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Soft continuum robots have been accepted as a promising category of biomedical robots,
accredited to the robots’ inherent compliance that makes them safely interact with their
surroundings. In its application of minimally invasive surgery, such a continuum concept
shares the same view of robotization for conventional endoscopy/laparoscopy. Different
from rigid-link robots with accurate analytical kinematics/dynamics, soft robots encounter
modeling uncertainties due to intrinsic and extrinsic factors, which would deteriorate the
model-based control performances. However, the trade-off between flexibility and
controllability of soft manipulators may not be readily optimized but would be
demanded for specific kinds of modeling approaches. To this end, data-driven
modeling strategies making use of machine learning algorithms would be an
encouraging way out for the control of soft continuum robots. In this article, we
attempt to overview the current state of kinematic/dynamic model-free control
schemes for continuum manipulators, particularly by learning-based means, and
discuss their similarities and differences. Perspectives and trends in the development
of new control methods are also investigated through the review of existing limitations and
challenges.
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1 INTRODUCTION

Bioinspired by snakes, elephant trunks, and octopus tentacles, continuum robots are designed to
structurally mimic their inherent dexterity and adaptability (Webster and Jones, 2010). In contrast to
conventional rigid-link manipulators, “continuum”mechanisms leverage a series of continuous arcs
without a skeletal structure to produce a bending motion (Robinson and Davies, 1999). Such design
initially focuses on large-scale grasping, locomotion, and positioning in industrial applications
(Robinson and Davies, 1999) or even urban search and rescue operations in confined environments
(Jones and Walker, 2006a). The trade-off between high flexibility and low payload induces strict
structural requirements. Gradually, with the reduced scale of continuum robots, the concerns are also
diverted to the delicate steering of the slim robot body. The flexible characteristics of continuum
robots are appropriate for surgical field applications. Enabling infinite degree-of-freedom (DoF)
manipulations within small scales, continuum robots endow the target with flexible access and
the patient with less invasion (Burgner-Kahrs et al., 2015). Moreover, pliable interventional devices
with broad-range functions, such as catheters (Lee et al., 2018; Wang et al., 2018), afford much
inspiration to the development of robotic continuum manipulators. Besides the mechanism of a
robot, proper controllers and corresponding sensors are also necessary to guarantee accurate control
performance.
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Conventional rigid-link robots could be controlled directly by
the commands of motors on each joint. Once the joint angles and
the link lengths are available, the pose of all points, including the
end-effector, can be fully determined. Different from rigid-link
mechanisms which have definite kinematic mapping, soft robots
meet great challenges in accurate analytical modeling,
considering the nonlinear deformation induced by the
actuation, material elasticity, and susceptibility to contacts
with surroundings. Generally speaking, the actuation
mechanism of continuum robots (Rolf and Steil, 2013; Yip
and Camarillo, 2014; Giorelli et al., 2015a; Ansari et al., 2017a;
Lee et al., 2017a; Satheeshbabu et al., 2019; Jiang et al., 2021) can
be categorized as intrinsic and extrinsic (Robinson and Davies,
1999), based on the location of the actuator. The intrinsic
mechanism means that the actuators are located inside and
form as part of the mechanism (Fu et al., 2020). One example
could be pneumatic-driven robots (Figures 1A–E), whose
deformation is induced by the inflation of internal elastic
chambers. Extrinsic mechanisms use external components to
distort the robot body (Figures 1F,G), such as tendons/cables
dragged by motors. Due to the high compliance of continuum
manipulators, constraints imposed by obstacle interactions
may deform the robot body into undesired shapes regardless
of the actuation status. These effects are generally difficult to
completely sense and feed back into the model, leading to
unstable behaviors. In addition, the individual variation also
leads to modeling uncertainties. For example, even with the

same design prototype, different degrees of fabrication errors
may require repetitive parameter tuning for all robots and their
actuators (Nordmann et al., 2012). The characteristics of a
specific robot may also change (e.g., wear-out effects) over the
course of time.

Machine learning approaches provide a promising way out for
the control of continuum robots. As the controller or inverse
kinematic mapping is identified by experimental sensory data,
people also title it as data-driven control. Sometimes, to
distinguish it from the quantitative modeling which
parameterizes the system using compact representations (e.g.,
differential equations) (Lunze, 1998), there were researchers
using qualitative modeling to describe such circumstances
(Melingui et al., 2014a; Melingui et al., 2014b). Apart from
circumventing prior analytical modeling and computational
complexity, another advantage of the learning-based control is
the simplified requirement on sensors. Representative models
include the (piecewise) constant-curvature (PCC)-based
kinematic model (Jones and Walker, 2006b; Webster and
Jones, 2010), Cosserat rod theory (Trivedi et al., 2008; Rucker
et al., 2010; Giorelli et al., 2012), and spring-mass model (Kang
et al., 2013) would require the measurements of actuator length/
strain/curvature for more accurate use of the model, if not relying
on the feedback. Their effectiveness in the feed-forward loop
could not be guaranteed, since the analytic shape reconstructed
from the set of possible length combinations or other
configuration parameters is unknown and non-stationary

FIGURE 1 |Continuum robots driven by (A–E) pneumatics or (F-G) tendons. Image sources for (A)–(G) in sequence: (Lee et al., 2017a; Satheeshbabu et al., 2019;
Ansari et al., 2017a; Rolf and Steil, 2013; Jiang et al., 2016; Giorelli et al., 2015a; Yip and Camarillo, 2014).
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(Nordmann et al., 2012). Fortunately, direct learning of the end-
to-end mapping only needs the information of actuators (e.g.,
motor position/command) and a sensor that can capture the end-
effector (or other control objectives like the shape) in the task
space. Therefore, the burden for multiple types of sensors is
alleviated and even eliminated.

