autonomy. As we
will detail in Section 2, current interfaces for teleoperation are
often specifically tailored to highly trained operators or adopt a
low level of autonomy. The former are not suited to novice users
and the latter forces users to continuously provide inputs to the
robot, reducing both the usability over extended periods of time
and increasing the sensitivity to communication issues.

Our key idea is to use task-level authoring to enable the
operator to control the robot by specifying semantically
connected sequences of high-level (task-level) steps. This
paradigm supports various lengths of program depending on
available environment information, ranging from single actions
to longer plans. For example, a robot might need to open a drawer
with a specific label and empty it, however the robot does not have
character recognition. The operator could use the robot to locate
the appropriate drawer and then create a plan for the robot to
open this specific drawer, remove all items in it, and then close it.
Task-level authoring aims to offer more flexibility for the
operator, allowing them both to specify long periods of
autonomy when possible, but also have a more direct control
when necessary to allow the operator to obtain the environmental
awareness necessary to make longer plans.

We propose four principles to support effective
telemanipulation by novices:

1) Interleaving observation and planning: the stepwise nature of
manipulation tasks allows phases of observing the environment
to gain awareness with phases of acting on that information.
Execution occurs asynchronously, allowing it to be robust
against communication problems and providing idle time to
the user. Users can assess the state of the environment, devise a
short plan for the robot, execute it, and the restart the process
with the new state of the environment.

2) Controlling the robot at the action level: instead of controlling
the robot motions, operators can select actions for the robot
(e.g., pick-up, pull, or loosen). Such higher level of control
allows participants to focus on the task that needs to be solved
instead of the robot’s kinemathics or workspace geometry.

3) Providing a unified augmented reality interface: task
specification can be accomplished from a viewpoint chosen
by the user to be convenient, as part of their awareness
gathering process. This process allows us to use a screen
overlay-based augmented reality interface that aggregates
all the required information for decision making on a
single view also used to specify actions. This single view
makes the programming easier for the users as all the
important information are available in a single place.

4) Specifying actions graphically: the augmented-reality interface
allows for details of operations to be specified and verified
graphically in context, simplifying the interface further.
Additionally, such graphical specification allows easily to
generalize a plan to a group of objects of the same type.

We have prototyped these ideas in a system called Drawing
Board after an artist’s portable drawing board (Figure 1) and
evaluated it in a user study with 18 participants. Our central
contribution is to show that a task-level authoring approach can be
applied to teleoperation to create a system that affords both ease-

FIGURE 1 | Drawing Board: task-level authoring for robot teleoperation.
By watching a robot-centric augmented video feed and annotating it, novice
users can acquire awareness about the robot’s environment and send task-
level plans to control a robot remotely.
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of-use and asynchronous operation. In our study, remote operators
(students with limited programming knowledge) were able to
perform complex tasks, gaining the benefits of asynchronous
operation (robustness to delays and opportunities for longer
periods of idle time) with the ease-of-use and reactivity of more
direct interfaces. Participants—some literally on the other side of
the world—were able to teloperate the robot with little training and
preferred our system compared to interfaces not embodying our
principles. These findings show how the core choice of task-level
authoring is supported by specific interface and implementation
designs, yielding a system that meets our goals, allowing end users
to remotely create short period of autonomy for robots.

2 RELATED WORK

Our work brings elements from the field of authoring and end-
user programming to teleoperation.

2.1 Teleoperation
Fundamentally teleoperation refers to human control of robot
actions, typically done remotely (i.e., the human and the robot are
not collocated and the human can only perceive the robot’s
environment through artificial sensors and displays)
(Niemeyer et al., 2016). With teleoperation, the question of
the appropriate level of autonomy is important, especially in
the presence of delay and partial situational awareness (Yanco
et al., 2015; Niemeyer et al., 2016). Levels of autonomy form a
continuum between direct control and long-term programs:

1) Direct control: low-level control where the operator is
manually controlling all actions of the robot in real-time
(e.g., remote surgery (Marescaux et al., 2001), military
(Yamauchi, 2004)).

2) Semi-autonomy: the human operator intermittently controls
robot actions where required and can parameterize higher-
level actions that are executed autonomously by the robot
(e.g., search-and-rescue, DARPA Robotics Challenge
(Johnson et al., 2015)).

3) Teleprogramming: operators create programs defining actions
and reactions to changes in the environment for the robot to
execute over longer period of time (e.g., Mars rovers
programmed every day for a full day of autonomy (Norris
et al., 2005)).

Direct control has seen widespread use in the aerospace,
nuclear, military, and medical domains (Niemeyer et al., 2016)
as it allows operators to quickly react to new information.
However, this type of teleoperation requires constant inputs
from the operator and is highly sensitive to communications
problems. Researchers have explored various methods to address
this communication challenge. One direction of research involves
optimizing the communication channel itself to reduce delay and
allow the operator to have quick feedback on their actions
(Preusche et al., 2006). Another method, shared control, seeks
to make the process more robust to human error through means
such as virtual fixture methods, which support the operator in

their direct manipulation task (Rosenberg, 1993) or alternating
phases of teleoperation and autonomous operation (Bohren et al.,
2013). Finally, a third alternative uses a virtual model of the
workspace to provide rapid feedback to the user from simulation
while sending commands to the robot (Funda et al., 1992).

On the other end of the spectrum, traditional programming
for autonomy and teleprogramming provides only limited
feedback to the operator about the robot behavior. Operators
need to have complete knowledge about the task including all
required contingencies, to create dedicated programs for each
task. These programs must be robust enough to run
autonomously for hours without feedback. Furthermore, the
robot needs to have the sensing capabilities to capture and
analyze every relevant information in the environment. This
highly autonomous control method is especially useful where
there are large time delays between the robot and the operator
which prevents the operator from intervening in real-time, such
as when controlling a rover on Mars (Maxwell et al., 2005).

