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Human-object interaction is of great relevance for robots to operate in human
environments. However, state-of-the-art robotic hands are far from replicating humans
skills. It is, therefore, essential to study how humans use their hands to develop similar
robotic capabilities. This article presents a deep dive into hand-object interaction and
human demonstrations, highlighting the main challenges in this research area and
suggesting desirable future developments. To this extent, the article presents a general
definition of the hand-object interaction problem together with a concise review for each of
the main subproblems involved, namely: sensing, perception, and learning. Furthermore,
the article discusses the interplay between these subproblems and describes how their
interaction in learning from demonstration contributes to the success of robot
manipulation. In this way, the article provides a broad overview of the interdisciplinary
approaches necessary for a robotic system to learn new manipulation skills by observing
human behavior in the real world.

Keywords: hand-object interaction, learning from demonstration, imitation learning, transfer learning, grasping,
manipulation, anthropomorphic hands, data extraction

1 INTRODUCTION

Humans use hands to interact with the environment in everyday activities, e.g., object manipulation,
tool usage, deictic gestures, or communication via sign language (Napier et al., 1993). The capabilities
exhibited by human hands result from a lifetime of learning, observing others, and trying to interact
with objects. These abilities enabled us to excel in manipulation tasks, learning new skills, and
adapting to complex environments (Lockman and McHale, 1989; Adolph and Franchak, 2017).
Robots should dexterously, robustly, and safely manipulate objects to operate in humans’
environments. For example, robots should use tools; or synchronize their movements with
humans, either for turn-taking or joint work (Aleotti et al., 2012). However, current robotic
hands are unable to match human dexterity. Often state-of-the-art solutions to develop hand-
object interaction skills employ learning from human demonstrations to alleviate the need for
reliable objects and contact dynamics models (Billard and Kragic, 2019). This approach also allows
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designing more natural human-like motions, which helps people
better understand a robot’s intentions during human-robot
interaction (Fukuda et al., 2001). This article is a follow-up to
the Workshop on Hand-Object Interaction: From Human
Demonstrations to Robot Manipulation (HOBI 2020)1 at the
IEEE International Symposium on Robot and Human
Interactive Communication held online on September 7, 20202.
HOBI 2020 aimed to gather experiences from different fields to
discuss the bests conceptual and engineering tools for robots to
learn hand-object interaction skills from human demonstration.
In this article, the HOBI 2020 organizers and speakers reflect on
the open problems and challenges of the aforementioned theme.
In particular, this article presents opinions and outlines directions
for new research on data acquisition, sensing capabilities, and
learning algorithms in the context of transferring human
demonstrations of object manipulation to robot platforms.
While hand-object interaction has broad interpretations, this
article primarily addresses the problem from a functional
perspective. More semantically focused aspects, such as social
communication, are highly relevant and compatible with the
building blocks we present here but necessitate further
considerations. The remainder of this article is structured as
follows.We define hand-object interaction in Section 2. Opinions
and ideas about data acquisition and sensing technologies follow
in Section 3. In Section 4, perception algorithms are discussed. In
Section 5, we present learning strategies. Finally, Section 6
concludes the article with a discussion on challenges and
future work.

2 DEFINITION OF HAND-OBJECT
INTERACTION

Hand-object interaction has been the subject of different studies
in human motor control and robotics (Kang and Ikeuchi, 1995;
Stollenwerk et al., 2016). Usually, the state-of-the-art describes
the interaction using three main phases: reach, grasp, and
manipulation. Although these concepts are intuitive, grasp and
manipulation can be confused. Therefore we provide their
definition. In particular, Feix et al. (2016) define a grasp as:

“every static hand posture with which an object can be
held securely with one hand, irrespective of the hand
orientation.”

Instead, to manipulate means to control, use or change
something with skill3. Formally speaking, we define
manipulation as:

“the action changing the state of an object”.

where the object state includes its pose in space and its internal
degrees of freedom (DOF), if any. Given this definition, it is clear
that grasping is a precondition for manipulation. However,
simply referring to these concepts is not sufficient to describe
the hand-object interaction and its declinations. Therefore, we
divide the hand-object interaction into three states: Off-hand, In-
contact, and Held in-hand, see Figure 1.

In the Off-hand state, there is no physical interaction
between hand and object. However, the hand motion can
convey the interaction intention to an external observer.
When the hand arrives in the object proximity, the hand-
object interaction transitions to the In-contact state. Here, the
hand can grasp the object and perform limited manipulations
since it does not support its weight. When the hand loads the
object, the interaction transitions to the Held in-hand state. In
this state, the human has complete control over the object state
to perform free manipulation. The concepts considered in this
definition are general. Therefore, this can describe in-hand
manipulations purely functional, such as using a tool, or with
social intent, such as teaching a manipulation task to an
observer.