Various machine learning techniques have the potential or
have been validated for continuum robot control in existing
works. In this article, we aim to summarize and discuss their
representative implementations. Different from previous reviews
such as the one by George Thuruthel et al. (2018) that provides
the outlines of all possible control strategies, here machine
learning–based approaches are intensively investigated with
details and systematic analysis. Starting with the iterative
machine learning methods, supervised learning methods follow
as amain part. Since supervised learning techniques, which utilize
known input and output datasets for mapping establishment,
accord suitably with the thought of robot control, lots of research
works have been conducted. Several examples showing the
combination of learning-based and analytical models are also
introduced. However, as semi-supervised learning and
unsupervised learning are designed to learn classifications
from small-portion tagged data and patterns from untagged
data, respectively, few types have been applied in robot
manipulation, which targets definite and accurate regression
results. Although they are possible to implement in specific
control units in the future, we will not discuss such categories
in this article. Finally, the attempts at reinforcement learning on
continuum robots are also elaborated upon for the first time.
Reinforcement learning refers to a family of learning-based
algorithms where the agent autonomously learns to deal with
new tasks during the interaction with its environment. Compared
to supervised learning where the model learns from the “answer
key” in training data, reinforcement learning enables the model to
discover the optimal behavior policy from experience. Nowadays,
reinforcement learning applied in the control of soft robots has
been attracting lots of interest and developing fast since it could
avoid prior knowledge of robot configuration. Additionally, not

limited to the modeling in a specific workspace, reinforcement
learning is expected to extend the manipulation adaptivity to a
complex and dynamic environment (Polydoros and Nalpantidis,
2017). At the end of this article, potential trends in the
development of machine learning–based control methods are
also discussed after a summary of existing works.

2 ITERATION-BASED KINEMATIC
MODEL-FREE CONTROL

In model-based controllers, the kinematic model can be
decomposed into two mappings (Jones and Walker, 2006b),
namely, robot-independent mapping and robot-specific
mapping. These mappings link three spaces separately. The
robot-independent mapping depicts the relation between the
configuration and task spaces, while the robot-specific
mapping represents the relation between the actuation and
configuration spaces (Figure 2). The task space means the
feasible region of the control object (usually the workspace of
the end-effector p). The actuation space represents the command
u on motors or other actuation types which could be instructed
quantitatively. In rigid-link robots, the kinematic mapping could
be definitely established between the actuation and task
spaces, since the configuration space is mostly linearly related
to the actuation space. However, in soft continuum robots, the
configuration parameters characterizing the arc idealize the robot
deformation by making several assumptions. The material
elasticity or fluid dynamics would induce large nonlinearity
between the actuation and configuration spaces, which is
difficult to involve in the modeling. That is also why the
actuation-related part is called robot-specific mapping. There
are model-free approaches utilizing the idea of iterative
optimization to refine the desired mapping relationship and
conduct control. Some representative control theories also
involve similar ideas, such as the model predictive control
(Tang et al., 2019a). In the following sections, representative
methods to iteratively learn the mapping or its inverse format will
be introduced. The conventional control idea utilizes the inverse
Jacobian matrix to build the mapping between the actuation and
task spaces. Although the Jacobian matrix may vary nonlinearly
during the robot motion, someone rationally hypothesized that
such variations within a single control interval are minimal and
linear, assuming the slow movement of continuum robots.

2.1 Optimization-Based Jacobian Matrix
Estimation
Yip and Camarillo (2014), Yip and Camarillo (2016), and Yip
et al. (2017) proposed a series of model-free closed-loop
controllers based on the optimal control strategy. Different
from deducing the Jacobian matrix regarding the analytical
model (Siciliano and Khatib, 2016), one advantage of such
methods is the quick initialization of the Jacobian matrix;
during the execution of the robot, the Jacobian matrix can
also be updated. Using the symbols in Figure 2, the actuator
input (at equilibrium) is represented as u(k) ∈ Um at time step k,

FIGURE 2 | Mapping relationship between the three spaces (i.e., u:
actuation space, q: configuration space, and p: task space) in soft robot
control.
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where Um denotes the m-dimensional actuation space, while the
task space (e.g., the end-effector position in the Cartesian space
∈ R3) is denoted by p(k). With the inverse Jacobian matrix, the
discretized relationship from the task space to the actuation space
can be as follows:

Δu(k) � J −1Δp(k). (1)

Assume that the robot actuation is designed as 3 DoFs which
are independent from each other. The initialization of J can be
finished by successively actuating the 3 DoFs in turn with an
incremental amount Δui, i � 1, 2, 3 (i.e., the actuation
commands are [Δu1 0 0 ], [ 0 Δu2 0 ], and[ 0 0 Δu3 ] in turn), and measuring the corresponding
displacements Δpi, i � 1, 2, 3. The initial Jacobian matrix
could be constructed as follows:

J � [ J1 J2 J3 ], (2)

where J i � Δpi/Δui, i � 1, 2, 3. The Jacobian matrix J is updated
by quadratic programming as follows:

minimize ||ΔJ(k)||
subject to Δp(k) � J(k)Δu(k)

J(k) � J(k − 1) + ΔJ(k)
(3)

They also proposed to use force sensors to measure the
tension of each tendon, therefore optimizing the actuation
command with the minimal change. Besides the optimization-
based construction of inverse kinematic mapping, machine
learning–based methods have also been employed in various
works, which are summarized in the following section.

2.2Methods Utilizing Adaptive Kalman Filter
Li et al. (2017) considered the change of the Jacobian entries
(forming system states x(k) ∈ Rm×n of the robot) as the process
noise of the stochastic system and used an adaptive Kalman filter
to estimate the entries, avoiding the kinematic modeling
procedure. The state and measurement (displacement of the
robot end-effector y(k) � Δp(k) ∈ Rm) of the stochastic system
are constructed as follows:

x(k + 1) � x(k) + η(k)
y(k) � H(k)x(k) + δ(k), (4)

where the block-diagonal measurement matrix H(k) �
diag(Δu(k)T,m) ∈ Rm×nm is composed by the change of
actuation pressure/voltage Δu(k) � u(k) − Δu(k − 1) ∈ Rn; The
process and measurement noises are represented by η(k) and
δ(k), respectively, which are assumed to be Gaussian noises
with covariance matrices of Q and R. The two-step recursive
formulas contribute to the calculation of the Jacobian matrix by
the following:

x̂p(k + 1) � x̂(k) + η(k)
Pp(k + 1) � P(k) + Q(k), (5)

and

K(k) � Pp(k)HT(k)[H(k)Pp(k)HT(k) + R]−1
P(k) � [I − K(k)H(k)]Pp(k)

x̂(k) � x̂p(k) + K(k)[y(k) −H(k)x̂p(k)]
(6)

where x̂p(k) and Pp(k) are separately the predicted state
estimation and error covariance, their corresponding updates
are x̂(k) and P(k). The optimal Kalman gain is K(k). The detailed
calculation approach can be found in the study by Li et al. (2017),
where the use of an adaptive covariance matrix for the process
noise η(k) improves the filter’s convergence and tracking
performance against system uncertainties. Based on the
updated Jacobian matrix, an optimal vector is further
implemented into the controller to determine the appropriate
configuration allowing for the lowest deformation of the robot
(i.e., minimal actuation variation).

