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A hybrid exoskeleton comprising a powered exoskeleton and functional electrical
stimulation (FES) is a promising technology for restoration of standing and walking
functions after a neurological injury. Its shared control remains challenging due to the
need to optimally distribute joint torques among FES and the powered exoskeleton while
compensating for the FES-induced muscle fatigue and ensuring performance despite
highly nonlinear and uncertain skeletal muscle behavior. This study develops a bi-level
hierarchical control design for shared control of a powered exoskeleton and FES to
overcome these challenges. A higher-level neural network–based iterative learning
controller (NNILC) is derived to generate torques needed to drive the hybrid system.
Then, a low-level model predictive control (MPC)-based allocation strategy optimally
distributes the torque contributions between FES and the exoskeleton’s knee motors
based on the muscle fatigue and recovery characteristics of a participant’s quadriceps
muscles. A Lyapunov-like stability analysis proves global asymptotic tracking of state-
dependent desired joint trajectories. The experimental results on four non-disabled
participants validate the effectiveness of the proposed NNILC-MPC framework. The
root mean square error (RMSE) of the knee joint and the hip joint was reduced by
71.96 and 74.57%, respectively, in the fourth iteration compared to the RMSE in the 1st
sit-to-stand iteration.
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1 INTRODUCTION

Functional electrical stimulation (FES) is often prescribed to reanimate standing and walking functions in
people with spinal cord injury (SCI) and other gait disorders due to stroke, multiple sclerosis, etc. (Chang
et al. (2016); Nagai et al. (2016); Bulea et al. (2013)). FES is usually applied transcutaneously via adhesive
electrode pads that deliver electrical currents to the skeletal muscles’motor units. Electrical stimulation of
the lower-limb muscles, when coordinated, can produce desired standing and walking movements.
However, FES causes a rapid onset of muscle fatigue (Bickel et al. (2011)), which reduces the muscle’s
ability to sustain or produce contraction force and significantly decreases the duration of FES-elicited tasks.

FES can be combined with a passive orthosis (Sharma et al. (2014); Bao et al. (2016); Alouane et al.
(2019)) to alleviate the effects of FES-induced muscle fatigue. These hybrid devices lock knee joints
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during stance or standing to reduce FES stimulation duration but
may not provide additional torque to the knee joints. Battery-
operated powered exoskeletons (Strausser and Kazerooni (2011);
Neuhaus et al. (2011); Farris et al. (2014)) can also supplement
FES-elicited joint torque (del Ama et al., 2014); Ha et al. (2015);
Kirsch et al. (2014); Alibeji et al. (2018b)). This combination,
which is also known as a hybrid exoskeleton, can overcome FES
limitations. Supplementing FES-induced muscle contractions
with robotic assistance reduces the overall stimulation duty
cycle, delaying the onset of muscle fatigue during high
torque–demanding physical exercises like sit-to-stand tasks.
The shared use may also reduce actuator size and power
consumption in the powered exoskeleton. More importantly,
unlike powered exoskeletons that passively move the limbs,
FES-induced active muscle contractions contribute to
neuroplasticity that may recover the lost limb function
(Popovic et al. (2012)). The use of FES also promotes or
improves bone health, overall limb elasticity, and
cardiovascular and metabolic benefits (Peckham and Knutson
(2005)). Thus, its integration with an exoskeleton system is likely
to maintain or enhance the therapeutic benefits.

Despite its promising benefits, the hybrid exoskeleton’s
dynamic shared control is an open research topic. Actuation
redundancy due to FES and electrical motors’ simultaneous use
and modulation of the shared effort to compensate for FES-
induced fatigue dynamics are challenging control problems.
Recent research efforts in this direction certainly inform ways
to implement shared control in a hybrid exoskeleton, but these
control designs did not explicitly account for FES-induced fatigue
dynamics in functionally relevant and multi-DOF lower-limb
movements. In the study by Quintero et al. (2012), the authors
used an adaptive control method to allocate inputs to motors and
FES. In studies by both (del Ama et al., 2014) and (Ha et al.
(2015), a combination of feed-forward learning control and
proportional-integral-derivative (PID) feedback controlled
electric motors and FES. Optimal control is also a suitable
approach for cooperative control of FES and an electric motor
in the hybrid exoskeleton. Kirsch et al. (2018), Bao et al. (2016),
and Bao et al. (2019) optimally controlled a one–degree-of-
freedom (DOF) hybrid leg extension machine using a
nonlinear model predictive control (NMPC) method to
modulate FES and electric motor assistance as per the FES-
induced fatigue dynamics. However, a muscle fatigue–based
dynamic effort distribution between FES and an electric motor
has not been attempted in functionally relevant and multi-DOF
lower-limbmovements. As a step toward this direction, this study
aims to show the feasibility of a low-level optimal MPC strategy to
dynamically distribute a higher-level knee torque between FES
and the electric motor during sit-to-stand tasks.

For controlling different muscle groups and multiple electric
motors during walking or swing-like leg movements, a muscle
synergy–inspired controller used a set of synergy blocks in the
works of Alibeji et al. (2017), Alibeji et al. (2015), and Alibeji et al.
(2018a). Each synergy acted as a set of allocation ratios for
different actuators. A modified PD controller provided
robustness to modeling uncertainties, and a robust adaptive
term modified the coefficients of a combination of synergies to

compensate for the muscle fatigue. The muscle synergy–inspired
controllers in the studies by Alibeji et al. (2017, 2015, 2018a)
enabled automatic allocation of effort between the powered
exoskeleton and FES and have been shown to provide good
performance. However, the muscle synergy–inspired control
design did not employ a real-time optimal control approach,
and even then, it is not yet shown if an optimal control allocation
can be embedded into a robust control framework that guarantees
desired joint torque levels or system stability despite modeling
uncertainties and disturbances.

Due to a lack of optimal control allocation strategies for the
hybrid exoskeleton for sit-to-stand, or any functional task in
general, this study explored the use of anMPC strategy to allocate
FES and electric motor torques. The MPC strategy in this study
hinges on a higher-level desired torque generator. However,
unlike the techniques discussed in the study by Zhang et al.
(2015) that generate torque based on predetermined angles,
electromyography, or time, we use a novel neural network
(NN)-based position tracking control approach to generate
desired joint torques. The NN-based control approach and the
associated NN update laws use a discrete Lyaupunov-like stability
analysis that shows asymptotic error convergence for the first
time for iterative sit-to-stand tasks. The NN-based control
approach is robust to modeling uncertainties and time-varying
disturbances in the FES-driven musculoskeletal dynamics.
Notably, the NN-based control approach is derived to
iteratively increase the feed-forward learning component and
decrease the high-level torque generator’s high gain feedback
component. The feed-forward learning is an improvement over
our recent approach that used a high-gain position tracking
controller for high-level torque generation for an experimental
study on sit-to-stand tasks (Bao et al. (2020a)). Unlike most
exoskeleton controllers that follow a time-dependent desired joint
trajectory (Ha et al. (2012); Contreras-Vidal et al. (2016); Alibeji
et al. (2018b); Bae and Tomizuka (2012)) or a desired time-
dependent or EMG-generated torque trajectory (Zhang et al.
(2015)), the designed NN-based approach follows state-
dependent desired joint trajectories known as virtual
constraints (Westervelt et al. (2007); Gregg and Sensinger
(2014)).