The described hand-object interaction process is simple and
can be adapted to represent bi-manual hand-object interactions
as well. It is necessary to point out that this is a high-level
description of the hand-object interaction, and we do not
intend it as a formal model. For this reason, some aspects,
such as hand coordination in bi-manual interaction, are
ignored. As previously mentioned, the object state includes
both the object pose and the internal DOF. The internal DOF
definition is straightforward for rigid objects, e.g., a camera
tripod, pen, or scissors. However, for non-rigid objects, the
representation is more complex. Deformable objects, such as
textiles and foams, are an example since they deform and adopt
the shape of the grasping configuration. A recent proposal is to
characterize shapeless object grasps in terms of geometric virtual
fingers, that is, the parameters of the contact surface patch
between the finger and the textile and its geometry, that in
general reduce to a point, line, and plane (Borràs et al., 2020).
Contrary to well-established grasping taxonomies (Cutkosky,
1989; Feix et al., 2016), the object shape cannot influence the
definition of the grasp, and external appliances, such as a table,
play an essential role in grasping and manipulation enlarging the
gripper functionalities. Furthermore, textile manipulation is
primarily bi-manual.

3 DATA AND SENSING

Human ability to interact with objects results from the hand’s
complex kinematic structure and unparalleled sensing
capabilities. Humans, while manipulating objects, use various
senses, in particular proprioception and touch. Proprioception is
the sense of self-movement and body position that provides
continuous feedback. Touch sensing is generated by different
mechanoreceptors at different depth levels inside the skin, with
higher density in hand and fingertip areas (Vallbo and Johansson,
1984), coming into play when the hand and an object are in

1https://theengineroom.dibris.unige.it/index.php/hobi/.
2http://ro-man2020.unina.it/.
3https://www.oxfordlearnersdictionaries.com/definition/english/manipulate?
q�manipulate.
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contact. The integration of movements with tactile sensing is
fundamental, and it is named active touch or haptic perception
(Prescott et al., 2011; Seminara et al., 2019). Haptic perception
allows humans to perceive objects’ details, optimize grasp
stability, and identify shapes and textures. Furthermore, vision
helps humans interact with objects, determining object
characteristics such as its pose or status (Schettino et al., 2003).

Ideally, an intelligent system needs the same information that
humans perceive to learn and perform complex hand-object
interactions. This objective justifies the need for multi-modal
datasets of human hand-object interactions and the study of
advanced robotic sensing capabilities. Such a dataset should
clearly describe the hand and object statuses and their
interaction. The parameters to describe the hand status can be
easy to identify. Hands have a complex kinematic chain for which
many models exist. The more detailed ones use 24 DOF to
describe the hand joints state, and the hand reference frame is
in the palm or wrist center (Romero et al., 2017; Ahmad et al.,
2019). Instead, for the object status, providing a unique
description is difficult. The description of an object varies
according to its characteristics. Given an appropriate definition
of a reference frame, the pose of a rigid object consists of 6 DOF.
Furthermore, an additional DOF is necessary for each internal
articulation, e.g., the DOF of a pair of scissors or a retractable pen.

Describing the interaction between hands and deformable objects
using DOF is complex. Not only is the description too high-
dimensional to be practical (e.g., any grasping action of a textile
would alter its shape), but the type of data observed for the object is
almost impossible to obtain through sensorization. State-of-the-art
solutions, to handle this complexity, describe garments lying on a
table using a polygonal shape (Doumanoglou et al., 2016), singular
patches like corners or wrinkles (Kapusta et al., 2019), or cloth parts
like collars and hemlines (Ramisa et al., 2016). Other approaches
model the interaction focusing primarily on hand trajectories and
grasping points (Corona et al., 2018; Zhang and Demiris, 2020).
Therefore, the hand-object interaction description necessitates the
hand pose and status over time and a reference (often as an image) of
the desired object shape.

The information provided by a hand-object interaction
demonstration is limited and depends on the used sensing
equipment. Vision-based systems, e.g., RGB/RGB-D cameras
or Motion Capture environments, can be used to collect
information from both hands and objects. However, during
the interaction, the hand-object contact creates occlusions,
compromising vision-based sensing accuracy. Data from
human demonstrations can also be collected instrumenting
both hands and objects. To sense hand motions and contacts
with objects, data gloves with fiber optic transducers, flex sensors,
and inertial measurement units (IMU), as well as force and touch
sensors, are often used (Xue et al., 2018; Rashid and Hasan, 2019).
Note that hand instrumentation may influence human
movements. Similarly, instrumented objects equipped with
IMUs and tactile sensors can monitor the object’s status.