3 SUPERVISED LEARNING OF INVERSE
STATICS/KINEMATICS

This section will summarize the methods to learn the desired
mapping in control offline, that is, using learning-based
algorithms to approximate the statics/kinematics of the entire
mapping from the actuation space to the task space. Here, the
difference between statics models and kinematics models is
briefly explained. A statics model depicts the robot
configuration by assuming all forces on the manipulator at
rest under equilibrium conditions. A kinematics model
describes the robot motion only based on the geometric
relationship, without considering the applied forces. For
example, in the case of soft cable-driven manipulators, the
direct forward statics model maps the cable tensions onto the
tip position, while the inverse statics model calculates the cable
tensions in order to make the tip on the desired position
(Giorelli et al., 2013a; Thuruthel et al., 2016b). It is an
absolute mapping scheme. The kinematics can be regarded as
an approach to represent relative/incremental movements,
where the change from the current robot status to the
desired one is focused, or it can also be described as a
mapping between the actuator velocity and the end-effector
velocity. Accurate inverse statics can be implemented in open-
loop control, and the inverse kinematics can be coordinated
with the feedback in closed-loop control. As the most
straightforward applications of learning-based algorithms,
there are lots of articles from 2013 to 2020 (Giorelli et al.,
2013a; Giorelli et al., 2013b; Melingui et al., 2014a; Giorelli et al.,
2015a; Giorelli et al., 2015b; Chen and Lau, 2016; Thuruthel
et al., 2016b; Thuruthel et al., 2016a; Lee et al., 2017a; Xu et al.,
2017; Ho et al., 2018; Fang et al., 2019; Bern et al., 2020) utilizing
this kind of thought to handle the continuum robot control.
Details of these works are summarized in Table 1. For the
convenience of showing their similarities and conducting
systematic comparisons and discussions, we organized the
following sections: Section 3.1 and Section 3.2.
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3.1 Mapping to Be Learned
As in Figure 2, successive mappings between the actuation and
configuration spaces, the configuration and task spaces, or

directly from the actuation space to the task space have to be
defined as the forward kinematics. The actuator input (at
equilibrium) is represented as u(k) ∈ Um at time step k, where

TABLE 1 | Sampling of inverse statics/kinematics learning-based control for continuum robots. Intended to be exemplary, not comprehensive.

Literature

Classification criteria

Model Robot
structure

Actuation
(length)

Act. &
TaskDoFs

Mapping
to be learned

Samples Task Accuracy/
mm (mean/
STD/max)

Giorelli et al. 1-hidden-
layer FNN

a. Giorelli
et al. (2013a)

a. 21 neurons Silicone
conical
robot

Tendon
(310 mm/
280 mm)

a. 2 & 2

u(k) � f−1s (p*(k))

500 (8:2) Simulation: path
generation.
Discrete points

2.27/
1.70/9.30

b. Giorelli
et al. (2013b)

b. 34 neurons b. 3 & 3 500 (8:2) 4.2/2.8/12.3

c. Giorelli
et al. (2015a)

c. 6 neurons c. 2 & 2 405 (8:2) 22.88/11.80/
59.79

d. Giorelli
et al. (2015b)

d. 28 neurons d. 3 & 3 395 (8:2) 7.35/--/22.22

Melingui et al.
(2014a)

Forward: FNN.
Inverse: 1-
hidden-layer NN
in DSL

CBHA Pneumatic
(NA)

a3 × 2 & 3 Forward: p(k) � fs(u(k)) 4,096 (7:
1.5:1.5)

Comparison:
robot and
model postures
(under the same
actuation)

Inverse:
1.1 e−4 (MLP)
∼

4.1 e−4

(RBF)/--/--

Inverse: u(k) � f−1s (p*(k))

Thuruthel et al. 1-hidden-
layer NN.

a. Thuruthel
et al. (2016a)

a. 20 neurons a. BHA a.
Pneumatic
(0.9 m)

a. 3 × 3 & 3 q(k) � f̂
−1
s (q(k − 1),p*(k)) a. 10,000

(7:3)
Simulation:
continuous path
following in
terms of
position (P)/
orientation (O)

p: <1/
1.504/--

b. Thuruthel
et al. (2016b)

b. 40 neurons b. Silicone
conical

b. Tendon
(31 cm)

b. 12 & 6 Δq(k) � f̂
−1
k (q(k − 1),Δθ*(k)) b. 14,000

(8:2)
p: 8.5/2.8/--
O/°:
3.21/1.71/--

Chen and Lau
(2016), Xu et al.
(2017)

ELM, GMR, or
KNNR

Silicone
serpentine

Tendon
(NA)

a2 & 2 u(k) � f−1s (p*(k)) 20,000 Simulation &
real robot: path
following

2.1275∼
2.5556/−/−

Lee et al.
(2017a)

LWPR
online update

Silicone
cylindrical

Pneumatic
(93 mm)

3 & 2 Δu(k) � f−1k (n(k − 1),u(k − 1),Δn*(k)) >1,000 for
initialization
[FEA Lee
et al. (2017b)]

Angular path
following (2D) +
external forces

Free space/°:
0.90/
0.65/2.80
Disturbed/°:
2.49/1.74/
11.03

Ho et al. (2018) LWPR
online update

Silicone
cylindrical

Pneumatic
(155 mm)

3 × 2 & 3 Δu(k) � f−1k (u(k − 1),Δp*(k)) —

Path following
(3D) + tip load
(72% robot
mass)

With load:
0.98/0.26/--

Fang et al.
(2019)

LGPR
online update

Silicone
cylindrical

Pneumatic
(67 mm)