Compared to our previous simulation studies by Molazadeh
et al. (2019), Bao et al. (2020b), and Molazadeh et al. (2018a,b),
the study presents a more detailed derivation of the controller,
improved robustness to modeling uncertainties, and supporting
stability analysis. Furthermore, extensive sit-to-stand
experiments with a hybrid exoskeleton validated the approach
on four participants with no disabilities. The experiments
validated the proposed bi-level control framework for sharing
control between the powered exoskeleton and FES dynamically.

The article is organized as follows. Section 2 describes the
overall shared control design, which is followed by Section 3,
which presents the experimental results, followed by discussion in
Section 4 and the conclusion in Section 5. Supplementary
Appendices A–D provide a more detailed open-loop and
closed-loop error dynamics development, the stability analysis,
virtual constraint design, and the MPC allocation algorithm,
respectively.
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2 SHARED CONTROL FRAMEWORK

The main task of our control framework is to implement a
learning control approach that estimates unknown/uncertain
dynamics in an iterative fashion and then use the estimates in
a controller that outputs stabilizing torques for a desired
movement. Therefore, in the first subsection, an NNILC
method is presented as a top-level controller. The NNILC
method estimates the unknown/uncertain dynamics, and based
on these estimates, it provides robust and stabilizing torques for a
low-level controller. Furthermore, in the next subsection, a model
predictive approach is used as the low-level controller to
distribute the NNILC-designed torque among FES and the
powered exoskeleton. This control framework can be used for
repetitive movements including repeated sit-to-stand and
walking. Below, we first present a general hybrid
exoskeleton model.

An N-DOF hybrid exoskeleton that comprises Nf muscles
where FES is applied, Nm electric motors, and a powered
exoskeleton is modeled as follows:

M(θ)€θ + C _θ + G + Tp � T + D, (1)

where θ ∈ RN, _θ ∈ RN, and €θ ∈ RN are the vectors that represent
the links’ angular position, angular velocity, and angular
acceleration, respectively, M(θ) ∈ RN×N is the inertia matrix,
C( _θ, θ) ∈ RN×N is the centripetal-Coriolis matrix, G(θ) ∈ RN is
the gravitational vector, D ∈ RN is the system disturbance,
Tp ∈ RN is the passive viscoelastic moment, and T ∈ RN is
the combined torque generated due to FES and the powered
exoskeleton.

2.1 Top-Level Control Structure
In this subsection, a top-level controller is presented. Its detailed
derivation using the open-loop and closed-loop error dynamics
are provided in Supplementary Appendix A.

The control objective is to ensure that the independent
joint angle function, θ ∈ RN, in Eq. 1 follows a specially
designed desired constraint function, h(θ) ∈ RN, which is a
function of the system state. Usually, h is solely a function of
time, for example, a time-dependent desired trajectory, θd(t).
Instead, we chose to design the desired trajectory as a state-
dependent trajectory. This state-dependent design is
motivated to constrain the desired movement of multiple
joints to a single joint (phase variable). The phase variable
must be state-dependent and a monotonically increasing
function. The advantage of this approach is that it avoids
joints miscoordination that may be caused by using multiple
time-dependent joint-desired trajectories. The method to
design the desired constraint function is given in
Supplementary Appendix C. The control objective can be
expressed as an output, y ∈ RN,

ykbθk − hk, (2)

which must be driven to zero. Subscription k shows the value of
the variables in the kth iteration (e.g., in a repetitive sit-to-stand
task, each sit-to-stand can be considered as one iteration).

The sliding surface sk ∈ RN is designed as

sk � λ1e1,k + λ2e2,k, (3)

where λ1 and λ2 are positive constants and e1,k � − yk, e2,k � − _yk.
Based on the stability analysis provided in Supplementary

Appendix B, the top-level controller, Uk, is designed as given
below:

Uk � −f̂2,k − σ̂kf1,k − Fk, (4)

where σ̂k is an estimate of the parameter, σ in the output
dynamics in (24). Based on the subsequent stability analysis in
Supplementary Appendix B, σ̂k is updated after each iteration as
follows:

σ̂k � σ̂k−1 − qcf1,kcsk, (5)

where σ̂k � 0 when, k � −1, γ is a positive constant, and qc is a
positive constant that tunes the speed of updating σ̂k. Fk ∈ RN is
an additional feedback input, f1,k is a known part of the
dynamics (for details, see Supplementary Appendix A), and
f̂2,k is the approximation of the ideal NNs for the unknown/
uncertain part of the output dynamics, f2,k (for details, see
Supplementary Appendix A). This approximation is
represented as follows:

f̂2,k � Ŵ
T

kΛk(P̂T

kXk), (6)

where Ŵk ∈ RN2+1×N and P̂k ∈ R(2N+1)×Nin are the estimates of
ideal weights in (26) in the kth iteration. These estimates are
updates using gradient-based laws. Their update laws are
provided in Supplementary Appendix A ((28) and (29)).

Fk in Eq. 4 is designed as follows:

Fk � 1
λ2

λ1 _yk − λ2 α2sk + 4
3
α1sgn(sk)( ) + λ2Ik( ), . (7)

where α1 ∈ R+ and α2 ∈ R+ are control gains, λ1, λ2 ∈ R+ are
constant values, and Ik is a low pass filter term that is designed as
follows:

_Ik � −β1sk − β2Ik, (8)

where β1 and β2 are positive constants. The term Fk has been
added to the top-level control input to keep the closed-loop
system stable when considerable estimation errors may be present
during initial iterations.

Remark 1. Because the top-level controller is based on NNs
and updates itself every iteration, we call it the NN-based ILC.
Choosing its control parameters has significant effect on the
learning speed in each iteration and the closed-loop control
system performance. For example, the speed of learning of σ
can be changed by qc in Eq. 5. Similarly the speed of learning of f2
can be changed by changing the learning gains in the weight
update laws. These gains are subsequently defined as ρ1 and ρ2 in
(29) and (28) in Supplementary Appendix A. Please note that the
speed of learning must not be chosen to be so high that it causes
destabilization of the closed-loop control system and/or noise
accumulation.
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2.2 Predictive Allocation Strategy
In this subsection, a lower-level controller is formulated that
determines the allocation of control between motors and FES.
Mainly, the objective of the low-level controller is to constrain the
optimized FES and the electric motor torque values to the desired
torque level that is dictated by the top-level controller in the first
subsection. AnMPC allocation strategy is used for this purpose. A
strategy is also designed to consider the muscle fatigue level by
including a fatigue variable as a weighting variable in the cost
function. The optimization objective is to minimize a cost
function. Jmpc(tr) ∈ R+

min
�uM,k, �uF,k

Jmpc(tr) � ∫tr+tp

tr

�T
T
M,kw1

�TM,k + �T
T
F,kw2

�TF,k{ }dt (9)

s.t. M(�θk)€�θk + C(�θk, _�θk) _�θk + G(�θk) + �Tp,k

� �TM,k + �TF,k

(10)

BMuM,k(tr) + ψkuF,k(tr) � Uk(tr) (11)

�uF,j,k ∈ U (12)

where the terms with a bar, for example, �x, represents the
nominal variable that is evaluated in the prediction horizon.
In Eq. 9, uM,k represents the motor input and uF,k is the FES
input. In Eq. 11, U ∈ [0, 1] × [tr, tr + tp] is the input constraint
(Kirsch et al. (2018); Sun et al. (2018)). Subscription r is the
receding horizon value, for example, tr shows the time in the
rth receding horizon. Subscription k shows the value of a
variable in the kth ILC update, which is considered as one sit-
to-stand movement. During each ILC update, the
optimization problem in Eq. 9 is solved to determine �u �M,k

and �u�F,k. In Eq. 9, the motor torque �TM,k in the prediction
horizon is evaluated as follows:

�TM,k � B �M�uM,k, (13)

where B �M is a vector of known motor constants. �TF,k in Eq. 9 is
the torque input of FES in the prediction horizon, and the jth
element of this vector is defined as follows (Kirsch et al. (2016)):

�TF,j,k � φj(�θ1,j,k, _�θ1,j,k)�μj,k�uF,j,k, (14)

where �uF,j,k is the k
th iteration of the nominal value of uF,j,k in Eq.