A semi-autonomous robot is a middle ground between these
two extremes: it can execute short actions autonomously, but
relies on the human operator to determine a plan of action and
provide the correct parameters for these actions. The human (or
team of humans) can use the robot to actively collect information
about the environment, and provides near real-time inputs to the
robot. The DARPA robotic challenge explores this space. In this
case, the robot can run parameterized subroutines while multi-
person teams of highly trained operators analyze data from the
robot and control it at various abstraction-levels (from joint angle
to locomotion goal), including situations with unstable
communication channels (Johnson et al., 2015). These
subroutines can be parameterized by selecting or moving
virtual markers displaying the grasping pose (Kent et al.,
2020), robot joint position (Nakaoka et al., 2014), or using
affordance templates (Hart et al., 2014). In a retrospective
analysis, Yanco et al. (2015) highlight the training required for
operating the robots during these trials, and reports that
researchers should explore new interaction methods that could
be used by first responders without extensive training.

One approach to simplify both awareness acquisition and
control (two keys aspects in teleoperation) is to use monitor-
based augmented reality—overlaying digital markers on views
from the real world (Azuma, 1997). For example, Schmaus et al.
(2019) present a system where an astronaut in the space station
controlled a robot on earth using this technology. Their point-
and-click interface presents the video feed from the head camera
of a humanoid robot with outlines of the detected objects and
menus around the video. When clicking on one of these objects,
the system filters the actions that can be done on this object to
propose only a small subset of possible actions to the operator.
Similarly, Chen et al. (2011) propose a multi-touch interface
when actions are assigned to gestures on a video feed displayed on
a touch screen. This type of point-and-click or gesture interface
allows the remote operator to gain awareness about the
environment and simply select high-level actions for the robot
to perform. Simulations can also be overlaid with markers that
users can manipulate to specify the desired position of a robot or
its end-effector (Hashimoto et al., 2011; Hart et al., 2014; Nakaoka
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et al., 2014). However, despite these advances, little work has been
done to explore and evaluate interfaces that allow naive operators
to actively acquire awareness about the environment and create
longer plans consisting of multiple actions.

2.2 Authoring
In the context of robotics, the term authoring refers to methods
allowing end users to create defined robot behaviors (Datta et al.,
2012; Guerin et al., 2015; Weintrop et al., 2018). The general process
starts with a design period where an initial behavior is created, then
the robot can be deployed in the real world and its behavior tested
and refined in additional programming steps if needed. When the
desired requirements are achieved, the authoring process is finished
and the robot is ready to be deployed to interact autonomously.
Authoring differs from classic programming in its focus on end users
with limited background in computer sciences and seeks to address
questions of how can these users design, or author, behaviors using
modalities such as tangible interactions (Sefidgar et al., 2017; Huang
and Cakmak, 2017), natural language (Walker et al., 2019),
augmented- or mixed-reality (Cao et al., 2019a; Peng et al., 2018;
Akan et al., 2011; Gao and Huang, 2019), visual programming
environments (Glas et al., 2016; Paxton et al., 2017), or a mixture of
modalities (Huang and Cakmak, 2017; Porfirio et al., 2019).
Steinmetz et al. (2018) describe task-level programming as
parameterizing and sequencing predefined skills composed of
primitives to solve a task at hand. Their approach combines this
task-level programming and programming by demonstration
(Billard et al., 2008) to create manipulation behaviors.

While promising, classic authoring methods suffer from two
limitations when applied to remote robot control. First, the
authoring process is often considered as a single design step
creating a fully autonomous behavior (Perzylo et al., 2016; Cao
et al., 2019b). This monolithic approach differs from teleoperation
which assumes that human capabilities (sensory or cognitive) are
available at runtime to help the robot successfully complete a task.
Second, many authoring methods such as PATI (Gao and Huang,
2019) or COSTAR (Paxton et al., 2017) use modalities only available
in situations where the human operator and the robot are collocated
(e.g., kinesthetic teaching, tangible interfaces, or in-situ mixed
reality). For example, teach pendants—which are interfaces
provided by manufacturers of industrial robots—are designed to
be used next to the robot and often require the operator to manually
move the robot. Consequently, while available to end users, such
methods are not possible to use remotely. Our work is in the line of
Akan et al. (2011), who used augmented reality to specify plans for a
robotic arm. However, our premise is that to enable novice users to
teleoperate robots, active perception (i.e., environment exploration)
and behavior specification should be interleaved and coupled
through a single simple interface, and that manipulation of
graphic handles is a powerful way to specify parameters for actions.

3 DESIGN

To allow non-expert users to control robots remotely, we propose
a system rooted in task-level authoring which allows users to
navigate the live environment and specify appropriate robot

behaviors. The following sections and Figure 2 detail the key
concepts of the system topology.

3.1 Interleaving Observation and Planning
Specifying full execution plans for a robot would allow to reduce
the operator workload during plan execution, but requires
significant expertise in robotics and highly capable robots. To
allow end users to create adaptable periods of autonomy for the
robot, we propose to use a task-level authoring approach. This
approach simplifies the programming process by allowing the
programmer to break tasks into sequences of high level actions
based on what they observe at the moment. Users can chain
together actions to create flexible periods of autonomy, adapted to
their knowledge of the situation. For example, a set of actions may
consist of grabbing a set of bolts in an area and moving them into
a set grid pattern to fasten a structure. If the user is unsure what
action is required next or if something unexpected occurs, the
task-level authoring approach allows the user to explore the
environment and create new programs based on the outcome
of previous actions and new information.