3 & 2 Δu(k) � f−1k (u(k − 1),Δz*(k)) 300
Path following
(2D visual servo)
+ tip load

Free space/
pixel:
5.4/--/11.5

Bern et al.
(2020)

a. 2-hidden-
layer FNN (20
× 2)

Silicone
cylindrical

Tendon
(20 cm)

a. 3 & 2
u(k) � f−1s (p*(k))

a. 308 (9:1) a. Real robot Real robot:
6.2∼9.2/−/−

b: 3-hidden-
layer FNN (25
× 3)

b. 3 × 2 & 2 b. 15414 (8:
1:1)

b. Simulation
2D path
following

—

aOnly the actuation dimensions that are related to the end-effector control are considered; “×2” or “×3” means the number of segments in the manipulator.
(F)NN, (feed-forward) neural network; GMR, Gaussian mixture regression; FEA, finite element analysis; DSL, distal supervised learning; KNNR, K-nearest neighbors regression; STD,
standard deviation; (C)BHA, (compact) bionic handling assistant; LWPR, locally weighted projection regression; MLP, multilayer perceptron; ELM, extreme learningmachine; LGPR, locally
Gaussian process regression; RBF, radial basis function.
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Um denotes the m-dimensional actuation space. Let q(k) be the
manipulator configuration parameters under input u(k), which
corresponds to a specific task space status such as the end-effector
position p(k) ∈ R3 and the orientation normal n(k) ∈ R3 in the
Cartesian space. The collective pose variable θ(k) �[p(k), n(k)] ∈ R6 can be thus denoted. It should be noticed
that for continuum robots, not only can the pose of an
appointed point be defined as the control objective but also
the entire manipulator shape can be represented by more
DoFs. Here, we take the three-dimensional (3D) position p(k)
as an example to show the representation of the absolute forward
robot-independent mapping as follows:

p(k) � find.(q(k)), (7)

and that of absolute forward statics as follows:

p(k) � fs(u(k)). (8)

With quasi-static movements, the forward transition model can
be expressed in the incremental format as follows:

Δp(k) � f̂k(q(k − 1),Δu(k)), (9)

where Δu(k) � u(k) − u(k − 1) is the difference of inputs between
time step k and (k + 1), and Δp(k) � p(k) − p(k − 1) denotes the
incremental displacement. The control objective of inverse statics
is to generate an actuation command u(k), thus steering the
manipulator to the desired p*(k) in the task space as follows:

u(k) � f−1
s (p*(k)). (10)

In inverse kinematics for closed-loop control, the change of
actuation command Δu(k), thus achieving the desired movement
Δp*(k) � p*(k) − p(k − 1) in the task space, is calculated.
Therefore, mapping Eq. 11 is deduced to approximate the
inverse kinematics of Eq. 9, as follows:

Δu(k) � f̂
−1
k (q(k − 1), (p*(k)). (11)

The inverse transition f̂
−1
s heavily depends on the last robot

configuration q(k − 1) that is supposed to be unknown during the
training of an operation. However, since during quasi-static
movements, the robot configuration q(k − 1) can be
represented/defined by the corresponding actuation u(k − 1),
the inverse kinematics function Eq. 11 can be approximated
as follows:

Δu(k) � f−1
k (u(k − 1),Δp*(k)). (12)

here, as long as the sensory information of the task space
variable p and the encoded actuation command u are
available, the inverse kinematics can be learned to
accomplish various control tasks, without the need of
analytical/quantitative modeling. According to the control
object, the task space can be specified as the 2D/3D position
p(k), the 2D/3D orientation n(k), or be defined in other
coordinate frames. For example, in the visual-servoing tasks
(Fang et al., 2019), the position of the end-effector z(k) in the 2D
camera frame/view is desired to stay focused or follow paths. For
some tasks like whole-arm grasping, the entire robot body
should be considered and commanded.

3.2 Learning Approaches
As can be seen from Table 1, neural networks (NNs) are the most
commonly used regression model to approximate the mapping.
The feed-forward NN (FNN) is the basic type, where the
information always flows from the input side to the output
side with the weighted calculation of hidden layers (Svozil
et al., 1997). If not specified, an NN usually indicates an FNN.
Specific types of FNNs like the extreme learning machine (ELM)
were also applied. Besides, some regression methods perform
satisfying results in continuum robot control, and representative
ones can be the locally weighted projection regression (LWPR)
(Lee et al., 2017a; Ho et al., 2018) and (locally) Gaussian process
regression (GPR) (Fang et al., 2019). It can be found that FNNs
are adaptive to find the absolute relationships (Giorelli et al.,
2013a; Giorelli et al., 2013b; Melingui et al., 2014a; Giorelli et al.,
2015a; Giorelli et al., 2015b; Thuruthel et al., 2016a; Chen and
Lau, 2016; Xu et al., 2017; Bern et al., 2020), for example, forward
and inverse statics relations as in Eq. 8 and Eq. 10. Such cases
correspond to open-loop controls, where online sensory devices
are not available. For the learning of relative mappings
(Thuruthel et al., 2016b; Lee et al., 2017a; Ho et al., 2018;
Fang et al., 2019) such as Eq. 9 and Eq. 11, regression-based
methods usually guarantee more stable convergence. Combined
with corresponding sensing feedback, these mappings enable
higher accuracy since the control loop can be closed. Most of
the models were confirmed in advance using selected training
samples. Related discussions of the data exploration can be found
in Section 3.3.1. Regression models also support the online
update using newly collected sensory data, but the trade-off
will be the calculation load. For example, GPR requires the
matrix inversion calculation (the matrix dimension is related
to the sample amount) for each time of model refinement;
therefore, the sampling window could not be too large.
Locally, GPR models were therefore implemented in the study
by Fang et al. (2019), where the whole workspace can be divided
into several sections (≤300 samples for each) for independent
model training and updating. Such k-means–guided localization
could guarantee high computation speed (>20 Hz).