16, and φj(�θ1,j,k, _�θ1,j,k) represents torque-angle and angular
velocity relationships (Popović et al. (1999); Kirsch et al.
(2016); Bao et al. (2020b)) that map the limb angle and
angular velocities to the joint torque are defined as follows:

φj
�θ1,j,k,

_�θ1,j,k( ) � c2,j�θ
2
1,j,k + c1,j�θ1,j,k + c0( ) 1 − c3,j

_�θ1,j,k( ).
�θ1,j,k is the nominal value of the jth joint angle, and

c0,j ∈ R+, c1,j ∈ R+, c2,j ∈ R+ and c3,j ∈ R+ are muscle
parameters. �μj,k is evaluated using a differential equation that
is used for the estimation of the current fatigue level in the studies
by Riener et al. (1996) and Kirsch et al. (2016). The differential
equation is represented as follows:

_�μj,k �
μmin,j − �μj,k( )�uF,j,k

τf,j
+ 1 − �μj,k( ) 1 − �uF,j,k( )

τr,j
, (15)

where μmin,j ∈ [0, 1) is the minimum fatigue level of the targeted
muscle, τf,j ∈ R+ is the fatigue time constant, and τr,j ∈ R+ is the
recovery time constant. ψk and the constraint (11) are defined and
further developed in the next subsection.

w1 ∈ RN×N and w2 ∈ RN×N in Eq. 9 are the diagonal weight
matrices. w1 is a predefined constant matrix, but w2 is a
nonconstant matrix and is dependent on the fatigue variable,
�μ, that is, its jth diagonal element is 1

�μj,k+ϵj, where ϵj ∈ R+ is a
constant.

The objective index Jmpc(tr) ∈ R+ ∪ {0} in Eq. 9 depends on
control allocation between �TM,k and �TF,k along the time
horizon [tr, tr + tp], where tp is the time horizon length
and tr is the current time. When the optimal solution,
u*F,k(t | : t ∈ [tr, tr + tp]) � arg min{Jmpc(tr)}, is found, uF,k �
u*F,k(t | : t � tr → tr + ε) is applied to the system, where ε is an
infinitesimal time constant that makes tk+1 � tr + ε (Graichen
and Kugi (2010)). For details about the implementation of this
algorithm, please refer to Supplementary Appendix D.

Control Distribution Between Functional
Electrical Stimulation and Motor
The distribution of the control effort between FES and the
powered motor is described in this subsection. Based on the
calculated optimal normalized FES virtual input, uF,k, through the
MPC algorithm and (11), the motor input can be calculated using
the following:

uM,k � B−1
M(Uk − ψkuF,k) (16)

where Uk is defined in Eq. 4, Bm is a known vector of motor
constant gains, and ψk is given by the following:

ψk � B̂F,k + 9 (17)

where the spectral radius of B̂F,k, 9 ∈ RN+
, is added to ψk in order

to avoid a singularity when B̂F,k is equal to zero (Chen et al.
(2010)). B̂F,k is the approximation of ideal NNs for uncertain
control gain associated with normalized FES input, BF,k, and is
expressed as follows:

B̂F,k � Q̂
T

kϕk Xk( ) (18)

where Q̂k ∈ RNΩ×N is the estimates of ideal weights in (27) in the
kth iteration. Based on the subsequent stability analysis provided
in Supplementary Appendix B, it is updated according to the
following update law

_̂Qj,k � −χϕj,k Xk( )uF,j,ksj,k. (19)

where χ ∈ R+ is a constant.

2.3 Overall Bi-Level Control Structure
The control schematic is depicted in Figure 1.

As can be seen in this figure, the top-level ILC controller block
uses three inputs: the NN estimates f̂2,k and B̂F,k, the linearly
parameterizable adaptive component σ̂k, and the feedback
component Fk. The total torque demand at the knee joint is
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allocated optimally using the low-levelMPCmethod. Figure 1 shows
how information flows between the blocks, information needed to
train the NNs, and the interaction between the feedback and feed-
forward parts of the control design. According to the figure, the
linearly parameterizable part of the output dynamics, σ̂k, is trained
based on its value in the previous iteration, σ̂k−1, and the value of the
sliding surface, sk. Mathematical details can be found in Eq. 5. The
figure also shows the training process of the FES control gain, B̂F,k. It
shows that for training B̂F,k, information from states, the sliding
surface sk, the FES input, uF,k, and the value of the neural network
weight from the previous time step are used. More mathematical
details are provided in Eqs. 18, 19. Additionally, the figure
demonstrates the training process for the not linearly
parameterizable part of the output dynamics, f̂2,k. It shows that
the training is done based on information from states, the sliding
surface sk, and the values of neural networkweights from the previous
iteration. Mathematical details of training can be found in Eq. 6, (28),
(29), and (31). σ̂k and the neural networkweightmatrices are saved at
the end of each iteration, and training is picked up in the next
iteration where it was left off using the saved file that has stored the
weight matrices and σ̂k of the previous iteration. f̂2,k is updated after
each iteration, and B̂F,k is updated at each time instant.

3 EXPERIMENTS

We implemented the proposed controller for repetitive sit-to-
stand tasks with a hybrid exoskeleton. The exoskeleton that is
shown in Figure 1 was developed in our laboratory (Alibeji et al.
(2018b)). The hip joints of the powered exoskeleton are actuated
by two LPA-17–100-SP electric motors (Harmonic Drive,
United States). These two motors have a maximum speed of
30 revolutions per minute (RPM) and a peak torque of 54 Nm.
Two 90-W EC Flat Maxon motors (Maxon Motor, Sachseln,

Switzerland) actuate the knee joints of the exoskeleton. The
gearbox ratio for both knee and hip joints is 100:1. In the
experiments, FES was applied on the quadriceps muscle group
for the sit-to-stand task. The NNILC method was used to
compute the stabilizing torques for the hip and knee joints
during the task, while the MPC method was used to distribute
inputs between FES and the electric motors at the knee joints.

The study was approved by the Institutional Review Board
(IRB) at the University of Pittsburgh (IRB approval number: PRO
14040419) and the IRB of North Carolina State University (IRB
approval number: 20553). Four male participants without any
neurological disorders (listed in Table 1) were recruited for the
study. Before each experiment, every participant signed an
informed consent form.

Before doing the control validation experiments, a set of trials
were conducted on each participant to estimate the knee
musculoskeletal model. These experiments were conducted
while participants were seated in a leg extension machine.
This model identification is needed for the execution of the
MPC allocator. The model parameters of the participants, like
the fatigue model parameters like the fatigue time constant,
τf,j ∈ R+, and the recovery time constant, τr,j ∈ R+, were
identified with the procedures reported in our previous works

FIGURE 1 | Structure of the proposed controller and the test bed that are used during experiments for the controller validation.

TABLE 1 | Anthropometric characteristics of the participants. P1, P2, P3, and P4
represent the first, second, third, and fourth participant.

Participant Height (cm) Weight (kg) Age (years old)

Male 1 (P1) 176.5 70 23
Male 2 (P2) 177.0 78 25
Male 3 (P3) 168.6 65 23
Male 4 (P4) 185.4 74.84 24
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(Kirsch et al. 2018); (Kirsch et al, 2017)). The fatigue and recovery
constants for the 4 able-bodied participants on both legs are given
in Table 2.