Controlling robots at the task level creates a number of
opportunities for end-user teleoperation; it allows the human
to remain in the decision loop to provide necessary expertise,
while maintaining an asynchronous workflow. Such design allows
end-users to alternate between observing the environment,
specifying robot actions, and executing sequences of
commands. Operators can specify short actions to explore the
environment by moving the robot camera, acquiring awareness,
and selecting an appropriate view point to author task plans.
Then, once they have gathered enough information about the
environment to know their next actions, they can schedule a
longer plan consisting on multiple actions to solve the current
part of the task. This process can be repeated as much as needed
which allows for plans to be tailored to the current state of the
environment. The asynchronous execution also provides
robustness to communication instability. The inclusion of the
operator in the control loop takes away the complexity of
teleprogramming by having the human making complex
perceptions and decisions. Thus, it keeps the benefits of direct
control without the requirement of a tight and stable control loop
and maintain the benefits of asynchronous control without
requiring to create complex programs and plan ahead for
unknown future.

3.2 Controlling the Robot at the Action Level
As mentioned in Section 2.1, teloperation levels of control covers
a spectrum from direct control to teleprogramming. Direct
control can afford ease of use when the user is provided with
intuive input device (Rakita et al., 2018), however it requires
minute control from the operator and is very sensitive to delay.

As shown in Schmaus et al. (2019), controlling a robot at the
action level provides a number of advantages for teleoperation.
First, as actions are executed using a local control loop, it allows to
be robust to delays in communication. Second, it is intuitive for
users, new operators can pick-up the system easily without
requiring the user to possess any knowledge about robotics
and control. Nevertheless, controlling solely at the action level
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suffers from some limitations. When using a single actions, even
when users know what the robot should do over the next few
actions, they have to specify an action, wait for it to be executed,
specify the next action, and repeat, which can be suboptimal for
the user. Additionally, similarly to any high-level control scheme,
any action not in the robot vocabulary cannot be executed.

3.3 Providing a Unified, Augmented Reality
Interface
Similar to some other robot authoring interfaces (Schmaus et al.,
2019; Walker et al., 2019), our approach uses augmented reality
(AR) to simplify perception and action specification. The interface
is composed of a unifiedmonitor-based AR interface showing a live
camera view of the robot’s environment augmented with digital
markers representing detected objects (see Figure 2). The camera is
mounted directly on the robot’s end-effector for viewpoint
flexibility and registration. The interface is overlaid with a
canvas where the operator can design robot behaviors. This
paradigm is consistent with research which shows that the most
intuitive way to communicate information to an untrained
operator is through vision (Yanco et al., 2004). More complex
information such as the detected object pose and the environment
point cloud are used to parameterize robot behavior behind the
scenes, but hidden from the user’s display.

3.4 Specifying Actions Graphically
One challenge in designing an interface for novice end users is to
simplify the specification of complex manipulations. In
programming, classic ways to set parameters are through
sliders and numbers. Numerical parameter-setting allows

greater precision, but can be unintuitive for users. Instead, our
interface design leverages graphical representations whenever
possible and minimizes required user input.

Our interface uses visual and interactive representations,
mapped onto the augmented video feed, that enable users to
parameterize predefined actions by manipulating these graphical
representations. For example, to move a known object to a known
positions, the interface creates anchors that can be moved by the
user. Then, the interface will display an arrow from the starting
point in the video to the goal point, visually representing the
action in context. The interface uses 2D affordances throughout,
as this is consistent with the 2D representation in video. 6D
locations are inferred from the 2D interface based on
environment information. Additionally, through graphical
localization, a series of actions on a specific object can be
generalized to nearby objects of the same category.

Our interface design only exposes high-level actions to the user
(e.g., move, tighten, pull). The local robot controller decomposes
these high-level actions into series of lower-level actions and
translates them into primitives to reach the desired robot
behavior. The user only has to specify the minimum fields
required to execute the task and graphical specification allows
to specify multiple parameters at the same time and in an intuitive
matter.

4 IMPLEMENTATION

4.1 System
Following the considerations detailed in the previous section, we
implemented Drawing Board, a prototype focused on enabling

FIGURE 2 | Drawing Board’s interface demonstrating our design principles.
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users with little programming experience to operate a robot
remotely. The interface was designed to be served from a
traditional laptop or desktop display and focuses on
controlling a single robotic manipulator. Our implementation
integrates a collaborative robot (Franka Emika Panda) outfitted
with an ATI Axia80-M20 6-axis force torque sensor and a
Microsoft Azure Kinect providing both a 2D image and 3D
point cloud. The camera is placed at the end-effector to allow
for the greatest flexibility in camera position. The components of
the system communicate using ROS (Quigley et al., 2009) with
logic nodes implemented in Python, the graphical user interface
in QML, and the low-level control in C++.1

For facilitating precise interaction with the environment, we
implemented a hybrid controller to have more control over the
forces applied by the robot when doing precise manipulation such
as pulling a drawer. The hybrid control law follows an admittance
architecture where interaction forces are measured from the
force-torque sensor and resulting velocities are commanded in
joint space via pseudo-inverse based inverse kinematics.

We also leverage the Microsoft Azure Kinect depth sensor to
observe the environment. Objects are first localized in the scene
by feeding the color image to Detectron2 (Wu et al., 2019), which
provides a high fidelity binary pixel mask for each detected object.
Once the object is localized, a GPU-accelerated Hough transform
is used to register the known triangle mesh with each instance.
This pipeline allows us to achieve 6D object pose estimation,
which can then be used to provide the user with semantically

correct actions as well as inform the robot motion plan. Our
system also uses a number of predefined points of interest that
represent the position of known static objects in the workspace.
These known points are used as reference for the robot and to
filter the position of objects detected by the live pose estimation
pipeline.

4.2 Workspace
We applied our system to the workspace shown in Figure 3. This
workspace guided our implementation, but the system can be
adapted to other tasks or interactive objects. This workspace is
composed of a number of drawers on the left of the robot with
known positions. The middle of the workspace contains three
white boxes above a blue area and a blue eraser, which are not
detected by the robot object recognition system. The right part of
the workspace contains a grid with holes and a screw box with
known positions, and the grid can contain screws which are
detected by the vision system.