3.3 Problems to Be Considered
3.3.1 Data Exploration
For the offline trained models, collection and selection of the
training data are crucial for the accuracy of the model.
Requirements of the samples are as follows: 1) covering the
whole workspace of the robot end-effector and 2) evenly
distributed in the task space to ensure consistent estimation
performance in all areas. Most existing works used a kind of
motor babbling approach (Thuruthel et al., 2016b), applying the
interpolation in the actuation or configuration space. The number
of optimal samples will be dependent on the workspace range and
motion step size. Sample (input–output) pairs were collected by
incrementally actuating the motors (or other specific
mechanisms) with a fixed increment and saving the
corresponding end-effector status. With the actuation
command in the safe range, this procedure will result in an
ergodic dataset. De-noising and filtering were usually needed to
abstract high-quality and nonrepetitive samples. To fully exploit
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the advantage of learning-based approaches, normalizations of
the input and output data (into [−1,1] or [0,1]) were conducted
before training. For the training of relative mappings, an
additional process will be finding out all possible
displacements between two random points and filtering out
motions in a fixed range of step size (Fang et al., 2019).
Samples were usually divided into training, testing and
validation sets, where the training dataset usually occupies
more than 70% of them. The concept of goal babbling (Rolf
et al., 2010) was also proposed but more like a standalone control
approach rather than a means of data exploration. It depended on
an iterative bootstrapping and refinement procedure of the
inverse kinematics estimates, by a path-based sampling
approach. The training data were generated along paths (a set
of linearly interpolated target points) via repeating the “trying to
reach” process. This thought has been validated on the simulation
of a bionic handling assistant (BHA) robot (Rolf and Steil, 2013).

3.3.2 Structural Optimization of Neural Networks
Although no prior knowledge of the robot modeling is required in
data-driven approaches, there are hyper-parameters to be tuned,
especially in the NNs, since LWPR and LGPR would not require
the manual tuning of any hyper-parameters. The structural
optimization of NNs focused on the number of hidden layers
and neurons once a specific model was selected. Previous works of
Giorelli et al. (2013a), Giorelli et al. (2013b), Giorelli et al. (2015a)
and Bern et al. (2020) discussed the heuristic procedure. They
observed that small-size networks usually had poor
performances, which may not be expressive enough to capture
the robot’s physical characteristics. Increasing the size of the
network yields greater accuracy; however, it may encounter a
bottleneck or even induce a new trend of accuracy decrease once
past a certain size. A hypothesis is that the gathered dataset was
insufficiently large to properly train such a large NN. Overfitting
is also a factor to be avoided. Considering the actuation DoFs, one
hidden layer would be enough for single-segment robots, while
the multi-segment redundant manipulators may require a similar
increasing number of hidden layers.

3.3.3 Actuation/Configuration Redundancy
In the learning-based kinematic control, redundancy is the
feature which is possible to generate inconsistent samples with
the same effector pose but different joint angles or actuation
commands. Learning from such examples will lead to invalid
solutions (Lunze, 1998). The redundancy may result from the
configuration space, that is, the robot-independent mapping (the
configuration space to the task space) is redundant. This case
exists in the multi-segment continuum robots, where the
actuation space is 6D or 9D, but the task space only involves
3D positional information. Another cause of redundancy may
derive from the actuation space, and this is a specific
circumstance in tendon-driven or pneumatic-driven
mechanisms. As sometimes the overall elongation change can
be ignored, the relationship from the actuation space to the
configuration space (robot-specific mapping) is also a
multiple-to-single mapping. Both kinds of problems had been
discussed and considered in several literatures. One way to

resolve the redundancy in the actuation/configuration space is
manually biasing the original training data to only allow a single
inverse solution (Fang et al., 2019). This method is an optimal
way out in single-segment manipulator control, since it can
reduce the unnecessary complexity of training data without
reducing the robot flexibility. However, for kinematically
redundant (configuration-redundant) manipulators, the
benefits of using multi-segment/DoFs are mostly lost and will
result in improperly accomplished tasks (Peters and Schaal,
2008). For such manipulators, the alternative method is to
introduce a reward/cost function to draw the system to a
desired solution (Mahler et al., 2014). This is the most widely
accepted approach, and an example can be found in the study by
Ho et al. (2018), where the task was formulated as a constrained
optimization problem. However, drawbacks of the cost function
using the sum of the squared error Giorelli et al. (2013b) were
raised in the study by Melingui et al. (2014b), pointing out that it
is possible to yield nonconvex inverse mappings. They solved it by
implementing a squared penalty term in the objective function of
the inverse NN, thus selecting one particular inverse model from
the redundancy manifold. In addition, the weighting scheme
(Nordmann et al., 2012) and method taking both/all-segment
trajectories into account (Melingui et al., 2015) had also been
tested.

3.4 Combination of Analytical Model and
Learning-Based Component
Either in general or specific tasks, there are hybrid controllers
proposed, combining the analytical dynamics/kinematics model
and learning-based approaches (e.g., NN) to accomplish robust
control performance. Methods combining the learning-based and
conventional components also appeared in several works. For
example, Braganza et al. (2007) proposed a framework
comprising a neural network feed-forward component and a
nonlinear feedback component, where the NN based on
augmented back propagation was utilized as a feed-forward
compensator for the nonlinear uncertain dynamics. The
proposed scheme enables continuous and asymptotic tracking
without any prior knowledge of the robot dynamic model, and
the back propagation technique enables fast online training of the
NN weight matrices referring to the tracking error signal.
Similarly, Queißer et al. (2014) presented the idea to
superimpose a learning-based inverse equilibrium dynamics
model for the feed-forward control and then combined it with
a feedback controller. Subudhi and Morris (2009) implemented a
hybrid fuzzy neural control (HFNC) scheme for a multi-link
flexible manipulator. The control actions were determined by
both a fuzzy controller (the primary loop) and an NN controller
(the secondary loop) to compensate for the coupling effects. Tang
et al. (2019a) and Tang et al. (2019b) proposed a control
framework combining the model-free iterative learning (Rong-
Hu and Zhong-Sheng, 2007) and model predictive control for
trajectory-tracking control of a wearable soft robotic glove. The
integration of the kinematic model and the machine learning
trained model was also validated, and most of the learning-based
parts acted as an error compensator of the analytical model, such
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as in the works of Reinhart and Steil (2016) and Reinhart et al.
(2017).

4 REINFORCEMENT LEARNING
STRATEGIES

With the development of artificial intelligence, reinforcement
learning is emerging in the robotics community, which is a
natural application for learning-based control since the
interaction between robots and the environment is necessary.
Reinforcement learning offers appealing tools enabling to
complete sophisticated tasks and accommodate complex
environments, which may be limited in conventional control
strategies.

