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As mobile robots are increasingly introduced into our daily lives, it grows ever more
imperative that these robots navigate with and among people in a safe and socially
acceptable manner, particularly in shared spaces. While research on enabling socially-
aware robot navigation has expanded over the years, there are no agreed-upon evaluation
protocols or benchmarks to allow for the systematic development and evaluation of
socially-aware navigation. As an effort to aid more productive development and progress
comparisons, in this paper we review the evaluation methods, scenarios, datasets, and
metrics commonly used in previous socially-aware navigation research, discuss the
limitations of existing evaluation protocols, and highlight research opportunities for
advancing socially-aware robot navigation.
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1 INTRODUCTION

Fueled by advances in artificial intelligence (AI) technologies, mobile robots are realizing increased
adoption in various delivery-based industries, from mail1 and packages2 to pizza.3 Mobile robots
designed for these consumer-facing services must not only navigate safely and efficiently to their
destinations but also abide by social expectations as they move through human environments. For
example, it is desirable for mobile robots to respect personal space (Althaus et al., 2004), avoid cutting
through social groups (Katyal et al., 2021), move at a velocity that does not distress nearby
pedestrians (Kato et al., 2015), and approach people from visible directions (Huang et al., 2014)
while maintaining relevant social dynamics (Truong andNgo, 2018). Research that investigates robot
capabilities for navigating in human environments in an efficient, safe, and socially acceptable
manner is commonly recognized as socially-aware navigation—also known as human-aware
navigation (e.g., Kruse et al., 2013), socially compliant navigation (e.g., Kretzschmar et al., 2016),
socially acceptable navigation (e.g., Shiomi et al., 2014), or socially competent navigation (e.g.,
Mavrogiannis et al., 2017).

While research on socially-aware navigation has expanded over the years (Kruse et al., 2013; Rios-
Martinez et al., 2015; Charalampous et al., 2017; Pandey, 2017), there are no standard evaluation
protocols—including methods, scenarios, datasets, and metrics—to benchmark research progress.
Prior works on socially-aware robot navigation utilize a variety of evaluation protocols in custom
settings, rendering comparisons of research results difficult. We argue that commonly agreed-upon
evaluation protocols are key to fruitful progress, as observed in other research fields (e.g., computer

Edited by:
Adriana Tapus,

École Nationale Supérieure de
Techniques Avancées, France

Reviewed by:
Marynel Vázquez,

Yale University, United States
Yomna Abdelrahman,

Munich University of the Federal
Armed Forces, Germany

*Correspondence:
Yuxiang Gao

yuxiang.gao@jhu.edu

Specialty section:
This article was submitted to

Human-Robot Interaction,
a section of the journal

Frontiers in Robotics and AI

Received: 06 June 2021
Accepted: 06 December 2021
Published: 12 January 2022

Citation:
Gao Y and

Huang C-M (2022) Evaluation of
Socially-Aware Robot Navigation.

Front. Robot. AI 8:721317.
doi: 10.3389/frobt.2021.721317

1Japan Post Co. piloted their mail delivery robot in Tokyo in October 2020.
2FedEx is currently developing the SameDay Bot for package delivery.
3Domino’s launched delivery robots in Houston, TX, United States in April 2021.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 7213171

REVIEW
published: 12 January 2022

doi: 10.3389/frobt.2021.721317

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.721317&domain=pdf&date_stamp=2022-01-12
https://www.frontiersin.org/articles/10.3389/frobt.2021.721317/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.721317/full
http://creativecommons.org/licenses/by/4.0/
mailto:yuxiang.gao@jhu.edu
https://doi.org/10.3389/frobt.2021.721317
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.721317


vision). As an effort to productively advance socially-aware
navigation, in this paper we review commonly used evaluation
methods, scenarios, datasets, and metrics in relevant prior
research. We note that our review focuses on evaluation
protocols rather than the algorithmic methods and systems
that enable socially-aware navigation. We further note that
socially-aware navigation is strongly related to an array of
research topics, including human trajectory prediction, agent
and crowd simulation, and robot navigation; some of the
evaluation protocols reviewed in this paper may apply to these
related research areas. Our review complements the
recommendation for evaluation of embodied navigation
suggested by Anderson et al. (2018) and can be consulted
along with other general evaluation guidelines for human-
robot interactions (Steinfeld et al., 2006; Young et al., 2011;
Murphy and Schreckenghost, 2013).

The reminder of this paper is organized as follows. In Section
3, we present evaluation methods, scenarios, and datasets
commonly used for evaluating socially-aware navigation. In
Section 4, we review evaluation metrics and focus on the
aspects of navigation performance, behavioral naturalness,
human discomfort, and socialbility. We conclude this review
with a discussion of limitations of existing evaluation protocols
and opportunities for future research.

2 METHODOLOGY

Methodologically, this paper can be considered as a literature
review—“a literature review reviews published literature, implying
that included materials possess some degree of permanence and,
possibly, have been subject to a peer-review process. Generally, a

literature review involves some process for identifying materials for
potential inclusion—whether or not requiring a formal literature
search—for selecting included materials, for synthesizing them in
textual, tabular or graphical form and for making some analysis of
their contribution or value” (Grant and Booth, 2009).We focus on
reviewing evaluation protocols for socially-aware robot
navigation. While we did not follow the scoping process used
for a systematic review, we identified materials (papers and
datasets) for inclusion based on their relevance to the topic of
socially-aware robot navigation and its evaluation methods.
Specifically, we used keywords “socially-aware
navigation,”“socially-acceptable navigation,” “human-aware
navigation,” or “crowd-aware navigation” when searching
papers through ACM Digital Library, IEEE Xplore, and
ScienceDirect. We additionally included some preprints from
ArXiv through Google Scholar searches. This process yielded 188
papers in our initial search. Upon further reviewing the titles and
abstracts of the papers, we removed 11 papers that did not address
socially-aware robot navigation. The remaining 177 papers were
published between 2005 and 2021 (Figure 1). A co-occurrence
network of the keywords of the included papers is shown in
Figure 2; the network illustrates three clusters that approximately
represent topics related to human-robot interaction or social
aspects of navigation (red), algorithmic methods for navigation
(blue), and navigation systems (green). The co-occurrence
network was automatically generated through Bibilometrix
(Aria and Cuccurullo, 2017), a bibliometrics analysis tool,
using Louvain algorithm. Table 1 lists major venues where the
177 papers were published.

Upon collecting the 177 papers, we further reviewed the
evaluation section of each paper and chose the studies that are
representatives of the evaluation metrics, evaluation methods,

FIGURE 1 | Number of publications collected by year.
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datasets, and test scenarios described in the next section. Through
this process, we observed that many of the evaluation metrics
were originated from related works on neighboring research
topics such as human trajectory prediction, autonomous robot
navigation, and crowd simulation. As a result, we include relevant
works on these topics to better understand the development of the
evaluation methods in our report and discussion below.

3 EVALUATION METHODS, SCENARIOS,
AND DATASETS

In this section, we describe evaluation methods, scenarios, and
datasets commonly used in socially-aware navigation research,
some of which apply directly to the problems of human trajectory
prediction, crowd simulation, and general robot navigation.

3.1 Evaluation Methods
Mavrogiannis et al. (2019) classified the evaluation methods into
three categories: simulation study, experimental demonstration,
and experimental study. In this review, we follow a similar but

more granular classification based on the type, location, and goal
of the evaluation methods. Specifically, we focus on four
evaluation methods—case study, simulation and
demonstration, laboratory study, and field study—regularly
used in socially-aware navigation research. Each method has
its own advantages and disadvantages and is often used at
different stages of development.

3.1.1 Case Studies
Because navigating among people in human environments
involves complex, rich interactions, it is common to break
down socially-aware navigation into sets of primitive, routine
navigational interactions such as passing and crossing (Table 2).
As such, prior research has utilized case studies to illustrate robot
capabilities in handling these common navigational interactions.
Said case studies usually involve prescribed interaction behaviors
(e.g., asking the test subjects to walk in a predetermined direction
or behave as if they were walking together) and environmental
configurations. For example, Pacchierotti et al. (2006) studied
how a person and a robot may pass each other in a hallway
environment; their study involved different human behaviors,

FIGURE 2 | Co-occurrence network of the keywords appeared in the collected publications. The keywords are clustered using Louvain algorithm. This graph is
generated using Bibilometrix (Aria and Cuccurullo, 2017), a bibliometrics analysis tool.

TABLE 1 | Publication venues of the included 177 publications. Only venues that have more than five papers are listed.

Publication venues #Of papers collected

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 21
IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) 13
IEEE International Conference on Robotics and Automation (ICRA) 12
International Journal of Social Robotics 8
IEEE Robotics and Automation Letters (RA-L) 6
ACM/IEEE International Conference on Human-Robot Interaction (HRI) 5
Others 112
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such as moving at a constant speed or stopping in the middle of
the hallway, and illustrated how the robot may respond to those
behaviors. Similarly, Kretzschmar et al. (2016) reported a study
demonstrating how their inverse reinforcement learning
approach allowed a robotic wheelchair to pass two people
walking together in a hallway without cutting through the
group. Truong and Ngo (2017) presented an illustrative study
comparing their proactive social motion model (PSMM) against
the social force model (SFM) in four experimental settings and
showed that their model yielded a more socially acceptable
navigation scheme. Case studies can also be presented via
simulation; Rios-martinez et al. (2013) used a set of predefined
simulated configurations of human behaviors (e.g., moving
around and interacting with each other) to illustrate their
proposed method for reducing discomfort caused by robot
movements.