The current prototype includes the following actions:

• Pulling and pushing the drawers;
• Picking, placing, and moving detected objects (e.g., screws)
and undetected objects (e.g., boxes);

• Tightening and loosening the screws;
• Wiping an area.

By having general actions such as pull or move our system can
adapt easily to other objects or different locations and
orientations for these objects.

4.3 Interface
The default interface layout shows the video feed augmented with
markers showing the detected or known points of interest (see
Figure 2). The camera view is cropped to fill the full screen while
showing clearly the robot’s finger to allow users to know the
gripper’s status (open, closed, full).

4.3.1 Direct Control
At the bottom of the screen there are a number of buttons for
direct control: 12 buttons allow the user to move the camera by a
discrete increment in each of the 6 potential directions (5 cm for
the position buttons and π/16 radians for rotations), two buttons
allow grasping and releasing, and a last button resets the robot to
its homing position.

4.3.2 Authoring
To create task-level plans for the robots, users can annotate the
augmented display to select actions applied to objects detected or
parts of the environment. Users can click (or click-and-drag) on
the screen to create selection areas to plan actions for the robot.
Each selection area corresponds to one action or a set of actions
on one type of object. Actions that can be parameterized (e.g.,
move actions) provide different types of handles that can be used
to fully characterize the action. Users can create multiple selection
areas to schedule different types of actions, and the resulting plan
is shown in the Game Plan at the right of screen (see Figure 2).
Users can use this game plan to confirm that the interface

FIGURE 3 | Workspace used for our implementation.

1Open-source code for our system implementation is available at https://github.
com/emmanuel-senft/authoring-ros/tree/study.
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interpreted the intentions correctly before sending the plan to the
robot. During the execution, the user can monitor the robot
progress in the task by watching the video feed and checking the
progress in the plan. Video examples can be found at https://osf.
io/nd82j/.

4.3.3 Interaction with undetected objects
To pick and place an object not detected by the system, users can
manipulate a start pose and a goal pose handles to specify the
motion (see Figure 4). These handles are composed of three
connected points: the interaction point (grasping or releasing) as
well as points representing the robot’s fingers, and users canmove
the handle on the screen to change the interaction location, and
rotate it to specify the end-effector orientation. This pixel value is
then mapped into a 3D point in the camera frame using the
Kinect’s depth camera and converted in a point in space for robot.
The orientation from the interface specifies the rotation on the
vertical axis and consequently completely characterize a vertical
tabletop grasp.

4.3.4 Generalization to Groups of Objects
When creating a selection area, the interface will select a default
object to interact with based on the ones present in the area, but
the type of object can be changed by clicking on radio buttons
displaying the objects present in the area. Each object has a
number of actions that can be executed on it (e.g., a screw can be
tightened, loosened, or moved), and the user can select which
action to apply and in what order by using numbered checkboxes.
These actions will then be applied on each object of the selected
type in the area (e.g., loosen and move all the screws in the area).

4.4 Backend
The interface exposed the following high-level actions: move
(both known and unknown objects), loosen, tighten, wipe,
pull, and push. These high-level actions selected by users are
grounded in the real world by finding the 6D pose of the
interactions points in the user plan (either using the depth
map from the Kinect or the location of points in a list of
known objects). Each action is then hierarchically decomposed
in a set of lower level actions (e.g., pick-up, view, place) and
primitives (e.g., move to position, move to contact, grasps). For
example, a move known object action is decomposed first into a
pick and a place actions, which are then decomposed into a
multiple of primitives (move above grasping point, move to
grasping point, grasp, move above grasping point, move above
release point, move to release point, release, and finally move
above releasing point). During execution, the robot will perform
each of the parameterized primitive to complete the plan.

This method can be extended to new applications in three
ways: 1) adding new objects to the image recognition and
interface affordances, 2) by composing existing primitives to
create new higher-level actions, and 3) if needed, by creating
new primitives. The first two improvements could be made using
graphical interface without having to code (e.g., using approaches
similar to Steinmetz et al. (2018)), however the third one would
require actual code modification. This is similar to the current
state-of-the-art cobots teach pendants: they expose a number of
primitives that users can use to create behaviors, but any
requirement not covered by the primitives (such as additional
sensor-based interaction) would need code development to add
the capability. Nevertheless, we could envisage a mixed system

FIGURE 4 | Example of parameterization of a moving unknown object action, with full interface for the initial state and zoom in.
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where creating new primitives and actions could be done locally,
using learning from demonstration, and then exposed at a higher
level to remote users using our interface.

5 EVALUATION

We conducted an evaluation to assess the impact of the design
principles of our system. As mentioned in Section 3, our task-
level authoring system is based around four principles: 1)
interleaving observation and planning, 2) controlling the robot
at the action level, 3) providing a unified, augmented reality
interface, 4) graphical specification of actions. For the sake of the
evaluation, the unified AR interface principle was not evaluated as
too many different alternatives exist, however, we explored the
three other axes. We conducted a 3 × 1 within-participants study
to explore three types of interfaces embodying or not our design
principles: our task-level authoring interface (TLA), a point-and-
click interface (PC) inspired from Schmaus et al. (2019), and
finally a Cartesian control interface (CC) as can be found
traditionally on a cobot’s teach pendant (e.g., PolyScope for
the universal Robots2) or recent work in teleoperation
(Marturi et al., 2016).

The CC condition does not use any of our design principles
and serves as an alternative to kinesthetic teaching (Akgun et al.,
2012) which cannot be applied due to the remote aspect and to
direct control which would have required 6D input control on the
user side. The PC condition only embodies the second design
principle (controlling the robot at the action level). It corresponds
to a simpler version of our interface, where the robot has similar
manipulation capabilities (e.g., pick-up objects, loosen or tighten
screws, pull drawers) but where actions can only be specified one
at a time and where parameters have to be set numerically (e.g.,
using use sliders to specify parameters such as angles). The last
condition TLA is the interface described in Sections 3 and 4 and
embodies all four of our principles.