Reinforcement learning is regarded as a Markov decision
process (MDP), represented using a tuple (S, A, p(s’|s, a), R, c).
In the agent’s interaction with the environment, S is the set of
the agent’s possible states, where s is the current state and s’ is the
next state after the agent transition. A presents the set of the
agent’s actions, where a is the action. p(s’|s, a) is the state-
transition probability of the agent transiting from the current
state s to the future state s’ after the implementation of action a.
The states and actions constitute the trajectory
τ � (s0, a0, s1, a1, . . . ). R(s, a) defines the reward function after
the agent executes action a at state s, and for convenience, r(s, a)
represents the immediate reward of one transition and R is the
accumulated reward or expected return of the whole trajectory, as
written in Eq. 13.

R(τ) � ∑T

t�0r(st, at), (13)

where T is the number of time steps in the trajectory τ. For the
infinite-horizon reinforcement learning problem, the effect of a
future reward on the present decision could be considered with
the reward discount factor c ranging from 0 to 1, which is
common for classical reinforcement learning (Kober et al.,
2013). The accumulated reward is written as follows:

R(τ) � ∑∞

t�0c
tr(st, at). (14)

For the finite-horizon reinforcement learning problem, the
average reward function is considered as shown in Eq. 15.

R(τ) � 1
T
∑T−1

t�0 r(st, at). (15)

Policy π(a|s) is the mapping from the state s to the action a,
namely, given the current state, it could suggest the next step to
obtain an optimal reward. The value function could evaluate
the quality of the policy, offering the quantitative metric for the
behavior decision maker. One of the value functions is called the
state–value function Vπ(s), which defines the value of a state
s under the policy π.

Vπ(s) � Ea ∼ π[R(τ)|st � s]. (16)

Another one is the action–value functionQπ(s, a), which could
assess the action a at state s under the policy π.

Qπ(s, a) � Ea ∼ π[R(τ)|st � s, at � a]. (17)

Using Eq. 13 and Eq. 14 and the Bellman equation (Sutton
and Barto, 2018), value functions could be written as follows:

Vπ(s) � ∑
a
π(a|s)[r(s, a) + c∑

st
P(s′∣∣∣∣s, a)Vπ(s′)], (18)

Qπ(s, a) � r(s, a) + c∑
s′ P(s′

∣∣∣∣s, a)Vπ(s′). (19)

4.1 The Goal of Reinforcement Learning
In the context of mathematics, the goal of reinforcement learning
is to explore an optimal policy that could instruct actions based
on the present observation. The objective is to maximize the
accumulated reward (Eq. 13), which determines the learning task.
When considered in robot control, the goal of reinforcement
learning is to figure out a control strategy that could generate
optimal instruction for robot action in order to accomplish the
specified task effectively. The reward function is designed
manually to train the robot with certain characteristics, for
example, penalizing the times of transition to enable the robot
to reach the target in as few movements as possible.

For instance, there is a soft planar robot planned to touch a
designated point in 2D space, where reinforcement learning can
be explained as below. Sensors on the robot provide the
observation about its relative position to the target, as well as
moving velocity and direction, which describe the current state s.
The soft robot is actuated using several inflating air chambers so
that it could elongate or contract, thus steering the robot to the
left and the right, indicating the action set A. Reward function
R(s, a) is designed manually, for example, the reward on short
relative distance and the penalty on transition times could
accelerate the learning convergence process. Policy π(a|s) gives
the action suggestion based on the observation of the current state
to maximize the cumulative reward. Figure 3 describes the
pipeline of reinforcement learning algorithms in soft
manipulator control. In the training stage (Figure 3A),
trajectories calculated from the forward kinematic model or
the simulation environment contribute to training the control
policy. In the application stage (Figure 3B), every time upon
receiving the sensor-observed state and target information, the
learned control policy would give instructed actions, which would
be executed by the actuator. Specificities of the application in
continuum robots will be introduced in the following section.

4.2 Reinforcement Learning in Soft Robot
Manipulation
Compared with the conventional joint-linked robots, the application
of reinforcement learning in soft robots may face a number of
challenges requiring specific attention. Reinforcement learning
enables robots to learn from experience, which demands
thousands of interactions with the environment. In addition to
the tedious data collection, the noisy data, incomplete observation
in practice, and the highly frequentmovement could even damage the
soft robot since it is mainly actuated hydraulically or pneumatically.

Frontiers in Robotics and AI | www.frontiersin.org September 2021 | Volume 8 | Article 7303308

Wang et al. Survey: Machine-Learning Continuum Robot Control

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


To improve the effectiveness of training data collection, the model-
free reinforcement learning approach has arisen, which obtains the
learning experience from simulations. However, when transferred
from the simulation to the prototype, themodel-free algorithmmight
perform with large deviations since the modeling without real data
could be inaccurate. Besides, the compliance and flexibility of soft
robots cause high dimensional and continuous space, as to which the
appropriate state and space discretization methods are expected in
reinforcement learning. Furthermore, it is noticed that the soft
manipulator would experience attenuation when exerted by
external loads or disturbances. Not only could it impede the
modeling of robots but it also makes the loading robustness
experiment a necessity for the validation of reinforcement
learning.

Referring to various criteria, reinforcement learning could be
classified into different categories, such as model-based/model-
free, policy-based/value-based, and averaged/discounted return
function algorithms. The subsequent sections will introduce the
first two kinds of categories in detail.

4.2.1 Model-Based Vs. Model-Free Reinforcement
Learning
Upon the employment of explicit transition functions,
reinforcement learning could be classified into two categories:
model-based and model-free algorithms. In robotic applications,
model-based methods mostly concentrate on forward
kinematics/dynamics models which require prior knowledge
on robots or environments (Moerland et al., 2020). Unlike the
joint-linked robots soft robot modeling relies on data-driven
methods or geometric assumptions to establish the forward
model. Subsequently, the forward kinematics/dynamics model
could generate robot trajectory data for policy optimization.