3.1 Sit-to-Stand Experiment Protocol
A real-time target machine (Speedgoat, Inc., Liebefeld,
Switzerland) running at a control frequency of 400 Hz was
used to control the exoskeleton and FES. The control
implementation was programmed in Simulink
(MathWorks, Inc., United States). The control parameters
were programmed based on the following rules: γ � 1, β2 > 2,
and α2 > 2

λ2
. These rules were derived using stability analysis

provided in Supplementary Appendix B. The main control
parameters that were used during experiments are provided
in Table 3. A common desired virtual constraint function for
the joints of both legs was designed using the methods
described in Supplementary Appendix C. The function
was designed such that the sit-to-stand task is mainly
achieved in 8–11 s. After the transition, the standing
position was programmed to be held for up to 15 s. The
controllers were implemented separately for each leg, but the
controllers used the same virtual constraint function to
maintain coordination between the two legs.

Stimulation Parameters: A pair of FES electrodes (size: 2
inches × 3.5 inches, Chattanooga Medical Supply, Inc.,
United States) were placed on the participant’s thighs, after
shaving and cleaning the area. The distal electrode was placed
on the medial side near the knee joint, while the proximal
electrode was placed either at midline or slightly to the lateral
side. A biphasic pulse train was delivered to the electrodes using
an FES stimulator (RehaStim 8-channel stimulator, Hasomed,
Inc., DE). The threshold and saturation current amplitude of the
stimulation are defined as the minimal current amplitude that
generates observable knee extension torque and the maximal
current amplitude that cannot increase knee extension torque,
respectively. Both the threshold and saturation current
amplitudes were determined by using a set of prior tests (Bao
et al. (2020a)). Due to the large current amplitude range between
the threshold level and the saturation level (around 50 mA), a
current amplitude modulating protocol with a stimulation
frequency of 35 Hz and a pulse width of 400 μs was chosen in
this work.

Since none of the participants had experienced FES or had
used an exoskeleton before they were enrolled in the experiments,
the participants were trained to properly use the hybrid

exoskeleton. During the sit-to-stand task, a walker was used to
assist the participant’s balance. There were multiple trials for each
participant, and there were four iterations per trial. Between each
iteration, we waited for a minute to provide each participant some
rest. The trials conducted after the training were chosen for
analysis to minimize any unexpected influence of the
participants’ unfamiliarity with the hybrid device.

3.2 RESULTS

Figure 2 demonstrates the snapshots of the sit-to-stand
experiment from one of the trials for Participant 2.

The trajectory tracking results on both knee and hip joints for
Participant 2 are illustrated in Figure 3. The figure includes the
desired trajectories that are based on the virtual constraint
function and the actual trajectories on both legs in the 1st and
4th iterations. The joint angle tracking errors of Participant 2 in
the 1st iteration and the 4th iteration are shown in Figure 4. Left
and right legs have different desired profiles. In general, the
trajectory tracking errors and the resultant input torques of
the left knee joint are lower than those of the right knee joint
because the virtual constraints, used as the desired profile for the
left knee joint, take the right knee joint actual angular position as
the base. However, the desired profile of the right knee joint is
pre-designed. Therefore, the right knee joint leads the left knee
joint at the initiation of the task and during the movement.
Because the right knee joint is the joint that initiates the task, it
needs higher torque, and the tracking is more challenging for
this joint.

The improvement percentage of the RMSE of the joints’
trajectories’ tracking performance for the four participants is
plotted in Figure 5. The improvement percentage of the RMSE is
calculated based on the following equation:

RMSE Improv %k �
RMSE1 − RMSEk

RMSE1
( )100 (20)

The results show that from the 1st iteration to the 4th iteration,
for each participant, the RMSE improvement values for both knee
and hip joints are increasing. These results indicate that the ILC
method improves the joint trajectory tracking performance in
successive iterations.

In Figure 6, components of the top-level controller, Uk, in
Eq. 4 for Participant 2 in four iterations are shown. The
components include Fk, f̂2,k, and σ̂kf1,k. In this figure, Fk
represents the additional feedback input and f̂2,k, and σ̂kf1,k

TABLE 2 | Fatigue and recovery time constants τf and τr for participants 1, 2, 3,
and 4 on both legs.

τf [sec]

P1 left P1 right P2 left P2 right P3 left P3 right P4 left P4 right
24.6 23.0 20.2 17.9 25.2 21.6 24.2 26.3

τr [sec]

P1 left P1 right P2 left P2 right P3 left P3 right P4 left P4 right
38.6 47.0 50.8 42.0 43.3 49.1 33.6 29.5

TABLE 3 | Main control parameters that were used during the experiments for all
participants.

Parameters χ β1 β2 α1 α2 qc

Value 1 19,231 2.1 0.0769 5,333.3 3

Parameters λ1 λ2 γ ρ1 ρ2

Value 0.0375 0.0004 1 2 2
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represents the not linearly parameterizable and linearly
parameterizable elements in the system dynamics learned
through iterative fashion. As depicted in this figure, the
magnitude of Fk decreases while the magnitudes of f̂2,k and
σ̂kf1,k increase along with the iterations. Those changes
indicate that the contribution of the feedback term Fk in the
top-level controller is reduced, and the contribution of the
learning terms is increased.

The bottom-level control inputs for the 1st and 4th iterations
for Participant 2 are shown in Figure 7. In this figure, the
allocation ratio for FES is shown in the kth iteration. The
allocation ratio shows how much of the top-level control input
is allocated to FES by the model predictive allocator. At t � 10 s in
the 1st iteration, the knee motor torque magnitude is 0 and the
allocation ratio for FES is one.

Detailed experimental results for all 4 participants are
provided in Table 4, where �u1

stIt
M and �u4

thIt
M show absolute

mean values of the motors’ control effort in the 1st and 4th
iterations, respectively, �uF shows the mean value of the
normalized FES control effort, and “Improv” stands for
improvement.

According to Figure 8, the novel NNILC method was able to
improve the right-knee, left-knee, right-hip, and left-hip RMSEs,
78.92, 65.02, 70.93, and 78.19%, respectively, on average for all
participants. For statistical analysis of the novel controller, we
focused on the RMSE reduction percentage of each iteration
across the four participants and compared the reduction
performance between the left knee/hip joint and the right
knee/hip joint. For each joint in an individual iteration, there
were four RMSE values across participants. A Shapiro–Wilk test

FIGURE 2 | Snapshots of one sit-to-stand trial for Participant 1.

FIGURE 3 | Knee and hip joint angular position tracking results of Participant 2 in the 1st and 4th iterations. Yellow dashed line shows the approximate time in which
the sit-to-stand movement is mainly done.
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was used to determine the normality of the data. The results did
not show a normal distribution of RMSE results on each joint.
Therefore, a Wilcoxon rank sum test was used to determine if
there was a significant difference among the left and right joints’
RMSE reduction percentage in the second, third, and fourth
iterations, respectively. We observed significant difference
between the left and right knee joints in the third iteration
(p � 0.029). Other than this, there was no significant
difference between the left and right joints in each iteration
(detailed p values are shown in Figure 8), which indicates a
comparative and symmetric performance of the proposed
controller on the left and right knee/hip joints.