A robotic hand, to interact with unknown objects, needs
advanced sensing capabilities. These capabilities are helpful
both to collect hand-object interaction demonstrations through
teleoperation and as feedback for a robot executing an object
interaction task. The robot should understand the scene in which
it operates, recognize the object’s state, and use, accordingly, the
best sensors. In the Off-hand state, the robot needs visual
perception and proprioceptive information to drive the arm
and fingers to reach the object. While grasping, the robotic
hand should position the fingertips properly on the object’s
surface and distribute forces appropriately. If the object is
unknown, different sensing modalities are needed to estimate
explicit (e.g., geometry) and implicit (e.g., affordance, grasping
properties, and handling possibilities) object properties. When
the object is In-contact or Held in-hand, occlusions prevent
external sensors, such as cameras, to provide the robotic
system with the needed information. Thus, the system must
obtain information through sensors integrated with the
fingertips, such as pressure profile sensing arrays, force-torque
sensors, or dynamic tactile sensors (Kappassov et al., 2015).
Therefore, the development of tactile skins for robotic hands is
essential to support object recognition and exploration, improved
grasp stability, and more dexterous in-hand manipulation.

FIGURE 1 | Representation from the object perspective of the hand-object interaction states and transitions.
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4 PERCEPTION

Perception is the process of interpreting sensory data to represent
and understand sensory information. In the learning from human
demonstrations context, perception builds the bridge between the
sensory input and robot execution. In other words, it derives a
mapping between human and robot motions. As discussed in
Section 3, different sensors can be used on humans, robots, or in
the environment to capture the data.

When perceiving a human hand-object interaction, the
objective is to meaningfully explain it, which comprises the
spatio-temporal description of the two interacting bodies. This
low-level representation can be exploited to understand
interaction semantics such as grasp transitions, interaction
states, force states, or even task-related modes, thus reaching a
high-level interpretation of the events in the scene. For example,
detecting the affordance of an object or knowing the previous
state of the interaction allows one to reason about possible future
actions.

Popular solutions for hand-object interaction perception rely
on computer vision techniques (Armagan et al., 2020) to
determine the object and hand positions (bounding box or
pixel-level location and 3D pose). Moreover, through vision-
based approaches, it is possible to extract high-level semantics to
improve the understanding of complex interactions. For example,
the class of an object allows category-specific information (e.g.,
stiffness, deformability, weight, etc.) to be retrieved, whichmay be
necessary to adapt the grasp during manipulation.

During hand-object interaction, vision systems encounter
numerous difficulties. The object and hand occlude each other
such that only a portion of the scene is visible. Moreover, the
visual system accuracy can be poor if the grasped object is
deformed or presented to the camera under a previously
unseen view pose. A possibility to address this issue is to
design the learning model to handle multiple components of
the occluded objects, e.g., Peng et al. (2020). Another option is to
exploit existing Human-Robot Interaction pipelines for
automatic image annotation of handheld objects for the object
detection task (Maiettini et al., 2017). Finally, refining a pre-
trained model on the target hand-object scenario by exploiting
unlabeled images from the robot cameras and weakly-supervised
learning (Hernández-González et al., 2016; Zhou, 2018) can
achieve state-of-the-art accuracy with only a fraction of the
required annotated data (Maiettini et al., 2019).

Limitations of vision-based perception can be overcome by
increasing the number of sensors. For example, deploying
multiple cameras reduces occlusions, enabling more accurate
pose estimation, both for the hand and the object (Hampali
et al., 2020). Sensorization of objects, human and robotic hands,
as introduced in Section 3, is also a viable solution to improve
robustness (Rashid and Hasan, 2019). However, these solutions
can restrict human hands and may lead to unnatural movement.
It is necessary to find a balance between perception richness and
human impairment. Furthermore, using different sensing
modalities introduces a new challenge, i.e., to merge the data
with a coherent perception algorithm. Although some solutions
exist to fuse data from various sensor modalities (Li et al., 2020),

this problem necessitates further attention. On the other hand,
the sensorization of a robotic hand is easier since it is a part of the
hardware design process. However, various other challenges arise
in perception. For example, motors vibrations and electrical noise
can lead to imprecise or even incorrect estimations.