3.1.2 Simulation and Demonstrations
Simulation experiments have been regularly utilized in recent
years due to advances in reinforcement learning and data-driven
approaches to socially-aware navigation (e.g., Chen C. et al., 2019;
Li et al., 2019; Liu Y. et al., 2020). They are particularly useful for
agile development and systematic benchmarking. Simulation
experiments are typically supplemented by physical
demonstrations to exhibit intended robot capabilities; the
objective of these demonstrations is to illustrate that the
proposed algorithmic methods work not only in simulated

setups but also in the physical world with a real robot. For
instance, Chen et al. (2020) first evaluated their method for
crowd navigation in a simulated circle crossing scenario with
five agents, after which they provided a demonstration of their
method using a Pioneer robot interacting with human subjects.
Katyal et al. (2020) and Liu L. et al. (2020) followed a similar
method, including a simulation evaluation and a physical
demonstration in their investigation of adaptive crowd
navigation. Prior works that report this type of physical
demonstration typically provide supplementary videos of the
demonstrations (e.g., Jin et al., 2019).

Because of the popularity of simulation-based evaluation, an
array of simulation platforms have been developed for robot
navigation, ranging from simplistic 2D simulation [e.g., Stage
(Gerkey et al., 2003) and CrowdNav (Chen C. et al., 2019),
pedsimROS (Okal and Linder, 2013), MengeROS (Aroor et al.,
2017)], to high-fidelity simulation leveraging existing physics and
rendering engines [e.g., Webots,4 Gibson (Xia et al., 2018), and
AI2-THOR (Kolve et al., 2019)] and virtualized real
environments [e.g., Matterport3D (Chang et al., 2017)].
Among these efforts, the following simulation platforms
address socially-aware navigation specifically:

TABLE 2 | Scenarios commonly used in evaluating socially-aware navigation. The publications that employ each scenario in simulation or real-world settings are listed
respectively.

Interaction type Illustrations Used in simulation Used
in real-world settings

Passing Chen et al. (2017a); Vega et al. (2019b); Yang and Peters
(2019); Randhavane et al. (2019); Pandey and Alami (2010);
Pérez-D’Arpino et al. (2020)

Butler and Agah (2001); Pacchierotti et al. (2006);
Kretzschmar et al. (2016); Okal and Arras (2016);

Crossing Alahi et al. (2016); Chen et al. (2017a); Chen K. et al. (2019);
Sui et al. (2019); Manso et al. (2019); Khambhaita and Alami
(2020); Nishimura and Yonetani (2020); Daza et al. (2021)

Guzzi et al. (2013b); Kretzschmar et al. (2016);
Johnson and Kuipers (2019); Mavrogiannis et al.
(2019)

Overtaking Kirby (2010); Pandey and Alami (2010); Anvari et al. (2015);
Chen et al. (2017a)

Pandey and Alami (2010); Šochman and Hogg (2011);
Robicquet et al. (2016); Yang and Peters (2019)

Approaching Turner (1981); Sisbot et al. (2005); Truong and Ngo (2018);
Johnson and Kuipers (2019); Truong and Ngo (2019)

Butler and Agah (2001); Satake et al. (2009); Kato et al.
(2015); Truong and Ngo (2018); Joosse et al. (2021)

Following, leading, and
accompanying

Ferrer et al. (2013b); Yao et al. (2019) Ferrer et al. (2013a); Ferrer et al. (2013b); Ferrer et al.
(2017); Du et al. (2019); Repiso et al. (2020)

Combined Okal and Arras (2014); Okal and Arras (2016); Pandey
(2017); Yang and Peters (2019)

Shiomi et al. (2014); Truong and Ngo (2018); Vega et al.
(2019b)

4https://www.cyberbotics.com
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• PedsimROS (Okal and Linder, 2013) is a 2D simulator based
on Social Force Model (SFM) (Helbing andMolnár, 1995). It
is integrated with the ROS navigation stack and enables easy
simulation of large crowds in real time.

• MengeROS (Aroor et al., 2017) is a 2D simulator for realistic
crowd and robot simulation. It employs several backend
algorithms for crowd simulation, such asOptimal Reciprocal
Collision Avoidance (ORCA) (Van Den Berg et al., 2011),
Social Force Model (SFM) (Helbing and Molnár, 1995), and
PedVO (Curtis and Manocha, 2014).

• CrowdNav (Chen C. et al., 2019) is a 2D crowd and robot
simulator that serves as a wrapper of OpenAI Gym
(Brockman et al., 2016), which enables training and
benchmarking of many reinforcement learning based
algorithms.

• SEAN-EP (Tsoi et al., 2020) is an experimental platform for
collecting human feedback on socially-aware navigation in
online interactive simulations. In this web-based simulation
environment, users can control a human avatar and interact
with virtual robots. The platform allows for easy
specification of navigation tasks and the distribution of
questionnaires; it also supports simultaneous data
collection from multiple participants and offloads the
heavy computation of realistic simulation to cloud
servers. Its web-based platform makes large-scale data
collection from a diverse group of people possible.

• SocNavBench (Biswas et al., 2021) is another benchmark
framework that aims to evaluate different socially-aware
navigation methods with consistency and interpretability.
As opposed to most simulation-based approaches where
agent behaviors are generated from crowd simulation [e.g.,
using Optimal Reciprocal Collision Avoidance (ORCA)
(Van Den Berg et al., 2011) or Social Force Model (SFM)
(Helbing and Molnár, 1995)], human behaviors in
SocNavBench are grounded in real-world datasets
(i.e., UCY and ETH datasets) (Section 3.3).
SocNavBench renders photorealistic scenes based on the
trajectories recorded in these datasets and employs a set of
evaluation metrics to measure path (e.g., path irregularity)
and motion (e.g., average speed and energy) quality and
safety (e.g., closest collision distance).

• The CrowdBot simulator (Grzeskowiak et al., 2021) is
another benchmarking tool for socially-aware navigation
that leverages the physics engine and rendering capabilities
of Unity and the optimization-based Unified Microscopic
Agent Navigation Simulator (UMANS) (van Toll et al.,
2020) to drive the behaviors of pedestrians.

In addition to shared platforms for simulation-based
evaluation, several online technical competitions have sought
to benchmark socially-aware navigation. For instance, the
TrajNet++ Challenge5 focuses on trajectory prediction for
crowded scenes and the iGibson Challenge6 includes a social

navigation task contextualized in indoor navigational
interactions with human avatars.

3.1.3 Laboratory Studies
As opposed to case studies, which often involve prescribing
human test subjects’ behaviors (e.g., having them intentionally
walk toward the test robot), laboratory studies utilize
experimental tasks to stimulate people’s natural behaviors and
responses within specific contexts. Laboratory studies can be
either controlled experiments or exploratory studies.
Controlled experiments allow for statistical comparisons of
navigation algorithms running on physical robots in semi-
realistic environments; we note that controlled laboratory
experiments contrast with simulation experiments, which lack
the fidelity to represent real-world human-robot interactions. As
an example, Mavrogiannis et al. (2019) designed an experimental
task allowing three participants and a robot to move freely
between six stations following a specified task procedure. A
total of 105 participants were recruited for this experiment
and a variety of objective and subjective metrics were collected
to assess and compare three navigation strategies: Optimal
Reciprocal Collision Avoidance (ORCA), Social Momentum
(SM), and tele-operation. Additionally, Huang et al. (2014)
evaluated how a humanoid robot may signal different levels of
friendliness toward participants via movement behaviors—such
as approach speed and direction of approach—in a mock
museum setup.

Laboratory studies may also be exploratory, allowing
researchers to gain early, prompt feedback from users without
controlled experimentation. For instance, Bera et al. (2019)
conducted an exploratory in-person lab study with 11
participants to investigate their perceptions of a robot’s
navigational behaviors in response to their assumed emotions.