The evaluation took place over Zoom,3 a video conference
platform, and we use the built-in remote screen control as a way
to allow participants to control the robot from remote locations.
We did not assess the latency inherent of such system, but
estimated it around one second.

5.1 Hypotheses
Our evaluation uses the metrics S for the task score, a
performance measure; A for robot autonomy, measured by
both total and individual periods of autonomy; U for usability,
measured by the SUS scale (Brooke, 1996); P for user preference
for the control method; and W for workload, measured by the
NASA Task-Load Index (NASA TLX) (Hart and Staveland,
1988). Below, we describe our hypotheses and provide specific
predictions for each measure. Subscripts denote study conditions
(TLA, PC, and CC).

Our evaluation tested three hypotheses along the three
evaluated design axes:

H1 Task score, autonomy, usability, and user preference will
be higher, and workload will be lower with high-level control
(PC, TLA) than low-level control (CC).
- Prediction P1a: SPC > SCC, APC > ACC, UPC >UCC, PPC > PCC,
and WPC < WCC.

- Prediction P1b: STLA > SCC, ATLA > ACC, UTLA > UCC, PTLA >
PCC, and WTLA < WCC.

H2 Autonomy and user preference will be higher, and the
workload will be lower when users are able to interleave
observation and planning (TLA) than when they are not
able to (PC).
- Prediction P2a: ATLA > APC.
- Prediction P2b: WTLA < WPC.
- Prediction P2c: PTLA > PPC.
H3: Task score, usability, and user preference will be higher
when users are able to parameterize actions graphically (TLA)
than when they are not able to (PC).
- Prediction P3a: STLA > SPC.
- Prediction P3b: UTLA > UPC.
- Prediction P3c: PTLA > PPC.

H1 is based on the expectation that high-level action
specification present in TLA and PC method automates away a
large number of low-level actions that the user must specify in CC,
which will save the user time and reduce the number of operations
they must perform, thus their workload. H2 is grounded in the
expectation that the task planning offered by our system will be
used by participants to create longer periods of autonomy, which
should reduce the workload, and make the participants prefer the
method. Finally, H3 supposes that the graphical specification of
actions will allow participants to specify action quicker (increasing
their performance in the task), more easily (increasing the
usability), and that participants will prefer this modality.

5.2 Method
5.2.1 Participants
We recruited 18 students enrolled in the Mechanical Engineering
and Industrial and Systems Engineering departments at the
university (3F/15M, age: M � 19.6, SD � 1.54). We selected
our participants from this population as they represent people
with some exposure but little expertise in robotics (familiarity
with robotsM � 2.9, SD � 1.2 on a five-point scale—none, a little,
some, moderate, a lot—and familiarity with programmingM � 3,
SD � 0.6). The procedure was approved by the university’s
Institutional Review Board and participants were compensated
at the rate of $15/hour. The study was designed to last 80 min and
included around 45 min of robot operation. Since it was
completed remotely, participants stayed in their daily
environment as shown in Figure 5 top right, where a
participant controlled the robot from his dorm bed.

5.2.2 Conditions
In all conditions, the layout of the interface was the same. It
showed the camera feed, overlaid with arrows for direct control,

2https://www.universal-robots.com
3https://zoom.us/
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buttons to grasp and release and the reset button. The difference
was in the type of command sent to the robot as well as the
modalities provided to the user. This study compared three
conditions:

CC Cartesian control: the user uses six text boxes showing the
current Cartesian position of the end-effector (x, y, z, rx, ry, rz)
(see Figure 6-left). These text boxes can be edited with the
desired command and sent to the robot either after modifying
a single dimension or multiple ones.
PC Point-and-Click: the user is shown objects known by the
system as markers overlayed on the video feed in an AR fashion
(see Figure 6-center). The user can click on these markers or
other parts of the view and is shown the different actions available
on this object. Right clicking on an action allows to specify
parameters, left clicking has the robot directly execute the action.
TLA Task-Level Authoring: interface presented in Sections 3
and 4, the user can annotate the video image to create actions
associated to objects in the selection area and create task plans
(see Figure 6-right).

To illustrate the difference between these conditions, we
consider a move action on an unknown object (i.e., an object

the operator can see, but the robot does not identify). With the
CC condition, participants had to enter the 6D pose of a grasping
point. Often, this process would be iterative, the operation
would first have the robot approach the object by
specifying a higher point, then correct the position and
angle, then move to the grasping point. Then the operator
had to press the grasp button, move to a dropping point (by
specifying the 6D pose or using the camera control buttons),
then press release. With the PC conditions, participants
could click on the grasping location on the screen,
parameterize the action with a grasp angle, execute the
pick-up action, reset the robot, click on the destination
location on screen and select the place action. With TLA,
participant could click on the screen to create a section area,
keep the move unknown object action (the default one if no
identified object was in the selection area), move the start
and goal handles (as shown in Figure 4), and finally press
execute.

5.2.3 Tasks
As shown in Figure 6, the workspace has a number of drawers on
the left, three white boxes on the bottom, an eraser at the top and
four screws on the right.

FIGURE 5 | Example of a participant using Drawing Board to control the robot from his dorm bed.

FIGURE 6 | Interfaces used in the study. Left shows the Cartesian Control interface: the user specifies numerically the end-effector position. Middle shows the
Point-and-Click interface: the user selects direct actions on objects. Right shows the Task-Level Authoring interface allowing users to remotely create task plans for
the robot.
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Participants had to complete a training task followed by four
additional tasks:

Task 0: Training - move the angled white box to the top
left area.
Task 1: Pick - and - place - move the additional two boxes (at
different orientations) to the top left area.
Task 2: Repeated actions - loosen the four screws from the
grid and move them to the top - right gray box.
Task 3: Exploration - locate a specific drawer on the left, pull
it, inspect its content and push it back.
Task 4: Continuous action - wipe the blue area with the
eraser.