5 LEARNING FROM DEMONSTRATIONS

Traditionally, robot manipulation is formalized as a decision-
making problem for a Markov Decision Process. In this
context, trajectories are discrete, and the actions influence
the system state. From a learning perspective, the aim is to
optimize a control strategy to perform a sequence of optimal
actions to achieve a specific task or a series of related tasks
(Plappert et al., 2018). Although huge successes have been
achieved for simple hand-object interaction (OpenAI et al.,
2019), the optimization formulation is not suitable for all
scenarios. In particular, optimal robot behavior may not be
easily describable, let alone optimizable. Thus, researchers
often turn to expert demonstrations to learn highly
advanced and complex skills (Liu et al., 2018; Yu et al.,
2018; Smith et al., 2020).

Learning from demonstration allows a robot to learn skills by
observing the actions of an expert (Argall et al., 2009;
Ravichandar et al., 2020): whether a human (Rajeswaran et al.,
2018) or another advanced agent (Hester et al., 2018). A
demonstration can be characterized by high-level information
(e.g., the state of the object or the manipulator’s joints state) or
raw data (e.g., images sequences) (Jain et al., 2019). As an
alternative to the direct observation of an expert, teleoperation
(i.e., where the exper control either a physical or a simulated
robot) is often used to collect data (Zhang et al., 2018), and data
gloves are a popular tool to control humanoid robot hands
(Rajeswaran et al., 2018). Generate demonstrations by
teleoperation avoids the issue of mapping between the human
and robot hand kinematics. For this reason, teleoperation is often
adopted in challenging scenarios such as the manipulation of
clothes (Waymouth et al., 2021).

Data-driven approaches are amongst the most popular for
learning from demonstration. While in pure reinforcement
learning (RL), the agent continuously interacts with the
environment to collect experiences based on the latest policy, in
imitation learning (IL), the demonstrations provide the
experiences. The expert help reduces the complexity of
exploration spaces for learning but introduces other issues such
as distribution drift. Therefore, the most successful approaches
combine IL and RL by first pretraining a policy with behavior
cloning then fine-tuning with policy gradient (Rajeswaran et al.,
2018; Radosavovic et al., 2020). Learning from human
demonstrations requires adapting the observed motion to the
robot kinematics. This problem can be solved by either limiting
the analysis to the fingertip poses (Orbik et al., 2021) or considering
the full hand motion to preserve the motion naturalness (Meattini
et al., 2021). Furthermore, demonstrations are not always optimal,
requiring methods to learn from noisy data (Sasaki and
Yamashina, 2020). These challenges and others related to
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learningmanipulation from demonstrations are discussed in depth
in Zhu and Hu (2018) and Si et al. (2021).

6 CONCLUSION

This article outlined the importance of observing human-object
interaction to learn new robotic manipulation skills from
demonstrations. To this extent, we provided a general
definition of the problem and discussed the interplay between
sensing, data acquisition, perception, and learning. We believe
several promising research directions are open on the collection
and interpretation of data and on learning from it.

When it comes to acquiring demonstrations, an important
question remains unanswered: should the data acquisition be
non-invasive, for natural interaction, or invasive, maximizing the
data richness? The trade-off between invasive and non-invasive
sensorization depends on the final task, goal, and algorithm(s) used.
A related open question, with implications on the perception and
learning pipelines, is what sensing modalities or how many sensors
to use. Researchers could be tempted to solve specific challenges by
deploying more sensors (e.g., using multiple cameras to cope with
occlusion), but this increases the setup costs and complexity,
affecting the reproducibility. In similar research fields (e.g., hand
and object pose estimation, grasping, and reinforcement learning),
the proposal of datasets and benchmarks has favored
reproducibility (Hodaň et al., 2018; Armagan et al., 2020;
Bottarel et al., 2020; James et al., 2020). However, we observe a
lack of standard datasets and benchmarks for complex and
dexterous hand-object interaction. Together with the necessity of
standardization, the collection of a dataset has to define how to
generate optimal demonstrations since state-of-the-art learning
algorithms are fragile given noisy input.

Future research should propose standards to simplify data
sharing and algorithm evaluation. A suite of shared datasets,
evaluation protocols, and metrics will unify the current work
enabling more cohesive research. At the same time, to reach
human-level manipulation skills, progress is necessary for all the
discussed problems. New sensing solutions are needed to increase
collected information while preserving a non-invasive setup.
Learning algorithms should improve in handling imperfect

demonstrations and simplify the adaptation to different
kinematics. Furthermore, new hand-object interactions skills
should leverage better sensing integration to address
challenging scenarios, e.g., manipulation of deformable objects.
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