3.1.4 Field Studies
While laboratory experiments allow for controlled comparisons,
they bear reduced ecological validity; to address this limitation,
field studies are used to explore people’s interactions with robots
in naturalistic environments. The pioneering tour guide robots
RHINO (Burgard et al., 1998) andMINERVA (Thrun et al., 1999)
were deployed in museums to study their collision avoidance
behaviors and how people reacted to them. More recently, Satake
et al. (2009) conducted a field deployment in which a mobile
robot approached customers in a shopping mall to recommend
shops; they explored different approach strategies and examined
failed attempts. Similarly, Shiomi et al. (2014) investigated
socially acceptable collision avoidance and tested their
methods on a mobile robot deployed in a shopping mall for
several hours with the objective of interacting with uninstructed
pedestrians. Trautman et al. (2015) collected 488 runs of their
experiment in a crowded cafeteria across 3 months to validate
their algorithm. A benefit of deploying robots in the field is that
they may reveal unexpected human behaviors; for instance, it was
observed that young children “bully” a deployed mobile robot
(e.g., intentionally blocking its way), which subsequently led to
new research on how to recognize and avoid potential bullying
behaviors in the field (Brščić et al., 2015). All in all, field studies

5https://www.aicrowd.com/challenges/trajnet-a-trajectory-forecasting-challenge
6http://svl.stanford.edu/igibson/challenge.html

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 7213175

Gao and Huang Evaluation of Socially-Aware Robot Navigation

https://www.aicrowd.com/challenges/trajnet-a-trajectory-forecasting-challenge
http://svl.stanford.edu/igibson/challenge.html
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


are difficult to execute due to the unstructured, complex nature of
real-world interactions—but are vital in evaluating socially-aware
navigation andmay offer insights that are otherwise impossible to
discover in laboratory studies.

3.2 Primitive Scenarios
In this section, we describe common primitive scenarios found in
the evaluation methods discussed in the previous section. Table 2
summarizes primitive scenarios in evaluating socially-aware
navigation by the nature of the interactions involved. These
scenarios include:

• Passing: This scenario captures interactions in which two
agents or groups are heading in opposite directions, usually
in constrained spaces such as hallways or corridors, and
need to change their respective courses to pass each other.

• Crossing: This scenario captures interactions in which two
agents or groups cross paths in an open space; it also
considers if one of the agents or groups is stationary.
Common examples of this scenario are circle crossing,
where all agents are initiated on points of a circle (e.g.,

Chen C. et al., 2019; Nishimura and Yonetani, 2020), and
square crossing, where all agents are initiated on the corners
of a square (e.g., Guzzi et al., 2013b).

• Overtaking: This scenario captures interactions in which
two agents or groups are heading in the same direction and
one of them overtakes or passes the other.

• Approaching: This scenario captures interactions in which a
robot intends to approach or join a stationary ormoving group
or individual. This scenario is observed when a robot attempts
to join a static conversational group (e.g., Truong and Ngo,
2018; Yang et al., 2020), initiate an interaction (e.g., Kato et al.,
2015) or follow a moving social group (e.g., Yao et al., 2019).

• Following, leading, and accompanying: This scenario
captures interactions in which a robot intends to join a
moving group by following (e.g., Yao et al., 2019), leading
(e.g., Chuang et al., 2018), or accompanying the group side-
by-side (e.g., Ferrer et al., 2017; Repiso et al., 2020).

3.3 Datasets
Table 3 details a number of datasets of humanmovement that are
regularly used in developing algorithms for and evaluating

TABLE 3 | Datasets used in socially-aware navigation.

Name Year #
Of

people

#
Of

scenes

Scene
type

View
type

Sensor
type

Annotations Publications

UCY (Lerner et al., 2007) 2007 786 3 Outdoor Top-down Mono Trajectories,
Gaze

Lerner et al. (2007); Alahi et al. (2016);
Robicquet et al. (2016); Charalampous
et al. (2016); Gupta et al. (2018); Vemula
et al. (2018); Amirian et al. (2019); Yao
et al. (2019); Kothari et al. (2020); Liu Y.
et al. (2020); Biswas et al. (2021)

ETH (Pellegrini et al., 2009) 2009 750 2 Outdoor Top-down Mono Trajectories,
Group
Membership

Pellegrini et al. (2009); Alahi et al. (2016);
Charalampous et al. (2016); Robicquet
et al. (2016); Gupta et al. (2018); Vemula
et al. (2018); Amirian et al. (2019); Yao
et al. (2019); Liu Y. et al. (2020); Kothari
et al. (2020); Biswas et al. (2021)

Edinburgh Informatics
Forum Pedestrian Database
(EIPD) (Majecka, 2009)

2009 95 ,998 1 Outdoor Top-down Mono Trajectories Majecka (2009); Luber et al. (2012);
Rudenko et al. (2017)

PETS2010 2010 — 8 Outdoor Surveillance Mono — Bandini et al. (2014); Bastani et al. (2015);
Ristani and Tomasi (2015)

VIRAT (Oh et al., 2011) 2011 4,021 11 Outdoor Surveillance Mono Trajectories Oh et al. (2011); Vasquez (2016)
Town Centre (Benfold and
Reid, 2011)

2011 230 1 Outdoor Surveillance Mono Bounding Boxes Benfold and Reid (2011); Ristani and
Tomasi (2015); Le and Choi (2018)

Grand Central Station (Zhou
et al., 2012)

2012 12 ,600 1 Indoor Surveillance Mono Trajectories Zhou et al. (2012); Gaydashenko et al.
(2018)

CFF (Alahi et al., 2014) 2014 42
million

1 Outdoor Top-down RGB-D Trajectories,
Bounding Boxes

Alahi et al. (2014); Liu et al. (2020b);
Kothari et al. (2020)

Stanford Drone Dataset
(Robicquet et al., 2016)

2016 11 ,216 8 Outdoor Top-down Mono Trajectories Robicquet et al. (2016); Sadeghian et al.
(2018a); Sadeghian et al. (2018b); Amirian
et al. (2019); Li et al. (2020)

EgoMotion (Park et al., 2016) 2016 — 26 Indoor FPV RGB-D Bounding Boxes Park et al. (2016)
L-CAS (Yan et al., 2017) 2017 6,140 1 Indoor FPV RGB-D Trajectories Yan et al. (2017); Kothari et al. (2020); Liu

Y. et al. (2020)
STRAND (Hawes et al., 2017) 2017 — 1 Indoor FPV RGB-D — Hawes et al. (2017)
WildTrack (Chavdarova et al.,
2018)

2018 9,518 7 Outdoor Surveillance Mono Trajectories,
Bounding Boxes

Chavdarova et al. (2018); Liu Y. et al.
(2020); Kothari et al. (2020)

JackRabbot Dataset
(Martín-Martín et al., 2021)

2019 260 — Both FPV RGB-D Trajectories,
Bounding Boxes

Martín-Martín et al. (2021)
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socially-aware navigation systems. These datasets typically
capture human movement in terms of trajectories or visual
bounding boxes in various indoor and outdoor environments.

The datasets are used to train models for predicting
pedestrian trajectories and for generating robot movement in
the presence of pedestrians. In particular, they are commonly
utilized in modern data-driven approaches to socially-aware
navigation, such as deep learning methods (e.g., Alahi et al.,
2016; Zhou et al., 2021; Kothari et al., 2020), reinforcement
learning (e.g., Chen et al., 2017a; Li et al., 2019), and generative
adversarial networks (GAN) (e.g., Gupta et al., 2018; Sadeghian
et al., 2018a).

Datasets are also used to evaluate and benchmark the
performance of socially-aware navigation (e.g., Biswas et al.,
2021; Xia et al., 2018); for example, datasets ETH (Pellegrini
et al., 2009) and UCY (Lerner et al., 2007) have been widely
utilized in comparing navigation baselines (e.g., Sadeghian et al.,
2018a; Bisagno et al., 2019; Gupta et al., 2018). One way to use the
data of human trajectories in evaluation is to replace one of the
human agents with the test robot agent and compare the robot’s
trajectory with the corresponding prerecorded human trajectory;
various evaluation metrics described in the next section may be
used to quantify the differences.

4 EVALUATION METRICS

In this section, we review common metrics used to evaluate
socially-aware navigation. We begin by presenting metrics for
assessing navigation performance in the presence of humans. We
then review metrics for representing various aspects of social
compliance; in particular, we focus on the three key aspects of
social compliance in socially-aware navigation as proposed by
Kruse et al. (2013): naturalness—capturing motion-level
similarity between robots and people;
discomfort—representing the level of annoyance, stress, or
danger as induced by the presence of the robot; and
sociability—encapsulating how well the robot follows the social
norms expected by surrounding pedestrians.

4.1 Navigation Performance
In general, prior works used navigation efficiency (Guzzi et al.,
2013a; Guzzi et al., 2013b; Mavrogiannis et al., 2018; Liang et al.,
2020) and success rate (Burgard et al., 1998; Guzzi et al., 2013b; Jin
et al., 2019; Liang et al., 2020; Nishimura and Yonetani, 2020; Tsai

and Oh, 2020) to quantify the navigation performance of a robot.
The common metrics for navigation performance are shown in
Table 4.

4.1.1 Navigation Efficiency
We observed multiple measures of navigation efficiency in prior
research, including path efficiency and relative throughput. Path
efficiency is defined as the ratio of the distance of two waypoints
to the length of the agent’s actual path between those points
(Mavrogiannis et al., 2019). Relative throughput (Guzzi et al.,
2013b) is defined as the ratio of the number of targets the agent
can reach if it ignores all collision and social constraints to the
number of targets an agent can reach in an actual simulation.
Both metrics calculate a ratio of performance under an ideal
condition to performance under the actual condition, indicating
the influences of interactions—either with people or the
environment—on navigation efficiency. Other metrics for
assessing efficiency include average velocity and mean time to
goal (Liang et al., 2020).