4 DISCUSSION

A hybrid system that combines FES and the powered exoskeleton
is a promising rehabilitation intervention to assist people with
mobility disorders. Motivated by an ILC approach that improves
a system’s transient performance in multiple iterations, the study
presented derivation and experimental results of a novel NN-
based ILC method. The optimal low-level MPC-based allocator
automates the need to specify an allocation ratio between the
powered exoskeleton and FES. The allocation process has coupled

performance effects. Thus, in a manual tuning involving trial and
error, a clinician/physical therapist may lack the relevant control
engineering experience to guarantee stability and performance of
the system. The proposed bi-level control framework potentially
contrasts the manual allocation process, which could be daunting
to a clinician/physical therapist. Also, the optimization
framework determines optimal allocation ratios instead of
static/ad hoc nonoptimal allocation, which potentially
increases the device efficiency.

The results show that the iterative learning process improves
tracking performance by increasing a feed-forward learning part
while decreasing the control’s feedback component. The NN-
based ILC potentially facilitates the control implementation
despite inter-person and day-to-day variations in a user’s FES-
driven musculoskeletal dynamics. Most model-based optimal
control approaches often involve a tedious process of
identifying the model (Stein et al. (1996); Kirsch et al. (2018)),
which hinders their control implementation. Instead, nonlinear
robust control methods, for example, discontinuous sliding mode
control (Bkekri et al. (2018)) and continuous RISE control
(Sharma et al. (2009)), have been explicitly designed to
address uncertainties in the nonlinear musculoskeletal model.
However, these approaches inherently rely on the high frequency
or high gain control to compensate for the modeling uncertainties

FIGURE 4 | Angular position tracking errors on both knee and hip joints of Participant 2 in the 1st and 4th iterations. Red dashed line shows the approximate time in
which the sit-to-stand movement is mainly done.
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and cause overstimulation. A feed-forward control strategy is
usually recommended along with feedback control to reduce
overall control effort. Therefore, the FES controllers in the

studies by Ajoudani and Erfanian (2009), Lujan and Crago
(2009), and Cousin et al. (2019) used neural networks as feed-
forward controllers. The NN-based control approach’s advantage

FIGURE 5 | RMSE improvement percentage of both knee and hip joints from the 1st to the 4th iterations for each participant.

FIGURE 6 | Changes of Fk, f̂2, and σ̂f1 in the top-level controller for Participant 2 in 4 iterations.
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is its universal approximation property that helps to capture
unstructured uncertainties in the musculoskeletal dynamics
(Sharma et al. (2012)). NN-based control, however, requires
training to obtain the desired performance. Both offline (Kim
et al. (2008); Yu and Rosen (2013)) and online (Sharma et al.
(2012)) NN training methods have been used for FES control. In
this study, the NN approach uses a combination of online gradient

update laws that tune NN weights after every task iteration or at
every time instant. A Lyapunov-like stability analysis facilitates the
design of these update laws and guarantees the bi-level hierarchical
control method’s stability.

Compared to a predetermined higher-level input generator, the
NN-based ILC method’s torque generation is more robust to
disturbances. Zhang et al. (2015) investigated multiple

FIGURE 7 |Bottom-level control inputs for Participant 2 allocated byMPC in the 1st and 4th iterations. Yellow dashed line shows the approximate time in which the
sit-to-stand movement is mainly done.

TABLE 4 | RMSE of trajectory tracking and inputs from motors and FES on each participant in the 1st and 4th iterations.

Joints RMSE 1st iteration RMSE 4th iteration RMSE Improv % �u1st

M �u4th

M �u1st

F �u4th

F

P1 Right knee 23.11 4.42 80.86 11.28 23.66 0.44 0.41
Left knee 3.32 1.41 57.52 9.32 13.00 0.26 0.21
Right hip 1.74 0.72 58.14 6.48 6.64 – –

Left hip 4.14 0.73 82.34 7.73 8.89 – –

P2 Right knee 9.66 1.94 79.91 18.11 26.21 0.38 0.42
Left knee 3.13 0.56 82.01 11.11 14.86 0.27 0.29
Right hip 2.04 0.38 81.09 6.41 5.90 – –

Left hip 2.56 0.44 82.68 10.93 6.38 – –

P3 Right knee 23.31 4.39 81.17 12.36 18.89 0.28 0.35
Left knee 3.33 1.62 51.5 12.33 13.29 0.51 0.25
Right hip 2.48 0.71 71.45 10.85 5.88 – –

Left hip 4.36 0.87 80.15 8.20 7.66 – –

P4 Right knee 7.28 1.91 73.76 17.24 15.26 0.10 0.003
Left knee 1.29 0.40 68.99 11.37 10.18 0.11 0.05
Right hip 5.00 1.34 73.20 8.22 5.23 – –

Left hip 4.81 1.56 67.56 8.79 7.06 – –

All Mean 6.34 1.46 73.27 10.67 11.81 0.29 0.5
Std 6.91 1.26 10.08 3.33 6.54 0.15 0.15
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predetermined higher torque generation techniques based on a limb
angle, time, or an EMG signal. A low-level controller then matched
the desired torque trajectory. However, the predetermined desired
torque may not be robust to perturbations such as spasticity. The
robustness to perturbations is essential in situations where the goal is
to enable a person with absent motor control to verticalize from
sitting. The bi-level control approach used in our study produces
robust torque that tracks the desired trajectory. Unlike kinematic
tracking, torque-based control of a wearable robot may be more
useful in situations where a user may need some torque assistance to
control stiffness/impedance or torque. Our focus was on people with
completely absent volitional control. Thus, the control design focused
on kinematic control instead of torque control.

Repetitivemovements such aswalking are a good benchmark to test
an ILC control method’s performance. For sit-to-stand, each sit-to-
stand movement is considered as one iteration, and for the case of
walking, each gait cycle is considered as one iteration. We, however,
used sit-to-stand experiments to show the feasibility of the NN-based
ILC method. Sit-to-stand movement has a very high torque demand,
which makes it even more challenging than walking. These tasks are
significant as they facilitate a sit-to-stand, a basicmovement, a precursor
to walking. Also, enabling people with SCI to perform repeated upright
standing tasks is beneficial for their musculoskeletal and cardiovascular
health. While we do not underestimate the significance of walking,
which is critical to mobility and is our ultimate goal, we emphasize sit-
to-stand as an equally challenging control problemand actively pursued
research on it, for example, in the studies by Alouane et al. (2019), Huo
et al. (2016), and Jatsun et al. (2015).

In this work, state-dependent manifolds are used as reference
trajectories. This desired trajectory design approach differs from
our previous work in the study by Alibeji et al. (conditionally
accepted, 2018a) that used time-dependent reference trajectories.
Some SCI participants may exhibit asymmetric left and right leg

movements during the sit-to-stand task. The time-dependent
desired trajectories in this situation may not correct themselves
and may produce an uncoordinated movement, potentially
uncomfortable and unsafe for a user. In our current approach,
the joint reference profiles adapt based on the current state of the
system. The state-dependent desired trajectory design coordinates
both legs’ hip and knee joints, enabling the users to achieve a more
stable and natural movement.

Two limitations in the study deserve discussion. First, we
could have used pulse width (PW) modulation, instead of current
amplitude (CA) modulation, for FES control. Although both PW
and CA modulation have the same function of increasing and
decreasing muscle fiber recruitment, the stimulator (Rehastim,
Hasomed, Inc.) used in the study has a higher resolution for PW
modulation than the current modulation. We will be switching
our future work to the PW mode.

Furthermore, the results from subjects with no disability verified the
proposed bi-level NNILC-MPC framework’s feasibility to optimally
allocate FES and the powered exoskeleton. The experimental results on
the participants with no disabilities here are preliminary and more
experiments on participants with SCI will be performed to validate the
benefits of the control framework further.