These tasks were selected to represent different types of
actions that a remote operator may need to complete. The
first three pick-and-place actions free the area that need to
be wiped, demonstrating workspace manipulation actions. The
loosening and moving of the four screws represent repeated
actions. The drawer inspection task combines two awareness
acquisition actions: locating the drawer and inspecting its
content, as well as two workspace manipulation actions:
opening and closing the drawer. Finally, the wiping action
represents a continuous action over an area, similar to
cleaning a table or sanding a piece.

Of note, the three pick-and-place actions (task 0 and task
1) requires the human to specify manually the grasping and
placing point as the robot does not detect the boxes by itself.
And the exploration (task 3) requires the operator to gather
information outside of the default field of view by moving the
camera on the robot, read the labels on the drawers, locate the
relevant drawer, open the drawer, look into the drawer, count
the numbers of items, and finally close the drawer. To be able
to complete this task autonomously, a robot would need to
have optical character recognition capabilities and be able to
detect and count any type of object present in the drawers.
Furthermore, as shown in Algorithm 1, if an operator wanted
to design in a single step a program solving this task, the
resulting program would require logic functions such as
loops, conditional on sensors, functions within conditions,
and loop breaking conditions. All these functionalities could
be supported by more complex visual programming
languages (such as Blockly4) which requires more
knowledge in programming. Such a program would also
require more capabilities for the robot, more complex
representation of the world (e.g., having a list of all
drawers with positions to read the label from, and
positions to inspect the content), and more complex
programming languages. Instead, using a human-in-the-
loop approach (through direct control or task-level
authoring) allows to achieve the same outcome, but with
much simpler robot capabilities and interfaces.

Algorithm 1 | Example of algorithm to solve the exploration task
autonomously.

5.2.4 Procedure
Participants joined a zoom call from their home or other
daily environment. The study started with informed consent
and a demographic questionnaire. Then participants were
asked to watch a video introducing the robot and the
workspace, followed by a second video introducing the
tasks participants would need to complete 5. For each
condition, participants first watched a 2-min video
presenting the main modalities of the interface and
demonstrating how to make a pick-and-place action. Then,
participants had 15 min to complete as many of the tasks as
possible. During the training, they could ask any questions to
the experimenter, however in the four later tasks the
experimenter was only able to answer the most simple
questions (e.g., “the screws are tightened down, right?” but
not “how to move this object?”).

The interaction with the robot stopped when participants
reached 15 min or when they completed all the tasks. After
this interaction, participants filled out NASA Task-Load Index
(NASA TLX) (Hart and Staveland, 1988) and System Usability
Scale (SUS) (Brooke, 1996) questionnaires before moving on to
the next condition. The order of the conditions was counter-
balanced and the study concluded with a semi-structured
interview and a debriefing where participants could ask
questions to the experimenter. Despite our best efforts,
some participants created actions that could trigger the
robot’s safety locks (often due to excessive force being
applied). In such situations, the timer was paused, the robot
was restarted and the participant continued from where they
stopped.

4https://developers.google.com/blockly 5All the videos are available at https://osf.io/nd82j/.
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5.2.5 Measurements
We collected four types of quantitative data from the study.
Task score, measured by how many tasks were fully or partially
completed by the participants in the 15 min allocated per
condition (with one point for the training and per task).
Workload (i.e. how demanding it was to use the interface),
measured by the NASA TLX. Usability (i.e. how intuitive the
interface was), measured by SUS. Periods of autonomy,
measured from period where the robot was moving
continuously for more than 10 s (to be as inclusive as
possible while not counting short periods that could barely
be considered autonomous). We measured the periods of
autonomy with a mixture of logs from the system and video
coding of the interaction recordings using the Elan software
(Nijmegen: Max Planck Institute for Psycholinguistics, The
Language Archive, 2020).

In addition to the quantitative metrics, we collected qualitative
impressions through the semi-structured interviews where
we asked questions to the participants about their
different experiences with the methods and which one they
preferred.

6 RESULTS

Figure 7 and Figure 8 present the quantitative results from the
study. Results are first analyzed with a repeated measure ANOVA
(corrected as needed using Greenhouse-Geisser), and then with
post-hoc paired t-tests. A Bonferroni correction was directly
applied to the p-values to protect against Type I error. For the
periods of autonomy, as there was an unbalanced number of
samples, we used ANOVA and Games-Howell post-hoc test.

6.1 Score
We observe significant impact of the condition on the score
(sphericity was violated, Greenhouse-Geisser correction was
used, F (2, 34) � 115.53, p < 0.001). Both the PC and the TLA
interface achieved a score significantly higher than the CC (PC-CC:
t (17.0) � 13.0, p < 0.001, TLA-CC: t (17.0) � −23.0, p < 0.001).
However, we do not observe a significant difference of score
between the PC and the TLA interfaces (t (17.0) � −1.0, p � 1.0).

Additionally, we did not observe an impact of the
order, indicating that there no significant learning effect
(F (2, 34) � 0.698, p � 0.50).

FIGURE 7 | Study results: p-values are computed using post-hoc paired t-test adjusted with Bonferroni correction (n � 18). Results show that both TLA and PC
achieved a higher performance than CC (as shown by the task score), CC had a higher workload than both PC and TLA, and that both PC and TLA had a higher usability
than CC. On the performance, workload, and usability no significant difference was observed between TLA and PC.