4.1.2 Success Rate
In addition to the efficiency metrics discussed above, success rate
is commonly used to quantify navigation performance in socially-
aware navigation (Burgard et al., 1998; Guzzi et al., 2013b; Jin
et al., 2019; Liang et al., 2020; Nishimura and Yonetani, 2020; Tsai
and Oh, 2020). Success rate, or arrival rate, measures an agent’s
ability to reach its goal. When reporting success rate, it is also
common to disclose the number of collisions and timeouts (e.g.,
Chen C. et al., 2019; Nishimura and Yonetani, 2020); a navigation
trial is considered “timed out” if the agent cannot reach its goal
within a specified time limit.

It is worth noting that success rate is highly dependent upon
the environmental context and does not differentiate the quality
of navigation between successful trials. As a result, weighted
success rate metrics have been proposed to consider aspects of
navigation efficiency, such as path length and completion time,
while assessing success rate. These weighted metrics are single,
summary metrics that represent navigation performance and can
be particularly useful in reinforcement learning, which is a
popular method used in recent works on robot navigation
(Anderson et al., 2018; Yokoyama et al., 2021).

4.2 Behavioral Naturalness
Metrics related to naturalness focus on low-level behavioral
patterns, i.e., how human-like and smooth robot movements

TABLE 4 | Evaluation metrics for navigation performance.

Metric Description

Path Efficiency The ratio between the distance between twowaypoints and the length of the agent’s actual path between those
points

Publications: Qian et al. (2010a); Guzzi et al. (2013b); Kruse et al. (2013); Stein et al. (2016); Sebastian et al. (2017); Honig et al. (2018); Mavrogiannis et al. (2018); Neggers et al.
(2018); Johnson and Kuipers (2019); Mavrogiannis et al. (2019); Vasconez et al. (2019); Ahmadi et al. (2020); Batista et al. (2020); Chadalavada et al. (2020); Liang et al. (2020);
Hacinecipoglu et al. (2020); Zhang et al. (2021)

Success Rate Ratio of successful trials
Publications: Burgard et al. (1998); Jin et al. (2019); Nishimura and Yonetani (2020); Guzzi et al. (2013b); Tsai and Oh (2020); Liang et al. (2020); Chen et al. (2019b,a); Honig
et al. (2018); Kamezaki et al. (2020); Qian et al. (2010b); Samsani and Muhammad (2021); Sprute et al. (2019); Yao et al. (2021)
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are; measures of human similarity and path smoothness are also
commonly used in human trajectory prediction research
(Rudenko et al., 2019). A summary of the metrics for
behavioral naturalness are shown in Table 5.

4.2.1 Movement Similarity
A common hypothesis in socially-aware navigation is that robots
should possess navigational behaviors similar to humans’ (Luber
et al., 2012; Kruse et al., 2013). As a result, many prior works focus
on developing and evaluating methods of producing robot
trajectories that resemble those of humans under similar
conditions. These prior works use a variety of
measures—including displacement errors, dynamic time
warping distance, and Hausdorff distance—to directly assess
similarities between trajectories and end states in navigational
performances.

Displacement Errors
Displacement errors are a family of metrics typically utilized in
evaluating how well a predicted trajectory matches human
trajectory data or a trajectory derived from other baseline
methods. These metrics are widely used in pedestrian
trajectory prediction research (Anderson et al., 2019; Rudenko
et al., 2019; Kothari et al., 2020); they are also applied as
evaluation metrics to assess the similarities between
trajectories produced by navigation algorithms and by humans
(Bera et al., 2017; Gupta et al., 2018; Manso et al., 2019; Kothari
et al., 2020).

• Average Displacement Error (ADE) is the average L2
distance between the predicted trajectory and the human

data to which it is being compared. It was first used to
evaluate trajectory similarity in socially-aware navigation by
Pellegrini et al. (2009). As the nonlinear segments of a
trajectory are where most of the social interactions between
a robot and pedestrians occur (Alahi et al., 2016), ADE over
these nonlinear portions provides a more specific metric for
assessing human-robot navigational interaction.

• Final Displacement Error (FDE) is the distance between the
final destination in the predicted trajectory and the human
data at the same time step. It was proposed by Alahi et al.
(2016) as a complement to ADE and nonlinear ADE.

Variations such as minimum, minimum over N, best-of-N,
and top n%ADE and FDE are also employed by recent pedestrian
trajectory prediction works (Anderson et al., 2019; Rudenko et al.,
2019); these metrics distinguish the highest accuracy a prediction
can achieve on human data, which is vital for trajectory
prediction. However, accuracy is not a primary concern for
socially-aware navigation research, which prioritizes learning
general behavior patterns rather than generating exact matches
of human trajectories; therefore, these variations are rarely
applied to socially-aware navigation.

Dynamic Time Warping Distance
While displacement metrics are useful in characterizing overall
trajectory similarities, they are inadequate in delineating the
similarities between motion behaviors at different speeds;
mismatched moving speeds are especially relevant to robot
navigation as mobile robots have diverse form factors,
resulting in widely varying velocities when compared to
humans. To address this limitation, Luber et al. (2012) took a

TABLE 5 | Evaluation metrics for naturalness.

Metric Type Description

Similarity Smoothness

Average Displacement
Error (ADE)

✓ The average L2 distance between the predicted trajectory and the human data

Publications: Pellegrini et al. (2009); Alahi et al. (2016); Bera et al. (2017); Gupta et al. (2018); Anderson et al. (2019); Manso et al. (2019); Rudenko et al. (2019); Kothari et al.
(2020); Zou et al. (2020); Hacinecipoglu et al. (2020); Zhou et al. (2021)

Final Displacement Error (FDE) ✓ The distance between the final destination in the prediction and the human data at the same
time step

Publications: Rudenko et al. (2019); Anderson et al. (2019); Kothari et al. (2020); Gupta et al. (2018); Manso et al. (2019); Bera et al. (2017); Pellegrini et al. (2009); Alahi et al.
(2016); Zou et al. (2020); Zhou et al. (2021)

Asymmetric Dynamic Time
Warping

✓ A trajectory measure that doesn’t require both trajectories to have the same length

Publications: Luber et al. (2012); Charalampous et al. (2016); Charalampous et al. (2017); Kostavelis et al. (2017); Avelino et al. (2021)

Velocity and Acceleration ✓ Basic dynamics measures
Publications: Sisbot et al. (2005); Sisbot et al. (2007); Pandey and Alami (2010); Qian et al. (2010a); Qian et al. (2010b); Scandolo and Fraichard (2011); Kruse et al. (2012);
Shiomi et al. (2014); Kollmitz et al. (2015); Kretzschmar et al. (2016); Truong et al. (2017); Truong and Ngo (2017); Claes and Tuyls (2018); Honig et al. (2018); Tail et al. (2018);
Buchegger et al. (2019); Mavrogiannis et al. (2019); Papenmeier et al. (2019); Randhavane et al. (2019); Yoon et al. (2019); Zhong et al. (2019); Boldrer et al. (2020);
Chadalavada et al. (2020); Fang et al. (2020); Hacinecipoglu et al. (2020); Ngo et al. (2020); Senft et al. (2020); Shiying et al. (2020); Gonon et al. (2021); Kivrak et al. (2021); Yao
et al. (2021)

Path Irregularity ✓ The amount of unnecessary turning over the whole path
Publications: Guzzi et al. (2013b); Mavrogiannis et al. (2018)

Topological Complexity ✓ Measures path entanglement to quantify encounters
Publications: Kretzschmar et al. (2016); Mavrogiannis et al. (2018)
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different approach by focusing on the fact that trajectories are
time-series data bearing resemblance to spoken language; they
proposed a modified version of Dynamic Time Warping (Sakoe
and Chiba, 1978)—an algorithm commonly used for matching
spoken-word sequences at varying speeds—to transform one
trajectory into another via time re-scaling. A dynamic time
warping distance can then be calculated to compare
trajectories produced by agents moving at different velocities.

4.2.2 Smoothness
The smoothness of both the geometric path and the motion
profile of a robot are two important contributing factors to
natural, safe navigation (Mavrogiannis et al., 2017;
Mavrogiannis et al., 2018; Mavrogiannis et al., 2019). Not only
are irregular paths and jittery movements inefficient, but they can
also discomfort nearby pedestrians (Fraichard, 2007); therefore, it
is critical to evaluate the smoothness of a robot’s geometric path
and motion profile in socially-aware navigation.

Path Irregularity
The smoothness of a trajectory can be characterized by the
geometry of its path. For example, path irregularity (PI)
(Guzzi et al., 2013b) measures the amount of unnecessary
turning over the whole path a robot has traveled:

PI � ∑
Path

Robot Rotation −Min.RotationNeeded
Unit Path Length

(1)

Topological Complexity
Prior research has also explored the use of the topological
complexity index (Dynnikov and Wiest, 2007) to measure the
level of entanglement in agents’ paths (Mavrogiannis et al., 2018;
Mavrogiannis et al., 2019). Greater path entanglement means that
the agents are more likely to encounter each other during
navigation, thereby inevitably forcing movement impact.
Moreover, trajectories with simpler topological entanglements
have been shown to be more legible (Mavrogiannis et al., 2018).