5 CONCLUSION

A novel NNILC augmented with anMPC-based allocation strategy
was developed to control a hybrid exoskeleton in this work. A
Lyapunov-like stability analysis proved that the unified control
framework yielded asymptotic tracking performance despite
uncertain dynamics and disturbances. State-dependent
trajectories were used as desired joint trajectories. The
experimental results of four participants without a disability

FIGURE 8 | Improvements in the mean RMSE for all participants. Solid and dashed lines show the mean, and the shaded areas show the standard deviation.
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demonstrated that the controller enabled sit-to-stand tasks. The
tracking performance showed improvement in each iteration. The
results also showed that the MPC strategy could achieve the
optimal allocation between FES and the powered exoskeleton.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The study was approved by the Institutional Review Board (IRB)
at the University of Pittsburgh (IRB approval number: PRO
14040419) and the IRB of North Carolina State University
(IRB approval number: 20553). The patients/participants
provided their written informed consent to participate in this
study.

AUTHOR CONTRIBUTIONS

VM wrote the manuscript, developed the iterative learning
control system and trajectory design, conducted experiments,

and analyzed the experimental results. QZ helped in the
experiments and edited the manuscript. XB helped in the
design and implementation of the MPC algorithm. BD helped
in the participant recruitment, provided medical oversight, and
edited the manuscript. NS conceptualized the study, advised in
control design and development, and edited the manuscript.

FUNDING

This work was supported in part by the National Science
Foundation (NSF) under Award # 1646009 and NSF CAREER
Award # 2002261.

ACKNOWLEDGMENTS

The authors would like to thank Albert Dodson for his help in the
experiment.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frobt.2021.711388/
full#supplementary-material

REFERENCES

Ajoudani, A., and Erfanian, A. (2009). A Neuro-Sliding-Mode Control with
Adaptive Modeling of Uncertainty for Control of Movement in Paralyzed
Limbs Using Functional Electrical Stimulation. IEEE Trans. Biomed. Eng. 56,
1771–1780. doi:10.1109/tbme.2009.2017030

Alibeji, N. A., Molazadeh, V., Dicianno, B. E., and Sharma, N. (2018a). A Control
Scheme that Uses Dynamic Postural Synergies to Coordinate a Hybrid Walking
Neuroprosthesis: Theory and Experiments. Front. Neurosci. 12, 159.
doi:10.3389/fnins.2018.00159

Alibeji, N. A., Molazadeh, V., Moore-Clingenpeel, F., and Sharma, N. (2018b). AMuscle
Synergy-InspiredControlDesign toCoordinate Functional Electrical Stimulation and
a Powered Exoskeleton: Artificial Generation of Synergies to Reduce Input
Dimensionality. IEEE Control. Syst. 38, 35–60. doi:10.1109/mcs.2018.2866603

Alibeji, N., Kirsch, N., and Sharma, N. (2015). AMuscle Synergy-Inspired Adaptive
Control Scheme for a Hybrid Walking Neuroprosthesis. Front. Bioeng.
Biotechnol.3, 203. doi:10.3389/fbioe.2015.00203

Alibeji, N., Kirsch, N., and Sharma, N. (2017). An Adaptive Low-Dimensional
Control to Compensate for Actuator Redundancy and Fes-Induced Muscle
Fatigue in a Hybrid Neuroprosthesis. Control. Eng. Pract. 59, 204–219.
doi:10.1016/j.conengprac.2016.07.015

Alouane, M. A., Huo, W., Rifai, H., Amirat, Y., and Mohammed, S. (2019). Hybrid
Fes-Exoskeleton Controller to Assist Sit-To-Stand Movement. IFAC-
PapersOnLine 51, 296–301. doi:10.1016/j.ifacol.2019.01.032

Bae, J., and Tomizuka, M. (2012). A Gait Rehabilitation Strategy Inspired by an Iterative
LearningAlgorithm.Mechatronics22, 213–221. doi:10.1016/j.mechatronics.2012.01.009

Bao, X., Kirsch, N., Dodson, A., and Sharma, N. (2019).Model Predictive Control of a
Feedback-Linearized Hybrid Neuroprosthetic System with a Barrier Penalty.
J. Comput. Nonlinear Dyn. 14, 101009–1010097. doi:10.1115/1.4042903

Bao, X., Kirsch, N., and Sharma, N. (2016). Dynamic Control Allocation of a Feedback
Linearized Hybrid Neuroprosthetic System. 2016 American Control Conference
(ACC). 6-8 July 2016. Boston, USA. IEEE, 3976–3981. doi:10.1109/acc.2016.7525534

Bao, X., Molazadeh, V., Dodson, A., Dicianno, B. E., and Sharma, N. (2020a). Using
Person-specific Muscle Fatigue Characteristics to Optimally Allocate Control in

a Hybrid Exoskeleton-Preliminary Results. IEEE Trans. Med. Robot. Bionics 2,
226–235. doi:10.1109/tmrb.2020.2977416

Bao, X., Molazadeh, V., Dodson, A., and Sharma, N. (2020b). Model Predictive
Control-Based Knee Actuator Allocation during a Standing-Up Motion with a
Powered Exoskeleton and Functional Electrical Stimulation. Adv. Mot.
Neuroprostheses, 89–100. doi:10.1007/978-3-030-38740-2_6

Bickel, C. S., Gregory, C. M., and Dean, J. C. (2011). Motor Unit
Recruitment during Neuromuscular Electrical Stimulation: a Critical
Appraisal. Eur. J. Appl. Physiol. 111, 2399–2407. doi:10.1007/s00421-
011-2128-4

Bkekri, R., Benamor, A., Alouane, M. A., Fried, G., and Messaoud, H. (2018).
Robust Adaptive Sliding Mode Control for a Human-Driven Knee Joint
Orthosis. Ir 45, 379–389. doi:10.1108/ir-11-2017-0205

Bulea, T. C., Kobetic, R., Audu, M. L., Schnellenberger, J. R., and Triolo, R. J. (2013).
Finite State Control of a Variable Impedance Hybrid Neuroprosthesis for
Locomotion after Paralysis. IEEE Trans. Neural Syst. Rehabil. Eng. 21,
141–151. doi:10.1109/tnsre.2012.2227124

Chang, S. R., Nandor, M. J., Kobetic, R., Foglyano, K. M., Quinn, R. D., and
Triolo, R. J. (2016). Improving Stand-To-Sit Maneuver for Individuals
with Spinal Cord Injury. J. Neuroeng. Rehabil. 13, 27. doi:10.1186/
s12984-016-0137-6

Chen, W., Chen, Y.-Q., and Yeh, C.-P. (2012). Robust Iterative Learning Control
via Continuous Sliding-Mode Technique with Validation on an Srv02 Rotary
Plant. Mechatronics 22, 588–593. doi:10.1016/j.mechatronics.2011.12.005

Contreras-Vidal, J. L., A Bhagat, N., Brantley, J., Cruz-Garza, J. G., He, Y., Manley,
Q., et al. (2016). Powered Exoskeletons for Bipedal Locomotion after Spinal
Cord Injury. J. Neural Eng. 13, 031001. doi:10.1088/1741-2560/13/3/031001

Cousin, C. A., Deptula, P., Rouse, C. A., and Dixon, W. E. (2019). Cycling with
Functional Electrical Stimulation and Adaptive Neural Network Admittance
Control. IEEE ACC., 1742–1747. doi:10.23919/acc.2019.8814619

del-Ama, A. J., Gil-Agudo, Á., Pons, J. L., and Moreno, J. C. (2014). Hybrid Fes-
Robot Cooperative Control of Ambulatory Gait Rehabilitation Exoskeleton.
J. NeuroEngineering Rehabil. 11, 27. doi:10.1186/1743-0003-11-27