FIGURE 8 | Autonomy results. Left shows the total autonomy time for each conditions (only periods of autonomy of more than 10 s are counted), p-values are
computed using post-hoc paired t-test adjusted with Bonferroni correction (n � 18). Right shows every single period of autonomy, p-values are computed using Games-
Howell post-hoc to adjust for unequal sample size.
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6.2 Periods of Autonomy
As shown in Figure 8, we observe a significant effect of the
condition on the total autonomy time, F (2, 34) � 297.45, p <
0.001, and each condition was significantly different from the
others, PC-CC: t (17.0) � 18.0, p < 0.001, TLA-CC: t (17.0) �
−25.0, p < 0.001, TLA-PC: t (17.0) � −7.0, p < 0.001). With the
CC offering the least amount of autonomy time, PC in the
middle, and TLA offering the most of autonomy time. It can be
observed that in addition to have a higher total autonomy time, the
TLA condition also led to longer individual periods of autonomy
than the other conditions (one way ANOVA: F (2, 402) � 60.87, p <
0.001, Games-Howell post-hoc test PC-CC: Mean Difference �
−3.57, p � 0.129, TLA-CC: Mean Difference � −22.66, p < 0.001,
TLA-PC: Mean Difference � −26.24, p < 0.001).

6.3 Workload
Weobserve significant effect of the condition onworkload asmeasured
by the NASA TLX, F (2, 34) � 46.29, p < 0.001. Both the PC and the
TLA interface imposed aworkload significantly lower than theCC (PC-
CC: t (17.0) � −9.0, p < 0.001, TLA-CC: t (17.0) � 8.0, p < 0.001).
However, we do not observe a significant difference of workload
between the PC and the TLA interfaces (t (17.0) � 1.0, p � 0.49).

6.4 Usability
We observe a significant effect of the condition on usability as
measured by the SUS, F (2, 34) � 23.18, p < 0.001. Both the PC
and the TLA interface were rated as having a high usability (SUS
score around 80) significantly outperforming the Cartesian
interface (PC-CC: t (17.0) � 4.0, p < 0.001, TLA-CC: t (17.0)
� −6.0, p < 0.001). However, we do not observe a significant
difference of usability between the PC and the TLA interfaces (t
(17.0) � −1.0, p � 0.69).

6.5 Preference
When asked which methods they preferred, 14 participants
replied they preferred the TLA method, three preferred the PC
method and one the CCmethod. Using one-sample binomial test,
we measure a significant preference for our TLA method (95%
Adjusted Wald Confidence Interval is (54.24%, 91.54%),
preference TLA >33% with p < 0.001).

6.6 Observations and Feedback From
Participants
In addition of our quantitative metrics, we made a number of
anecdotal observation during the study and the following semi-
structured interview. First, the two main justifications for
participant’s preference of the TLA interface were the ability
to queue actions and the visualization (the two design principles
not supported by the PC interface):

“[TLA was] by far the best, because you could do so
many tasks at once, and it was just really intuitive to
figure out, okay, this is what it’s gonna do”

“I like that little line thing which would show up on
positions, so you could determine like initial position

and the final position [. . .] without having to remember
numbers”

“Being able to angle the jaws, and have visual reference
for that, was really useful”

Some participants used the periods of autonomy of the TLA
interface to perform secondary actions, e.g., drinking water or
even as one participant did, sending a message to a friend.
Combined to our quantitative results showing that the
authoring interface frees longer periods of time to the
operators, these observations provide anecdotal evidence that
interfaces similar to TLA could help operators perform secondary
action. However, as our study did not assess such an hypothesis,
future work should confirm it.

Some participants were slightly confused by the different
modalities used and monitored the game plan to understand
how their inputs were parsed:

“[TLA] also gave you that menu of like the order that
you were going. I feel like that was really helpful”

Even though many participants qualified the PC interface of
being very simple (almost too simple for some), participants still
had to follow the progress of their series of action which can be
complicated. For example, the screw task requires four repetitions
of a loosen, a pick, a reset and a place action. Some participants in
the study lost the track of which action was done, and for example
forgot to loosen a screw, or did it twice. Some participants felt
annoyed to have to re-specify each action every time:

“[With TLA] you could I guess perform multiple tasks
at once, you didn’t have to click on it every single times”

“[PC] it took more time, still because that you had to
unscrew it, and then you had to pick it up, and then you
had to move it and place it”

Being able to program the robots to sequence actions when
having to repeat them over multiple objects allowed operators to
keep track more easily of the progress in the task without having
to keep in memory which actions were already executed.

Additionally, due to the lower granularity of control in CC and
PC participants reported difficulties to know the distance between
the robot’s fingers and the table or objects or faced occlusion
issues while operating the robot with the PC or CC interfaces. The
task-level authoring offered by our system allowed participants to
control the robot without facing these two obstacles.

7 DISCUSSION

7.1 Observations
Our results provide partial support for our hypotheses. H1 is fully
supported (both P1a and P1b are supported). The higher level
interfaces performed better than Cartesian Control on all metrics
supporting H1. H2 is partially supported, TLA offered more
autonomy than the other methods (supporting P2a), and TLA
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was preferred to the other methods and participants referred to
the ability of queuing actions as a reason (supporting P2c),
however TLA did not reduce the workload compared to PC
(failing to support P2b). Finally, H3 is also partially supporting.
Participants did not achieve a higher score with TLA than with
PC and did not rate the usability as higher for TLA (failing to
support both P3a and P3b), however, participants did prefer TLA
over PC and participants referred to the graphical action
parameterization as a reason (supporting P3c).

Overall, these results show that our design principles partially
achieved their goals: the high-level control allowed participants to
think at the task level and progress quicker in the tasks. TLA was
preferred overall due to the opportunity to create flexible periods of
autonomy and the graphical parameterization of actions. This
flexible programming horizon allowed participants to specify
long periods of autonomy when possible, but also directly select
actions when the next step is unclear. Traditionally, robots with
more autonomy will require a lower workload at runtime, as the
operator does not need to provided inputs when the robot is
autonomous. However, such autonomous robots might inflict a
higher workload at design time and require more skills for the
operator and more capabilities for the robot. By interleaving
exploration, design of short plans, and execution, TLA aims to
maintain this low workload both at runtime and design time.
Compared to specifying a behavior a priori, allowing the operator
to specify commands at runtime allows to solve similar problems,
but with simpler robot capabilities (as the operators can perform
some sensory analysis) and simpler interface (as the operators does
not have to create programs handling every possible situation).