Motion Velocity and Acceleration
Velocity and acceleration are typically used to characterize
motion profiles; a robot navigating in human environments is
expected to keep a maximum velocity that allows it to reach the
target while still maintaining a smooth acceleration profile. As an
example, Mavrogiannis et al. (2019) used acceleration per
segment and average energy per segment, where energy is the
integral of squared velocity, to capture change in their robot’s
motion.

4.3 Human Discomfort
In this section, we present metrics used to measure human
discomfort in socially-aware navigation. A summary of these
metrics are shown in Table 6. We define discomfort as
pedestrians’ level of annoyance, stress, or danger caused by the
robot’s presence. Discomfort—either physical or
psychological—is typically quantified by spatial models and
subjective ratings (e.g., perceived safety).

4.3.1 Spatial Models
Spatial Models for Individuals
The impact of a mobile robot’s navigational behavior on human
comfort is difficult to quantify (Rios-martinez et al., 2013; Rios-
Martinez et al., 2015; Kothari et al., 2020), as no universal “rules”
are available for defining psychological comfort. Nevertheless,
research suggests that the psychological comfort of humans is
affected by interpersonal distance (Aiello, 1977; Baldassare, 1978;
Greenberg et al., 1980). Proxemic theory (Hall, 1966) studies the

TABLE 6 | Evaluation metrics for human discomfort.

Metric Type Description Proposed in

Spatial Groups Safety

Personal space ✓ ✓ Spatial compliance for individuals Hall (1966)
Publications: Pacchierotti et al. (2006); Kessler et al. (2011); Scandolo and Fraichard (2011); Torta et al. (2013); Shiomi et al. (2014); Tomari et al. (2014); Talebpour et al. (2015);
Kollmitz et al. (2015); Lindner (2016); Luo and Huang (2016); Kodagoda et al. (2016); Truong and Ngo (2016); Truong et al. (2016); Truong and Ngo (2018); Forer et al. (2018);
Vega-Magro et al. (2018); Fei et al. (2019); Rajamohan et al. (2019); Randhavane et al. (2019); Bachiller et al. (2021); Banisetty et al. (2021); Batista et al. (2020); Fang et al.
(2020); Fuse and Tokumaru (2020); Ngo et al. (2020); Shiying et al. (2020); Vega et al. (2020); Neggers et al. (2021)

o/p/r-space ✓ ✓ Spatial compliance for static groups Kendon (2010)
Publications: Kessler et al. (2011); Scandolo and Fraichard (2011); Torta et al. (2013); Shiomi et al. (2014); Tomari et al. (2014); Kollmitz et al. (2015); Talebpour et al. (2015);
Batista et al. (2020); Kodagoda et al. (2016); Lindner (2016); Luo and Huang (2016); Truong et al. (2016); Truong and Ngo (2016); Fei et al. (2019); Rajamohan et al. (2019);
Randhavane et al. (2019); Fang et al. (2020); Forer et al. (2018); Truong and Ngo (2018); Vega-Magro et al. (2018); Fuse and Tokumaru (2020); Ngo et al. (2020); Shiying et al.
(2020); Vega et al. (2020); Bachiller et al. (2021); Banisetty et al. (2021); Neggers et al. (2021)

Social Force Model (SFM) ✓ ✓ Measures social compliance by artificial forces Helbing and Molnár (1995)
Publications: Šochman and Hogg (2011); Anvari et al. (2015); Huang et al. (2018); Kivrak and Kose (2018); Yang et al. (2019); Katyal et al. (2021)

Extended social force model ✓ ✓ ✓ Adds support for social groups to SFM Moussaïd et al. (2010)
Publications: Yang et al. (2019); Katyal et al. (2021)

TABLE 7 | Interpersonal spaces as defined by Hall (1966).

Space name Range Function

Intimate space < .45m Intimate interactions
Personal space 0.45–1.2 m Friendly interactions
Social space 1.2–3.6 m Buffer zone for coexistence
Public space >3.6m Public interactions
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function of the space an individual maintains for different social
purposes in interpersonal interactions. According to Hall’s
observation, an individual’s perceived personal space consists
of several layers of concentric circles structured by their social
functions, as presented in Table 7; however, according to Hall,
most of his subjects were healthy business professionals from the
northeastern seaboard of the United States. So these spaces may
vary by culture and interaction context. Other
representations—such as ovoids, concentric ellipses, and
asymmetric shapes—have also been used to represent personal
spaces and encode more complicated social rules (Rios-Martinez
et al., 2015).

Among the four spaces laid out by Hall (1966), personal space
is often used as the boundary of measuring perceived safety or
social comfort—either as a no-go zone, where entering the space
is counted as a violation of social comfort (Rios-martinez et al.,
2013; Shiomi et al., 2014), or as the boundary of a potential
function that assigns costs or penalties to robots entering that
space (Amaoka et al., 2009; Truong and Ngo, 2018; Yang and
Peters, 2019).

However, the circular representation of personal space as
suggested by Hall (1966) is quite restrictive, as it does not
adequately account for characteristics of human perception
and motion. As a result, many works have explored different
representations to consider face orientation (Amaoka et al., 2009;
Truong and Ngo, 2016), approach pose (Truong and Ngo, 2018),
and motion velocity (Helbing and Molnár, 1995; Truong and
Ngo, 2016). Prior research has also leveraged empirical data from
experiments to model complex and realistic uses of space (Gérin-
Lajoie et al., 2008; Moussaïd et al., 2009). Most notably, the Social
Force Model (SFM) (Helbing and Molnár, 1995), which has been
widely used to simulate human navigation behavior in social
contexts, represents the constraints of personal space as attractive
or repulsive forces originating from each agent. Specifically, Eq. 2
describes how an agent i’s behavior is driven by a combination of
forces:

• fi
→des

: an attractive force that drives the agent to the
desired goal.

• fi
→obs

: the repulsive forces from obstacles.

• ∑j
�f
social

ij : the sum of social repulsive forces from all other
agents, j.

dvi
→
dt

� fi

→des + fi

→obs +∑
j

fij

�→social
(2)

Although SFM was designed for simulating crowd behavior, it
has inspired metrics seeking to quantify social comfort in socially-
aware navigation. For instance, repulsive forces from obstacles
and nearby agents can be used to quantify violations of social
comfort and indicate “panic” behaviors in emergencies (Mehran
et al., 2009). Truong and Ngo (2018) proposed the Social
Individual Index (SII) to measure the physical and
psychological safety of an individual. Similarly, Robicquet
et al. (2016) proposed the Social Sensitivity index, which uses
potential functions to model how agents interact; high social
sensitivity indicates that an agent will tend to avoid other agents.

Spatial Models for Groups
The aforementioned measures consider agents individually, but
we must also consider that people interact socially in group
settings. Social groups can be categorized into static and
dynamic groups; static groups are groups of people standing
closely together and engaging in conversations as commonly seen
at social events, whereas dynamic groups are groups of people
walking together toward shared destinations.

Static, conversational groups can be modeled using
f-formation (Kendon, 2010). F-formation is the spatial
arrangement that group members maintain in order to respect
their communal interaction space, where o-space is the innermost
space shared by group members and reserved for in-group
interactions; p-space surrounds the o-space and is the space in
which members stand; and r-space is the outermost space
separating the group from the outer world. Similar to
individual discomfort, discomfort caused by a robot to a group
may be measured by the robot’s invasion into either the r-space or
the o-space, based on the f-formation of the group (Mead et al.,
2011; Rios-martinez et al., 2013; Ferrer et al., 2017).

It is commonly observed that people walk together in dynamic
social groups (Federici et al., 2012; Ge et al., 2012). In addition,
individual people tend to stay away from social groups when
walking (Efran and Cheyne, 1973; Knowles et al., 1976; Moussaïd
et al., 2010). A mobile robot deployed in human environments
must know how to behave around human groups by observing
such inherent etiquette. To simulate dynamic social groups,
Moussaïd et al. (2010) proposed the Extended Social Force
Model (ESFM).7 As shown in Eq. 3, ESFM adds a new group
term �f

group

i that dictates intra-group dynamics to the original
SFM. The group term, as defined by Eq. 4, is the summation of
three forces: a cohesive force that defines attractions between
group members �f

att

i ; a repulsive force between group members
�f
rep

i ; and a gaze force �f
gaze

i that aligns each agent with the center-
of-mass of the social group, factoring in head orientation to
simulate in-group social interactions.

dvi
→
dt

� fi

→des + fi

→obs +∑
j

fij

�→social + fi

→group
(3)

fi

→group � fi

→att + fi

→reb + fi

→gaze
(4)

Similar to spatial models for individuals, spatial models for
groups can be used to approximate discomfort in group
interactions. As an example, to evaluate a robot’s social
compliance as a group member when accompanying humans,
Ferrer et al. (2017) proposed a quantitative metric based on the
robot’s position in relation to the human members, accounting
for whether or not the robot was in the field of view of the human
members and the distances between group members.