Farris, R. J., Quintero, H. A., Murray, S. A., Ha, K. H., Hartigan, C., and Goldfarb,
M. (2014). A Preliminary Assessment of Legged Mobility provided by a Lower

Frontiers in Robotics and AI | www.frontiersin.org November 2021 | Volume 8 | Article 71138812

Molazadeh et al. Shared Neural Network Based ILC

https://www.frontiersin.org/articles/10.3389/frobt.2021.711388/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2021.711388/full#supplementary-material
https://doi.org/10.1109/tbme.2009.2017030
https://doi.org/10.3389/fnins.2018.00159
https://doi.org/10.1109/mcs.2018.2866603
https://doi.org/10.3389/fbioe.2015.00203
https://doi.org/10.1016/j.conengprac.2016.07.015
https://doi.org/10.1016/j.ifacol.2019.01.032
https://doi.org/10.1016/j.mechatronics.2012.01.009
https://doi.org/10.1115/1.4042903
https://doi.org/10.1109/acc.2016.7525534
https://doi.org/10.1109/tmrb.2020.2977416
https://doi.org/10.1007/978-3-030-38740-2_6
https://doi.org/10.1007/s00421-011-2128-4
https://doi.org/10.1007/s00421-011-2128-4
https://doi.org/10.1108/ir-11-2017-0205
https://doi.org/10.1109/tnsre.2012.2227124
https://doi.org/10.1186/s12984-016-0137-6
https://doi.org/10.1186/s12984-016-0137-6
https://doi.org/10.1016/j.mechatronics.2011.12.005
https://doi.org/10.1088/1741-2560/13/3/031001
https://doi.org/10.23919/acc.2019.8814619
https://doi.org/10.1186/1743-0003-11-27
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Limb Exoskeleton for Persons with Paraplegia. IEEE Trans. Neural Syst.
Rehabil. Eng. 22, 482–490. doi:10.1109/TNSRE.2013.2268320

Graichen, K., and Kugi, A. (2010). Stability and Incremental Improvement of
Suboptimal MPC without Terminal Constraints. IEEE Trans. Automat. Contr.
55, 2576–2580. doi:10.1109/tac.2010.2057912

Gregg, R. D., and Sensinger, J. W. (2014). Towards Biomimetic Virtual Constraint
Control of a Powered Prosthetic Leg. IEEE Trans. Contr. Syst. Technol. 22,
246–254. doi:10.1109/tcst.2012.2236840

Ha, K. H., Quintero, H. A., Farris, R. J., and Goldfarb, M. (2012). Enhancing Stance
Phase Propulsion during Level Walking by Combining FES with a Powered
Exoskeleton for Persons with Paraplegia. Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc. 2012, 344–347. doi:10.1109/EMBC.2012.6345939

Ha, K., Murray, S., and Goldfarb, M. (2015). An Approach for the Cooperative
Control of FES with a Powered Exoskeleton during Level Walking for Persons
with Paraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 455–466.
doi:10.1109/TNSRE.2015.2421052

Huo,W.,Mohammed, S., Amirat, Y., andKong, K. (2016). Active Impedance Control
of a Lower Limb Exoskeleton to Assist Sit-To-Stand Movement. Robotics and
Automation (ICRA), 2016 IEEE International Conference on. 16-21 May 2016.
Stockholm, Sweden. IEEE, 3530–3536. doi:10.1109/icra.2016.7487534

Jatsun, S., Savin, S., Yatsun, A., and Turlapov, R. (2015). Adaptive Control System
for Exoskeleton Performing Sit-To-Stand Motion. Mechatronics and its
Applications (ISMA), 2015 10th International Symposium on. 8-10 Dec.
2015. Sharjah, United Arab. IEEE, 1–6. doi:10.1109/isma.2015.7373462

Kim, S. J., Fairchild, M. D., Iarkov Yarkov, A., Abbas, J. J., and Jung, R. (2008). Adaptive
Control ofMovement forNeuromuscular Stimulation-Assisted Therapy in a Rodent
Model. IEEE Trans. Biomed. Eng. 56, 452–461. doi:10.1109/TBME.2008.2008193

Kirsch, N. A., Bao, X., Alibeji, N. A., Dicianno, B. E., and Sharma, N. (2018). Model-
based Dynamic Control Allocation in a Hybrid Neuroprosthesis. IEEE Trans.
Neural Syst. Rehabil. Eng. 26, 224–232. doi:10.1109/tnsre.2017.2756023

Kirsch, N., Alibeji, N., Dicianno, B. E., and Sharma, N. (2016). Switching Control of
Functional Electrical Stimulation and Motor Assist for Muscle Fatigue
Compensation. ACC (IEEE), 4865–4870. doi:10.1109/acc.2016.7526123

Kirsch, N., Alibeji, N., Fisher, L., Gregory, C., and Sharma, N. (2014). A Semi-active
Hybrid Neuroprosthesis for Restoring Lower Limb Function in Paraplegics. In
2014 36th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, Chicago, IL, USA, 26-30 Aug. 2014.
doi:10.1109/embc.2014.6944144

Kirsch, N., Sharma, N., Alibeji, N., and Sharma, N. (2017). Nonlinear Model
Predictive Control of Functional Electrical Stimulation. Control. Eng. Pract. 58,
319–331. doi:10.1016/j.conengprac.2016.03.005

Lewis, F. L., Selmic, R., and Campos, J. (2002). Neuro-Fuzzy Control of Industrial
Systems with Actuator Nonlinearities. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics).

Lujan, J. L., and Crago, P. E. (2009). Automated Optimal Coordination of Multiple-
Dof Neuromuscular Actions in Feedforward Neuroprostheses. IEEE Trans.
Biomed. Eng. 56, 179–187. doi:10.1109/tbme.2008.2002159

Mingxuan Sun, M. (2009). A Barbalat-like Lemma with its Application to Learning
Control. IEEE Trans. Automat. Contr. 54, 2222–2225. doi:10.1109/tac.2009.2026849

Molazadeh, V., Sheng, Z., Bao, X., and Sharma, N. (2018a). A Robust Iterative
Learning Switching Controller for Following Virtual Constraints: Application to a
Hybrid Neuroprosthesis. CPHS IFAC 51, 28–33. doi:10.1016/j.ifacol.2019.01.011

Molazadeh, V., Sheng, Z., and Sharma, N. (2018b). A Within-Stride Switching
Controller for Walking with Virtual Constraints: Application to a Hybrid
Neuroprosthesis. ACC (IEEE), 5286–5291. doi:10.23919/acc.2018.8431436

Molazadeh, V., Zhang, Q., Bao, X., and Sharma, N. (2019). Neural-network Based Iterative
Learning Control of a Hybrid Exoskeleton with an Mpc Allocation Strategy. ASME
DSCC. Park City, Utah: ASME, 7. doi:10.1115/DSCC2019-9191

Mou Chen, M., Shuzhi Sam Ge, S. S., and How, B. (2010). Robust Adaptive Neural
Network Control for a Class of Uncertain Mimo Nonlinear Systems with Input
Nonlinearities. IEEETrans.NeuralNetw. 21, 796–812. doi:10.1109/tnn.2010.2042611