We observed a potential ceiling effect on the usability (a
score of 85 on the SUS is defined as excellent usability (Brooke,
2013)), and possibly a floor effect on the workload (14 and 11 on
the NASA TLX are very low scores). These effects may have two
distinct origins. Either our study was not sufficiently challenging for
our operators, or our action sequencing principle did allow
participants to obtain capabilities closer to programming
(through the scheduling of action, automatic generalization of a
set of actions to a group of objects etc.), which may have increased
the complexity of the interface, but our graphical specification
principle balanced this added complexity to maintained a low
workload and high usability. Due to time constraints and study
complexity, we could not explore individually the impact of each
axis, which prevents us to identify the root cause of this effect.
Future work should investigate more precisely the situations in
which these methods could differ in usability and workload.

Nevertheless, from our study we can confirm that our authoring
interface allowed participants to specify longer plans for the robot
and streamlined the execution of repeated and composite actions.
These two additional benefit might allow operators to perform
secondary task, and potentially facilitate extended use (as
anecdotally supported by the observation that some participants
lost track of their progress in the repeated action and did the same
action twice, or forgot whether they unscrewed a bolt already). This
additional gain comes at no cost in term of workload and usability,
which supports the conclusion that our design principles allowed the
interface to be usable with limited training while incorporating
additional programming capabilities. Future work should evaluate

whether such increase in autonomy could allow operators to
perform secondary tasks in practice and how such programming
capabilities could be used by operators.

7.2 Limitations
Our approach suffers from a number of limitations that we plan
to address in future work. A key limitation is that the high-level
interface requires the specific primitives and actions to be pre-
determined and pre-programmed. Extending the set of operations
to support a broader range of tasks may create challenges in helping
the user understand the range of options. Allowing users to specify
actions that are not in the interfaces “vocabulary” is challenging, as
this requires detailed specification that often must consider low-
level control issues such as compliance. This issue is common in
authoring—for example, teach pendants are also intrinsically
limited in the robot’s capabilities they expose and more complex
uses often require coding. Additionally, our system relied on robust
actions and we did not explore how to recover from failures when
executing actions. We identify four ways such action failures could
be handled. First, actions could be made more robust by integrating
replanning strategies (e.g., planning a new grasp pose after a failed
grasp). Second, high-level actions could take more parameters after
a failure (e.g., specifying a full 6D grasp pose if the default one did
not work). Third, the operator could provide additional runtime
inputs to address small trajectory errors (Hagenow et al., 2021). And
finally, the user could change the control mode for such infrequent
event (e.g., temporarily using direct control instead of TLA).

The evaluation of our approach also has a number of
limitations. For example, the study considered relatively simple
tasks, used a mostly male population, and our population was
not total novice, but had some experience with programming.
Additionally, due to time constraints, we could not explore every
single design axis individually. Future work should involve ablation
studies, where the specific impact of design principles are evaluated,
explore interactions in real environments, and use operators from
the targeted population (family member controlling a robot in a
home-assistant scenario or workers in a factory). Finally, future work
should also explicitly explore the impact of latency when performing
task-level authoring, especially compared to more direct control. We
plan to address such limitations in future work.

7.3 Implications
Results from our evaluation lead a number of implications. Centrally,
the use of task-level authoring seems to be an interesting trade-off,
allowing for sufficient programming to gain the advantages of
asynchronous control (i.e., programming longer periods of
autonomy for the robot and leading to longer and better quality
idle time, offloading some tasks following to the robot), yet having the
programming be simple enough that it can be used during the
interaction with little training. The approach affords an interface
design that combines exploration, specification, and monitoring in a
single view. The specific interface provides other general lessons. First,
our work expands on the ideas of using higher-level controls to enable
effective teleoperation interfaces. While prior systems have shown
point-and-click interfaces (Schmaus et al., 2019), ours expands the
concept to accomplish longer autonomous behavior. Second, by
connecting these higher-level controls in a paradigm where
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exploration and manipulation are interleaved, we can create single-
view interfaces that are usable in more complex scenarios. Third, our
work extends prior see-through interfaces with camera control,
allowing them to work in more environments. Fourth, our work
shows the potential of asynchronous interfaces by improving the
amount and duration of the offered periods of autonomy. By
allowing the user to quickly specify longer plans, they gain
opportunities for idle time, potentially freeing them to perform
other tasks during execution. Finally, by demonstrating effective
telemanipulation only using consumer interfaces shows that
remote robot operation is possible for novice users—even at
distances of many time zones.

8 CONCLUSION

In this paper, we explored the design of interfaces for remote control
of a robotic armby novice users. Our design considers the key goals of
teleoperation interfaces: allowing remote novice operators to analyze
the robot’s environment and specify robot behavior appropriate to
the situation. To address these challenges for scenarios with novice
users and standard input devices we adopted a task-level authoring
approach. The approach allowed for the design of an interface that
interleaves exploration and planning, allowing us to utilize both direct
control (more intuitive interface and benefiting from the human
knowledge more frequently) and asynchronous control (robustness
to communications issues and increased idle time for the operator).
Our interface uses graphical overlays on a video feed of the
environment to provide for simple exploration, specification of
operations, and sequencing of commands into short programs. We
evaluated a prototype system in an 18-participant study which
showed that our interface allowed users with some familiarity with
programming to 1) operate the robot remotely to gain awareness
about the environment, 2) performmanipulation of the workspace,
and 3) use the scheduling of actions to free long periods of idle
times that might be used to perform secondary tasks. Furthermore,
our interface was largely preferred compared to two other simpler
interfaces.

Our work adds a new tool to the existing library of
teleoperation approaches and demonstrates that task-level
authoring is a powerful method to allow non-experts to
remotely create short periods of autonomy for robots while
allowing them to explore the robot’s environment.
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