Model-free reinforcement learning would exploit the virtual
training data for policy learning. That is, the data are obtained via
robot simulations. It is worth noting that the modeling of the

robot and the environment in the simulation is based on
simplified assumptions such as PCC (Webster and Jones,
2010; Lee et al., 2017a) and Cosserat rod theory (Antman,
2005) rather than the real interaction data, and such modeling
would not be counted as a model-based approach. In the
following sections, for the sake of clear expression, methods
with kinematics/dynamics model denote model-based
reinforcement learning; while those without such model
represent model-free approaches.

4.2.1.1 Reinforcement Learning With Kinematics/Dynamics
Model
The policy trained on kinematics/dynamics model-based
methods can perform stably, while in model-free methods, the
derivation may be large when the algorithm is implemented from
the simulation into the real robot. This is reasonable as the data
from physical interaction are more realistic and persuasive than
the one from simulation, where the virtual model is established
usingmany simplifications and assumptions. Moreover, when the
robot interacts with the environment in a circumstance that never
appeared before, the policy might be invalid.

Thuruthel et al. (2018) leveraged the model-based policy learning
algorithm on a simulated tendon-driven soft manipulator capable of
touching dynamic targets. A nonlinear autoregressive network with
exogenous inputs (NARX) was employed to establish the forward
dynamic models using the observed data. Policy iteration from the
sampled trajectories was used to give the optimal action directly.Wu
et al. (2020) accomplished the position control of a cable-driven soft
arm employing Deep Q-learning. Similar to the procedure in the
study by Thuruthel et al. (2018), experiment data was collected to
model the manipulator in simulation.

However, the shortcoming of kinematics/dynamics model-based
reinforcement learning is that the physical interactions would be time-
consuming and the data may be noisy; they might even bring more
mechanical wear on the robot prototype, particularly the vulnerable

FIGURE 3 | Schematics of reinforcement learning in soft robot manipulation, with (A) the policy training stage and (B) the application stage separately shown.
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soft robot (Polydoros andNalpantidis, 2017). As a result, the approach
not requiring physical data has drawn lots of attention from soft robot
researchers.

4.2.1.2 Reinforcement Learning Without Kinematics/
Dynamics Model
In recent years, kinematics/dynamics model-free reinforcement
learning implemented on the physical robot has attracted interest
in the soft robot community, since it could circumvent the
accuracy requirement of analytical modeling, which is
hampered by the intrinsic nonlinearity and uncertain external
disturbances. In general, the trajectory data are generated in the
simulation environment for model-free reinforcement learning,
and subsequently, the trained model would be transferred to the
physical robot.

You et al. (2017) investigated a model-free reinforcement
learning control strategy for a multi-segment soft manipulator,
called honeycomb pneumatic networks (HPNs), capable of
physically reaching the target in 2D space. The control policy
was learned using Q-learning with the simulation data,
demonstrating its effectiveness and robustness in simulation
and practice. Jiang et al. (2021) adopted the same soft arm
and developed a hierarchical control algorithm for complex
tasks such as opening a drawer and rotating a handwheel. The
control architecture was inspired by human decision-making
process. The system consisted of three levels, sequentially low-
level motion controller, high-level behavior controller and
behavior planner. Q-learning was implemented in the low-
level motion controller. The research demonstrated the
feasibility of a relatively simple control algorithm on
interaction tasks in unstructured environments. Considering
that simple Q-learning cannot handle the high-dimension
workspace and action of soft robots, Deep Q-learning which
leverages the advantage of deep learning to learn policy is
prevailing in continuous control. Satheeshbabu et al. (2019)
proposed an open-loop position control strategy for a spatial
soft arm named BR2 based on Deep-Q Network (DQN). Cosserat
rod formulation–based simulation is used for training data
generation. The positioning accuracy (>94%) in simulation
and the real environment, even with the external load,
indicated that the control approach was effective and robust.
You et al. (2019) introduced a control strategy enabling the soft
catheter to move in a heart model using Dueling DQN (DDQN).
This algorithm defines the Q-value as the summation of the state
value and the advantage function. Isolating the value enables
more precise state approximation and higher learning efficiency
(Wang et al., 2016).

Ansari et al. (2017b) exploited model-free multi-agent
reinforcement learning (MARL) on a soft arm to complete an
assistive bathing task, where each actuator of the manipulator is
regarded as an agent, sharing the common environment. The
actor-critic algorithm consists of two parts. The actor performs as
policy π, accepting the current state, thus generating the next
action. The critic assesses the state-action tuple through the state-
value function. In the study by Ansari et al. (2017b), the state-
action-reward-state-action (SARSA) algorithm was adopted as
the critic to evaluate the policy. In contrast to Q-learning, SARSA

employs the same policy to sample and optimize, which is an on-
policy learning algorithm. In the study by Satheeshbabu et al.
(2020), the BR2 soft continuum arm was improved with vision
feedback and deep deterministic policy gradient (DDPG), which
is a family of actor–critic algorithms. Compared to the previous
open-loop control scheme, the closed-loop control method could
not only decrease the error obviously but also enable the soft
manipulator to track the relatively complex curve path. This
research indicates that state feedback and closed-loop control
could offset the real-world derivation in model-free
reinforcement learning. Liu et al. (2020) presented a control
strategy incorporating proximal policy optimization (PPO)
and a central pattern generator (CPG) for soft robot snakes,
which could track the planar changing goals. Comparison of
training steps/time among these different tasks can be found in
Table 2.

4.2.2 Policy-Based Vs. Value-Based Reinforcement
Learning
In addition to the perspective of modeling, reinforcement
learning algorithms could also be categorized in terms of the
solution of optimal policy: the policy search, value-based, and
actor–critic methods (Polydoros and Nalpantidis, 2017; Najar
and Chetouani, 2020). Policy search methods could generate
optimal policy πp(a|s) parameterized with θ directly using
various methods: the gradient-based, sampling-based, and
informatic theory methods (Polydoros and Nalpantidis, 2017).
In the gradient-based approach, the policy function is maximized
with gradient-descent iteratively (Thuruthel et al., 2018; Liu et al.,
2020). In contrast to policy search reinforcement learning, value-
based methods generate the optimal control policy by optimizing
the value function, including SARSA (Ansari et al., 2017b),
Q-learning (You et al., 2017; Jiang et al., 2021), DQN
(Satheeshbabu et al., 2019; Wu et al., 2020) and its various
extensions (e.g., DDQN (You et al., 2019) and Double DQN).
The actor–critic approach is a combination of policy-based and
value-based reinforcement learning, where the actor executes
referring to the policy; thereby the critic calculates the value
function to evaluate the actor (Satheeshbabu et al., 2020). Some
algorithms (Satheeshbabu et al., 2019; Satheeshbabu et al., 2020;
Wu et al., 2020) can be regarded as deep reinforcement learning,
which means complex deep neural networks were applied in the
control policy, rather than a simple state-action-reward table.
This is common in the control for flexible manipulators with
high-dimensional action and state variables. Deep reinforcement
learning is capable of processing more complicated input formats
including images (You et al., 2019) while storing more states
and actions, which is particularly significant for continuous
control.