4.3.2 Physical Safety
Safety is the preeminent concern in socially-aware navigation. At the
most basic level, navigational safety amounts to collision avoidance: a

7Our implementation of ESFM—https://github.com/yuxiang-gao/PySocialForce
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mobile robot should not have any physical contact—intentional or
otherwise—with any human being. Metrics based on collision count
or violation count are commonly used in simulated environments
and in some robot-only experiments. For example, Liu L. et al.
(2020) used the number of collisions with agents within and without
the test agent’s field of view, along with success rate, as the main
evaluation metrics in conducting their assessment of their deep
reinforcement learning based navigation algorithm in simulation.
Guzzi et al. (2013b) used small-scale robots in physical experiments,
allowing them to use collision count as one of their main metrics in
evaluating the impact of safety margin size.

While they are arguably the most straightforward methods of
measuring navigational safety violations, collision and violation
counts are neither practical nor ethical to use in real-world
experiments and deployments involving humans, as collisions
present potential harm to the participants. Consequently, safety
violations should be approximated by invasions of defined safety
zones. A safety zone is typically derived from the proxemics theory
proposed by Hall (1966), wherein the personal space—ranging from
0.45 to 1.2 m in Western culture—is used to measure how well a
mobile robot maintains the physical safety of nearby human
pedestrians (e.g., Vega et al., 2019b). Variations on safety zones
are frequently used in prior works; for example, the Collision Index
(CI) (Truong and Ngo, 2016), or Social Individual Index (SII)
(Truong and Ngo, 2018), is a distance-based metric for capturing
the violation of personal space. The index is specified in Eq. 5, where
(xp

i , y
p
i ) is the position of the ith pedestrian pi, (xr, yr) is the position

of the robot, and σpx0 and σpy0 are the standard deviations of the
personal space, empirically set to the value of 0.28:

CI � max
i�1: N

exp − xr − xp
i�

2
√

σpx0
+ yr − yp

i�
2

√
σpy
0

( )( ) (5)

In the original definition of the index (Truong and Ngo, 2016),
the standard deviations are the same for both directions
(σpx0 � σpy0 ), thus assuming that personal space is a perfect
circle. However, as we discussed earlier, additional
representations of personal space have been proposed to
capture nuanced social rules, cultural influences, and specific
situations (Rios-Martinez et al., 2015); therefore, this index may
be adapted to account for different cultures, types of
relationships, and interaction contexts by modifying the
standard deviations. As another example of custom safety
zones, Jin et al. (2019) defined the ego-safety zone as a
circular space around an agent, analogous to the personal
space, and the social-safety zone as a rectangular region
stretching along an agent’s current moving direction.

4.3.3 Psychological Safety
In addition to preserving physical safety, it is important to evaluate
the effects of socially-aware navigation on psychological safety.
Preserving psychological safety, or sometimes referred to as
perceived safety, involves ensuring a stress-free and comfortable
interaction (Lasota et al., 2017). Although they may not physically
endanger a person, amobile robot’s navigational behaviors (e.g., how
they approach and pass a person) may yet induce feelings of
discomfort or stress (Butler and Agah, 2001). Consider a

situation in which a mobile robot moves rapidly toward a person
and only changes its moving direction right before the imminent
collision; while the robot does not make direct physical contact with
the person, its navigational behavior is still likely to cause them
significant stress.

A common method of assessing people’s perceived
psychological safety is through questionnaires. Butler and
Agah (2001) asked participants to rate their comfort from 1 to
5 (with 1 being very uncomfortable and 5 being very comfortable)
under different experimental conditions, including varying robot
speed, distance from the human subject, and approach patterns.
Similarly, Shiomi et al. (2014) used a survey to assess people’s
experiences interacting with a deployed mobile robot during a
field study; specifically, the inquiry focused on three aspects:
whether the interaction was free from obstruction, whether the
person could maintain their preferred velocity in the presence of
the robot, and their overall impression of the encounter.

Several established questionnaires designed for social robotics
research already include questions regarding psychological safety.
For example, the Godspeed questionnaire (Bartneck et al., 2008)
has a sub-scale, perceived safety, comprised of questions related
to subjects’ relaxed/anxious, calm/agitated, and surprised/
quiescent emotional states. The Robotic Social Attributes Scale
(RoSAS) (Carpinella et al., 2017), based on the Godspeed
questionnaire, measures people’s perception and judgement of
the robots’ social attributes, including warmth, competence, and
discomfort. The BEHAVE-II instrument (Joosse et al., 2013)
includes a set of behavioral metrics that measure human
responses to a robot’s behavior; some of the metrics were
specifically designed to gauge the discomfort caused by a
robot’s approach behavior (e.g., a person’s step direction and
step distance when a robot intrudes upon their personal space).
Joosse et al. (2021) used this instrument to measure people’s
responses to and tolerance of personal space invasion when being
approached by agents at varying speeds.

4.4 Sociability
We define sociability as a robot’s conformity to complex, often
nuanced, social conventions in its navigational behavior. Previously,
we have described various metrics used to measure motion-level
social conventions, such as approach velocity, approach pose,
invasion of personal space, or passing on the dominant side (e.g.,
Truong and Ngo, 2016; Guzzi et al., 2013b; Yang and Peters, 2019;
Pacchierotti et al., 2006). However, there exist more complex social
norms around navigation-based interactions, such as elevator
etiquette, waiting in a queue, asking permission to pass, and
observing right-of-way at four-way intersections. A robot may
move in a natural and appropriate manner that does not cause
discomfort, but still violates expected, high-level social norms. For
example, a robot may enter an elevator full of people in a perfectly
smooth and natural fashion without first letting anyone inside leave;
while the robot does not exhibit any unnaturalness or cause
discomfort by violating motion-level social conventions, it breaks
higher-level social norms that most people expect when riding an
elevator. Measuring these high-level social norms would allow for a
more holistic understanding of the impact of robot presence on
humans; however, measuring sociability remains largely difficult and
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is considered one of the key challenges in the field of socially-aware
navigation (Mavrogiannis et al., 2021).

The Perceived Social Intelligence (PSI) scales proposed by
Barchard et al. (2018); Barchard et al. (2020) evaluate 20 aspects
of robotic social intelligence. For instance, the Social Competence
(SOC) scale consists of four items: 1) social competence, 2) social
awareness, 3) social insensitivity (reversed), and 4) strong social
skills. PSI scales have been used in previous evaluations of
socially-aware navigation (e.g., Barchard et al., 2020); recently,
Banisetty and Williams (2021) used the perceived safety scale
from the Godspeed questionnaire in conjunction with PSI to
evaluate how a robot’s spatial motions may communicate social
norms during a pandemic via an online study. Additionally, it has
been determined that robots using socially-aware navigation
planners are perceived to be more socially intelligent as
measured by PSI than those using traditional navigation
planners (Honour et al., 2021).

In addition to using validated scales, prior research has
employed custom questions relevant to specific evaluation
contexts to gauge people’s perceptions of robot sociability. For
example, Vega et al. (2019a) used three questions—Is the robot’s
behavior socially appropriate?; Is the robot’s behavior friendly?;
and Does the robot understand the social context and the
interaction?—to evaluate how a mobile robot may interact
with people to ask for permission to pass when they block its
path. All in all, how best to measure sociability remains
unresolved, as opposed to the consensus on metrics for
evaluating navigation performance and trajectory similarity.

5 DISCUSSION

In this paper, we review the evaluation protocols—focusing on
evaluation methods, scenarios, datasets, and metrics—most
commonly used in socially-aware robot navigation with the goal
of facilitating further progress in this field, which currently lacks
principled frameworks for development and evaluation. Prevalent
evaluation methods include simulation experiments followed by
experimental demonstration, as well as laboratory and field
studies. Controlled experiments, either in simulation or in the
physical world, typically focus on a set of primitive scenarios
such as passing, crossing, and approaching. Datasets of human
movements and trajectories are regularly utilized in developing
and evaluating socially-aware navigation policies. Prior works
have also explored a range of objective, subjective, and behavioral
measures to evaluate navigation performance, naturalness of
movement, physical and psychological safety, and sociability.
Below, we discuss limitations of the existing evaluation protocols
and open problems to solve in future research.