Nagai, M. K., Marquez-Chin, C., and Popovic, M. R. (2016). Why Is Functional
Electrical Stimulation Therapy Capable of Restoring Motor Function Following
Severe Injury to the central Nervous System? Translational Neuroscience.
Springer, 479–498. doi:10.1007/978-1-4899-7654-3_25

Neuhaus, P. D., Noorden, J. H., Craig, T. J., Torres, T., Kirschbaum, J., and Pratt, J. E.
(2011). Design and Evaluation of mina: A Robotic Orthosis for Paraplegics. IEEE
Int. Conf. Rehabil. Robot 2011, 5975468–8. doi:10.1109/ICORR.2011.5975468

Peckham, P. H., and Knutson, J. S. (2005). Functional Electrical Stimulation for
Neuromuscular Applications. Annu. Rev. Biomed. Eng. 7, 327–360.
doi:10.1146/annurev.bioeng.6.040803.140103

Popovic, D., Stein, R. B., Namik Oguztoreli, M., Lebiedowska, M., and Jonic, S.
(1999). Optimal Control of Walking with Functional Electrical Stimulation: a
Computer Simulation Study. IEEE Trans. Rehab. Eng. 7, 69–79. doi:10.1109/
86.750554

Popovic, M. R., Masani, K., and Micera, S. (2012). Functional Electrical Stimulation
Therapy: Recovery of Function Following Spinal Cord Injury and Stroke.
London: Springer London, 105–121. doi:10.1007/978-1-4471-2277-7_7

Quintero, H. A., Farris, R. J., Ha, K., and Goldfarb, M. (2012). Preliminary
Assessment of the Efficacy of Supplementing Knee Extension Capability in
a Lower Limb Exoskeleton with FES. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
2012, 3360–3363. doi:10.1109/EMBC.2012.6346685

Riener, R., Quintern, J., and Schmidt, G. (1996). Biomechanical Model of the
Human Knee Evaluated by Neuromuscular Stimulation. J. Biomech. 29,
1157–1167. doi:10.1016/0021-9290(96)00012-7

Sharma, N., Gregory, C. M., Johnson, M., and Dixon, W. E. (2012). Closed-loop
Neural Network-Based NMES Control for Human Limb Tracking. IEEE Trans.
Contr. Syst. Technol. 20, 712–725. doi:10.1109/tcst.2011.2125792

Sharma, N., Mushahwar, V., and Stein, R. (2014). Dynamic Optimization of FES
and Orthosis-Based Walking Using Simple Models. IEEE Trans. Neural Syst.
Rehabil. Eng. 22, 114–126. doi:10.1109/tnsre.2013.2280520

Sharma, N., Stegath, K., Gregory, C. M., and Dixon, W. E. (2009). Nonlinear
Neuromuscular Electrical Stimulation Tracking Control of a Human Limb. IEEE
Trans. Neural Syst. Rehabil. Eng. 17, 576–584. doi:10.1109/tnsre.2009.2023294

Stein, R. B., Zehr, E. P., Lebiedowska, M. K., Popovic, D. B., Scheiner, A., and
Chizeck, H. J. (1996). Estimating Mechanical Parameters of Leg Segments in
Individuals with and without Physical Disabilities. IEEE Trans. Rehab. Eng. 4,
201–211. doi:10.1109/86.536776

Strausser, K., and Kazerooni, H. (2011). The Development and Testing of a Human
Machine Interface for a mobile Medical Exoskeleton. 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems. 25-30 Sept.
2011. San Francisco, CA, USA. IEEE, 4911–4916. doi:10.1109/iros.2011.6095025

Sun, Z., Bao, X., and Sharma, N. (2018). Lyapunov-based Model Predictive Control
of an Input Delayed Functional Electrical Simulation. In 2nd IFAC CPHS,
Miami, FL, USA. 51, 290–295. doi:10.1016/j.ifacol.2019.01.037

Wen Yu, W., and Rosen, J. (2013). Neural Pid Control of Robot Manipulators with
Application to an Upper Limb Exoskeleton. IEEE Trans. Cybern. 43, 673–684.
doi:10.1109/tsmcb.2012.2214381

Westervelt, E. R., Grizzle, J. W., Chevallereau, C., Choi, J. H., andMorris, B. (2007).
Feedback Control of Dynamic Bipedal Robot Locomotion, 28. Boca Raton,
Florida: CRC Press, 528.

Xu, J.-X., and Yan, R. (2004). Iterative Learning Control Design without A Priori
Knowledge of the Control Direction. Automatica 40, 1803–1809. doi:10.1016/
j.automatica.2004.05.010

Zhang, J., Cheah, C. C., and Collins, S. H. (2015). Experimental Comparison
of Torque Control Methods on an Ankle Exoskeleton during Human
Walking. In 2015 IEEE ICRA (IEEE), 5584–5589. doi:10.1109/
icra.2015.7139980

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Molazadeh , Zhang , Bao , Dicianno and Sharma . This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Robotics and AI | www.frontiersin.org November 2021 | Volume 8 | Article 71138813

Molazadeh et al. Shared Neural Network Based ILC

https://doi.org/10.1109/TNSRE.2013.2268320
https://doi.org/10.1109/tac.2010.2057912
https://doi.org/10.1109/tcst.2012.2236840
https://doi.org/10.1109/EMBC.2012.6345939
https://doi.org/10.1109/TNSRE.2015.2421052
https://doi.org/10.1109/icra.2016.7487534
https://doi.org/10.1109/isma.2015.7373462
https://doi.org/10.1109/TBME.2008.2008193
https://doi.org/10.1109/tnsre.2017.2756023
https://doi.org/10.1109/acc.2016.7526123
https://doi.org/10.1109/embc.2014.6944144
https://doi.org/10.1016/j.conengprac.2016.03.005
https://doi.org/10.1109/tbme.2008.2002159
https://doi.org/10.1109/tac.2009.2026849
https://doi.org/10.1016/j.ifacol.2019.01.011
https://doi.org/10.23919/acc.2018.8431436
https://doi.org/10.1115/DSCC2019-9191
https://doi.org/10.1109/tnn.2010.2042611
https://doi.org/10.1007/978-1-4899-7654-3_25
https://doi.org/10.1109/ICORR.2011.5975468
https://doi.org/10.1146/annurev.bioeng.6.040803.140103
https://doi.org/10.1109/86.750554
https://doi.org/10.1109/86.750554
https://doi.org/10.1007/978-1-4471-2277-7_7
https://doi.org/10.1109/EMBC.2012.6346685
https://doi.org/10.1016/0021-9290(96)00012-7
https://doi.org/10.1109/tcst.2011.2125792
https://doi.org/10.1109/tnsre.2013.2280520
https://doi.org/10.1109/tnsre.2009.2023294
https://doi.org/10.1109/86.536776
https://doi.org/10.1109/iros.2011.6095025
https://doi.org/10.1016/j.ifacol.2019.01.037
https://doi.org/10.1109/tsmcb.2012.2214381
https://doi.org/10.1016/j.automatica.2004.05.010
https://doi.org/10.1016/j.automatica.2004.05.010
https://doi.org/10.1109/icra.2015.7139980
https://doi.org/10.1109/icra.2015.7139980
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Shared Control of a Powered Exoskeleton and Functional Electrical Stimulation Using Iterative Learning
	1 Introduction
	2 Shared Control Framework
	2.1 Top-Level Control Structure
	2.2 Predictive Allocation Strategy
	Control Distribution Between Functional Electrical Stimulation and Motor
	2.3 Overall Bi-Level Control Structure

	3 Experiments
	3.1 Sit-to-Stand Experiment Protocol

	3.2 Results
	4 Discussion
	5 Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