5 DISCUSSION AND CONCLUSION

In this article, we surveyed the state-of-the-art machine
learning–based control strategies of continuum robots.
Compared with conventional modeling, learning-based
mappings provide effective substitutes for analytical models in
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the feed-forward control loop, without the need of manual model
construction and calibration (note: a brief summary of their
comparisons can be found in Table 3). The correction load
utilizing the feedback loop is therefore reduced. The format of
learning objects also varies a lot; in addition to the direct forward/
inverse kinematics/statics relationships, learning-based
components also contribute to the optimization or
compensation units in several works. For example, in the
metaheuristics-assisted approach presented in the study by
Amouri et al. (2017), particle swarm optimization (PSO) and

the genetic algorithm (GA) were used to solve the optimization of
PCC-deduced endpoint coordinates, and the constraints involved
obstacle avoidance and tracking trajectories. Some learning-based
models focus more on intermediate shape modeling rather than
the final goal of end-effector control (Holsten et al., 2019).

All the methods mentioned in Sections 3 and 4 facilitate the
release of sensor variety demand. However, for those approaches
that solely rely on sensory data, a drawback will be the high
requirement on the quality of feedback information (i.e., task
space sensing). No matter for iterative- or regression-based

TABLE 2 | Sampling of reinforcement learning control for continuum robots, including the algorithm, task, and training duration. Intended to be exemplary, not
comprehensive.

Literature Reinforcement
learning
algorithm

Task Training steps/time Distance error/
success rate

Thuruthel et al. (2018) Policy search 3D position reaching 8,000 s Without load:
0.009∼0.017 m

With load: 0.022 m

Wu et al. (2020) Q-learning 2D position reaching 1,000 iterations Without load: <0.5 cm
With load: <1 cm

You et al. (2017) Q-learning 2D position reaching 1,000 iterations <10 mm

Jiang et al. (2021) Q-learning Interaction tasks including drawer
opening and handwheel rotating

120 iterations (about 60 s) and 20,000 iterations (about
11 h) with/without the method of virtual goals

Task success rate
98.86%

Satheeshbabu et al.
(2019)

DQN 3D position reaching 5,000 episodesa 3.05 cm

You et al. (2019) DDQN 3D position reaching 100 episodes 6.58 ± 5.6 mm

Ansari et al. (2017b) Actor–critic 3D position control 300 episodes —

Satheeshbabu et al.
(2020)

DDPG 3D path tracking 10,000 episodes ≤3 cm

Liu et al. (2020) PPO 2D tracking with changing goals 6,400 episodes —

aOne episode in reinforcement learningmeans a sequence of states, actions, and rewards, which endswith the terminal state. The time length of one episode depends on the specific task.

TABLE 3 | A conclusive comparison of analytical-modeling-based and machine-learning-based control.

Aspects Analytical modeling Supervised learning* Reinforcement learning

Human Intervention (Single robot)

Model derivation ✓ 7 7

Parameter tuning ✓ 7 7

Data collection 7 ✓ (offline) ✓ (online)

Training 7 ✓ ✓

Generalization (Same prototype)

Model derivation 7 7 7

Parameter tuning ✓ 7 7

Data collection 7 ✓ (offline) ✓ (online)

Training 7 ✓ ✓

Dependence on data Low high high

Online refinement 7 ✓ ✓

Adaptability to un-modeled disturbances 7 ✓ ✓

*Cells marked with gray shading indicate advantages.
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machine learning techniques, the distribution and accuracy of
sensory data would play an important role, which has been
discussed in Section 3.3. To adapt to the unstructured
external conditions (e.g., contact forces), online updates should
be an emphasis in future applications. This is also one major
advantage of learning-based control, while relevant attempts have
been made in recent works (Lee et al., 2017a; Ho et al., 2018; Fang
et al., 2019). However, for such schemes like the ones in the
studies by Yip and Camarillo (2014), Lee et al. (2017a), the
question of how to characterize and resolve the outliers with
low confidence of the ground truth needs to be carefully
considered. Although excessive addition of sensors is not
recommended, several self-contained measurement devices
such as fiber Bragg gratings (FBGs) which can appropriately
accommodate the flexible continuum body have the potential for
sensor fusion with positional sensors (Lun et al., 2019; Wang
et al., 2020; Wang et al., 2021). Meanwhile, the combination of
analytical and data-driven models will be another trend for
continuum robot control. Although the analytical approaches
encounter challenges in parameter characterization andmodeling
uncertainties, the convergence of their solutions can usually be
guaranteed. Its combination with online learning could leverage
both of their respective advantages, which are convergent
performance, no prior data exploration, and online control
error compensation.

Section 5 concludes the various deployments of reinforcement
learning in soft continuum robots and reveals its prospect in
dealing with complex learning tasks automatically. Nevertheless,
it is observed that most previous works concentrated on simplified
tasks such as trajectory tracking and goal reaching, which only take
little advantage of the powerful learning tool. Developing the

learning ability in sophisticated applications is the main
challenge of reinforcement learning in soft robots, even the
whole robotics field. Additionally, the effectiveness of
interaction data collection also hinders further development.
Provided with kinematics/dynamics models, enhancing the
validity and efficacy of data collection during environmental
interactions will be a significant contribution to reinforcement
learning. Without such models, the deviation between simulated
and actual manipulators would be a big obstacle for reinforcement
learning’s application. To handle these cases, Sim-to-Real transfer
approaches (Zhao et al., 2020) such as domain randomization and
domain adaptation may drive a new research focus in the recent
future.
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