5.1 Limitations of Existing Evaluation
Protocols
5.1.1 Evaluation Methods, Scenarios, and Datasets
Recent works on socially-aware navigation rely heavily on
datasets and simulation experiments for evaluation
(Mavrogiannis et al., 2021); this trend has been accelerated by

advances in reinforcement learning and data-driven approaches
in general (e.g., Luber et al., 2012; Zhou et al., 2012; Alahi et al.,
2014; Alahi et al., 2016; Kretzschmar et al., 2016; Park et al., 2016).
However, this type of evaluation makes strong assumptions about
human and robot behaviors. For example, in simulation
experiments, researchers typically rely on pedestrian behavior
models such as Optimal Reciprocal Collision Avoidance (ORCA)
(Van Den Berg et al., 2011) (e.g., Chen et al., 2017b; Daza et al.,
2021) and the Social Force Model (SFM) (Helbing and Molnár,
1995) (e.g., Katyal et al., 2021). Reciprocal behavior models such
as ORCA impose the assumption that each agent is fully aware of
its surroundings and the position and velocity of the other agents;
this assumption of omniscience does not hold true for a real robot
or person (Fraichard and Levesy, 2020). Moreover, agents trained
using ORCA and SFM behave much differently than real-life
agents (Mavrogiannis et al., 2021) and there exist a multitude of
SFM variations (e.g., Moussaïd et al., 2009; Anvari et al., 2015;
Truong and Ngo, 2017; Huang et al., 2018; Yang and Peters,
2019); therefore, it is important to ensure comparable settings for
training and evaluation when comparing algorithms in
simulation experiments.

To add to this concern of agent behavior assumptions, the
simulators used in virtual social navigation experiments have
their own limitations. While 2D simulators such as Stage (Gerkey
et al., 2003) and CrowdNav (Chen C. et al., 2019) are lightweight
and easy to extend, they oversimplify and abstract, rendering
their results difficult to apply to the real world. Recently, several
high-fidelity, photorealistic simulation environments were
developed for indoor navigation, such as Matterport 3D
(Chang et al., 2017) and Gibson (Xia et al., 2018). These
environments offer improved simulations closer to real-world
settings; however, generating realistic, grounded human social
behaviors in high-fidelity simulation environments is still
challenging.

Simulation experiments typically leverage datasets and metrics
that quantify performance and similarity as described in Section
4.2.1. This reliance on datasets and quantitative metrics assumes
that the human behaviors recorded in those datasets represent the
optimal behaviors for a robot—despite robots possessing
dynamics and dimensions largely dissimilar to humans; at
best, it is highly debatable whether an exact copy of human
trajectories is socially acceptable for all robots. Finally, as
described in Section 3.1, simulation experiments are
commonly followed by demonstrations with physical robots in
a real-world setting; while appropriate for proofs-of-concept,
these demonstrations are mainly illustrative and lack statistical
rigorousness.

In contrast, laboratory studies allow for controlled
experiments with statistical precision. However, such
experiments are often simplistic and designed for specific
navigational interactions (Table 2) in certain settings (e.g.,
passing interactions in a hallway). Moreover, it is important to
note that interaction scenarios are usually evaluated out of
context. Take the crossing scenario as an example; although
crossing is largely evaluated in an open setting (e.g., circle
crossing), people may exhibit very different crossing behaviors
in real life, as shaped by their individual objectives, other
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pedestrians, and the environment (e.g., in an open square or an
art gallery). Furthermore, laboratory studies typically rely on
convenience sampling for participant recruitment (e.g., college
students and local residents), resulting in findings that may have
limited generalization to a broader population.

Field studies are arguably the most challenging evaluation
method to execute; they require robots to operate robustly and
safely in unstructured human environments and naturally
involve emergent, unprescribed human-robot interactions.
While challenging and costly, field studies can provide rich,
and sometimes unexpected, insights that simulation and
laboratory studies cannot offer (Section 3.1.4).

Going forward, we predict an increased need for bridging
algorithmic innovations in simulation and autonomous, real-
world interactions. Deploying robots for human interaction,
either in the field or in laboratory settings, will help us better
understand the true limitations of robotics technology and how
people experience and interact with it. We strongly advocate for
more laboratory and field studies to productively advance
socially-aware robot navigation and develop useful, functional
mobile robots.

5.1.2 Evaluation Metrics
Navigation Performance
Socially-aware robot navigation shares many performance
metrics with general robot navigation. Conventional
performance metrics, such as efficiency and success rate, are
commonly reported in the literature of socially-aware robot
navigation. For example, path efficiency is the ratio of the
optimal path’s length to that of the actual path and is used to
measure path disturbance to agents (either the robot or human
pedestrians), while success rate measures an agent’s ability to
reach its goal. Though not typically used in evaluating socially-
aware navigation, we believe metrics that account for both path
efficiency and success rate, such as Success weighted by Path
Length (SPL) (Anderson et al., 2018), Success weighted by
Number of Actions (SNA) (Chen et al., 2021), and Success
weighted by Completion Time (SCT) (Yokoyama et al., 2021),
are useful metrics to compare navigation policies. However, these
metrics should only be used for comparisons in the same setting,
as different settings have different optimalities. All in all, these
metrics attempt to sum up navigation trials into singular values;
while such abstraction is useful for systematic comparison, it
makes the assessment of fine-grained trajectory quality more
difficult. To answer questions like what caused a particular defect
in efficiency, researchers typically visualize trajectories for more
qualitative analysis. However, it is worth noting that the most
socially acceptable navigational behaviors are not necessarily
efficiency- or performance-oriented.

Naturalness
A common method of measuring naturalness is quantifying the
similarity between the robot’s or the predicted trajectory and
those observed in human data. Average Displacement Error
(ADE) and Final Displacement Error (FDE) are conventional
metrics for quantifying trajectory differences. Variations of
displacement- or distance-based metrics may be employed to

highlight certain aspects of navigation; for instance, ADE over the
nonlinear portions of a trajectory may capture the effects of
navigational interactions (e.g., passing and crossing). These types
of metrics are typically used in benchmarking navigation
algorithms against provided datasets in simulation
experiments. While allowing for reproducible and systematic
development and evaluation, this dataset-oriented evaluation
protocol has several limitations. First, human navigational
behaviors and trajectories are context-dependent. The recorded
human behaviors in a dataset are specific to the scenario in which
the data was collected; moreover, most datasets only include a
limited number of scenarios. Therefore, the generalizability of the
evaluated algorithms to different contexts is not adequately
captured by these metrics. Second, robots and humans afford
distinct navigational behaviors and expectations. At the physical
level, robots are quite dissimilar to humans and therefore afford
different navigational behaviors, such as moving speed. At the
social level, it has been revealed that people exhibit different social
expectations toward robots than humans; for instance, empirical
data suggests that people are willing to let robots get closer to
them than they let fellow humans (Joosse et al., 2021). Finally, the
majority of existing datasets are limited to 2D trajectories and
neglect the fact that navigational behaviors are multimodal in
nature. Such limitations necessitate the inclusion of additional
metrics to cover aspects of naturalness like sociability and
interaction quality.

Instead of using recorded human trajectories as a gold
standard for assessing naturalness, several context-independent
metrics have been utilized to measure movement smoothness,
which is regarded as an important indicator of naturalness. These
metrics usually consider velocity and acceleration profiles and
path irregularity, which captures the number of unnecessary
turns in a path. However, appropriate interpretation of the
results from these metrics requires reference points (e.g., is a
path irregularity value of 0.72 “good?”) that are difficult to obtain
and may depend on various factors such as environmental
context and culture.

Discomfort
Discomfort is another key dimension in which socially-aware
robot navigation is evaluated; it can be characterized generally by
physical and psychological safety. To approximate discomfort,
prior works have relied upon spatial models including Hall (1966)
theory on proxemics and personal space, f-formation for groups
(Kendon, 2010), the Social Force Model (SFM) (Helbing and
Molnár, 1995), and the Extended Social Force Model (ESFM)
(Moussaïd et al., 2009). These models are particularly relevant to
and useful in evaluating mobile navigation and spatial
relationships; specifically, they have been adapted to define
safety zones and identify abnormal behaviors (e.g., invading
personal space) that may cause discomfort. For instance, prior
research has used the Social Individual Index (SII), a numerical
metric derived from spatial models, along with empirically
determined thresholds to gauge psychological safety (Truong
and Ngo, 2017). However, spatial model-based metrics are
limited in several ways. First, all agents are assumed to be
identical (e.g., possessing the same personal space and social
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forces), neglecting individual differences observed in the real
world; for instance, how people distance themselves from
others depends upon personal relationships, individual
characteristics, interaction contexts, and cultural norms.
Second, common spatial models do not have sufficient
granularity to represent environmental contexts. As an
example, in SFM, repulsive forces from the environment are
all treated the same; however, people move and interact
differently in different contexts, and are therefore likely to
have varying levels of discomfort tolerance in response to
robot navigational behaviors. Third, it is difficult to encode
high-level social norms (e.g., sociability) into these spatial
models. Altogether, spacial model-based metrics are limited in
their ability to represent, simulate, and quantify complex,
nuanced social behaviors that humans expect and exhibit in
navigation.

In addition to using the aforementioned metrics, discomfort
may be measured by self-report ratings [e.g., the perceived safety
subscale from the Godspeed questionnaire (Bartneck et al., 2008)]
and behavioral indices [e.g., the BEHAVE-II instrument (Joosse
et al., 2013)]. These measures are effective in revealing people’s
subjective experiences and genuine behavioral responses, which
may not be accurately represented by objective metrics derived
from spatial models. It is worth noting that these subjective and
behavioral measures are collected after experiment completion
and are consequently unsuitable for learning or adapting robot
behavior in real time; however, some of the behavioral measures
(e.g., step distance, facial expressions, and eye gaze) from
BEHAVE-II may be calculated using computer vision
techniques and therefore have the potential to be utilized in
real-time behavioral adaptation.

Sociability
Sociability is a complex construct that characterizes a robot’s
conformity to high-level social conventions, which are
conditioned on varying factors such as culture, interaction and
environmental contexts, and individual characteristics (e.g.,
gender); as a result, there are no predetermined sets of high-
level social conventions. Therefore, research thus far has explored
social conventions that are by and large cherry-picked by the
researchers themselves. For example, Pacchierotti et al. (2006)
defined a set of social rules for hallway interactions, suggesting
that a robot should 1) signal its intention by proactively moving
to the right; 2) stay as far away from humans as the width of the
hallway allows; and 3) wait until a person completely passes by
before resuming normal navigation in order to avoid causing
discomfort. Salek Shahrezaie et al. (2021) emphasized that social
rules differ based on environmental contexts; for instance, a robot
will need to behave differently in galleries, hallways, and around
vending machines. The wide range of influencing factors on
sociability makes it challenging to adopt a uniform evaluation
standard or set of metrics. As a consequence, most prior works
adopted an ad hoc approach, using custom questions to assess
sociability (e.g., Vega et al., 2019a). More recently, Perceived
Social Intelligence (PSI) scales (Barchard et al., 2020) offer an
initial point for benchmarking the subjective construct of
sociability. In order to productively advance socially-aware

navigation, however, further research is required to develop
comprehensive instruments specifically designed to measure
sociability and higher-level social skills in the context of
navigational interactions.

5.2 Open Problems and Opportunities
5.2.1 Diverse, Dynamic Human Models and
Long-Term Effects
As discussed in Section 5.1.1, there are several limitations to
simulation-based evaluation, the most notable of which being
homogeneity—all agents are driven by a static behavior
engine—and omniscience—all agents have full awareness of
their surroundings (Fraichard and Levesy, 2020); these
assumptions are a result of the oversimplification and
abstraction built into simulators. Moreover, most spatial
models for crowd behavior and proxemics are derived from
population data; consequently, the experiments and
simulations using them often do not support a sufficiently
diverse representation of different groups of people (Hurtado
et al., 2021). Indeed, humans are naturally diverse and their
behaviors and expectations change over time and according to
complex factors like individual traits, cultures, and contexts. For
example, abundant empirical evidence has demonstrated how age
(e.g., Nomura et al., 2009; Flandorfer, 2012), personality (e.g.,
Walters et al., 2005; Robert, 2018), gender (e.g., Flandorfer, 2012;
Strait et al., 2015), and cultural (e.g., Lim et al., 2020) differences
may affect people’s perceptions of and interactions with robots.
Moreover, similar to how people gradually change their behaviors
(e.g., standing closer when talking to each other) to reflect
developments in a relationship (Altman and Taylor, 1973),
robots must also evolve their behaviors—as opposed to
exhibiting behaviors uniformly over time—to match their
relationships and promote rapport with users. Not only must
we develop behavior models to account for gradual changes in
relationships, but we must conduct more longitudinal studies to
explore how people’s experiences with, perceptions of, and
behaviors toward robots change over long periods of time.
Buchner et al. (2013) demonstrated that a person’s experience
with a collaborative robot clearly changes over the course of a
year; will we see similar effects in navigational human-robot
interactions? Ultimately, we have three recommendations for
future research:

• Enrich pedestrian models: Although there are limitations to
simulation-based approaches to socially-aware navigation,
these approaches allow for rapid development and
systematic benchmarking and are particularly useful for
early-stage validation. However, future simulation-based
research must augment pedestrian models to account for
human diversity; this may be achieved by including
variables to represent the influencing factors we
previously discussed and by introducing parameters to
regulate said variables over time and according to
interaction contexts.

• Examine longitudinal effects: Our understanding of the
longitudinal effects of navigational human-robot
interactions is fairly limited, yet such knowledge is
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critical in developing and integrating mobile robots into
real-life environments with the goal of interacting with and
assisting people in their daily lives. As the field of socially-
aware robot navigation continues to evolve, research efforts
should increasingly concentrate on conducting longitudinal
field studies.

• Measure and report individual characteristics: As previously
mentioned, many characteristics and factors demonstrably
influence general human-robot interaction. To collectively
advance our understanding of navigational human-robot
interaction, we encourage future works to collect and report
data on individual characteristics (e.g., age, personality,
gender, and culture) and how they relate to the metrics
of socially-aware navigation.

5.2.2 Evaluating Mobile Robots of Different Forms
In this paper, we focus on the evaluation of socially-aware
navigation in typical mobile robots that move around and
interact with people in human environments, such as indoor
or outdoor delivery robots. However, mobile robots can take
many forms, interactions with humans can happen in different
settings (e.g., where people are “on” or “inside” the robot), and
human environments can include larger-scale infrastructures
such as roads and highways. In particular, our review does not
address two notable classes of “robot”: robotic wheelchairs and
autonomous vehicles. While these two categories share various
characteristics in terms of socially-aware navigation, they
necessitate additional evaluation considerations and methods.

Similar to traditional mobile robots, robotic wheelchairs must
consider the people around them when moving through human
environments (e.g., Kretzschmar et al., 2016); as such, various
evaluation considerations and metrics discussed in this paper
may be adapted for this category of “robot.” However, robotic
wheelchairs must also take into account additional considerations
for their direct users; for instance, Morales et al. (2015) explored
ways of including human factors (e.g., user visibility of the
environment) when planning paths for a robotic wheelchair and
evaluated how comfortable users felt during the ride. In support of
greater accessibility and equity, more research is needed to
investigate developing and evaluating methods that enable people
who are robotic wheelchair-bound to engage in social interactions
with individuals or groups of people (e.g., joining or following a
social group) (e.g., Escobedo et al., 2014); as such, robotic
wheelchairs should consider both users’ and surrounding
pedestrians’ social signals (e.g., intent to interact). The navigation
evaluation should also include behavioral indices that capture such
nuanced social dynamics. Moreover, as robotic wheelchair users
have varying physical disabilities, the development and evaluation of
socially-aware navigation capabilities for robotic wheelchairs must
pay closer attention to individual needs. Accordingly, custom
metrics may be more appropriate for evaluation, as opposed to
relying upon a rigid set of standardized evaluation protocols.
Detailed reporting of user characteristics and specific needs
would help contextualize evaluation results.

Autonomous vehicles (AVs) are up-and-coming “mobile robots”
that interact with humans, including the “driver,” pedestrians, and
other motorists on the road. Like traditional delivery robots, AVs

must drive in a safe and predictable manner, but beyond excellent
safety protocols and autonomous capabilities, AVs also require
critical social awareness; social interactions underlie all
pedestrian-vehicle interactions (Rasouli and Tsotsos, 2020) and
even AV-AV interactions are considered social coordination
events (Schwarting et al., 2019). Similar to evaluating robotic
wheelchair applications, the evaluation of AV technology must
consider a range of stakeholders, including pedestrians (e.g.,
Randhavane et al., 2019; Camara et al., 2021), bicyclists (e.g.,
Rahman et al., 2021), and other drivers (e.g., Schwarting et al.,
2019). However, AV evaluation poses additional challenges (e.g.,
legal regulation for high-stake, life-critical applications) and has
different considerations and norms (e.g., following traffic rules). To
mitigate safety concerns, recent research has leveraged modern
immersive technology such as virtual reality (VR) (e.g., Goedicke
et al., 2018; Mahadevan et al., 2019; Camara et al., 2021) when
evaluating socially-aware AVs; for instance, Camara et al. (2021) did
their user study in a virtual reality setting to evaluate pedestrians’
behavior when crossing road with vehicles present. Similar to the
evaluation for mobile robots, it is very important to measure the
subjective perception of pedestrian-vehicle interactions (Mahadevan
et al., 2019) and consider unique spatial interactions in AV
applications.

To conclude, we expect to see more autonomous mobile
technologies coexisting with people in their daily lives. While
these technologies—ranging from mobile service robots and
robotic wheelchairs to autonomous vehicles—may have
domain-specific considerations for their development and
evaluation, social awareness will be vital to the successful
adoption of these technologies by the general population.

6 CONCLUSION

As the field of socially-aware navigation continues to evolve, it is vital
to cultivate principled frameworks for the development and evaluation
of mobile robots that aim to navigate in human environments in an
efficient, safe, and socially acceptable manner. In this paper, we review
the evaluation protocols commonly used in socially-aware robot
navigation as an effort toward developing a principled evaluation
framework. Our review highlights the advantages and disadvantages
of different evaluation methods and metrics; in particular, while
simulation experiments allow for agile development and systematic
comparisons, laboratory and field studies can offer valuable insights
into navigational human-robot interactions. Moreover, objective,
subjective, and behavioral metrics used together offer a more
comprehensive view of robot navigation performance and user
experience than individual sets of metrics alone. By reviewing
evaluation protocols for socially-aware robot navigation, this paper
contributes to the broader vision of successful integration of socially-
aware mobile technologies into our daily lives.
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