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Reinforcement learning has been established over the past decade as an effective tool to
find optimal control policies for dynamical systems, with recent focus on approaches that
guarantee safety during the learning and/or execution phases. In general, safety
guarantees are critical in reinforcement learning when the system is safety-critical and/
or task restarts are not practically feasible. In optimal control theory, safety requirements
are often expressed in terms of state and/or control constraints. In recent years,
reinforcement learning approaches that rely on persistent excitation have been
combined with a barrier transformation to learn the optimal control policies under state
constraints. To soften the excitation requirements, model-based reinforcement learning
methods that rely on exact model knowledge have also been integrated with the barrier
transformation framework. The objective of this paper is to develop safe reinforcement
learning method for deterministic nonlinear systems, with parametric uncertainties in the
model, to learn approximate constrained optimal policies without relying on stringent
excitation conditions. To that end, a model-based reinforcement learning technique that
utilizes a novel filtered concurrent learning method, along with a barrier transformation, is
developed in this paper to realize simultaneous learning of unknown model parameters
and approximate optimal state-constrained control policies for safety-critical systems.

Keywords: safe learning, barrier transformation, model-based reinforcement learning, control theory, parameter
estimation, nonlinear systems

1 INTRODUCTION

Due to advantages such as repeatability, accuracy, and lack of physical fatigue, autonomous systems
have been increasingly utilized to perform tasks that are dull, dirty, or dangerous. Autonomy in
safety-critical applications such as autonomous driving and unmanned flight relies on the ability to
synthesize safe controllers. To improve robustness to parametric uncertainties and changing
objectives and models, autonomous systems also need the ability to simultaneously synthesize
and execute control policies online and in real time. This paper concerns reinforcement learning
(RL), which has been established as an effective tool for safe policy synthesis for both known and
uncertain dynamical systems with finite state and action spaces [see, e.g., Sutton and Barto (1998);
Doya (2000)].

RL typically requires a large number of iterations due to sample inefficiency [see, e.g., Sutton and
Barto (1998)]. Sample efficiency in RL can be improved via model-based reinforcement learning
(MBRL); however, MBRL methods are prone to failure due to inaccurate models [see, e.g.,
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Kamalapurkar et al. (2016a,b, 2018)]. Online MBRLmethods that
handle modeling uncertainties are motivated by complex tasks
that require systems to operate in dynamic environments with
changing objectives and system models. Accurate models of the
system and the environment are generally not available due to
sparsity of data. In the past, MBRL techniques under the umbrella
of approximate dynamic programming (ADP) have been
successfully utilized to solve reinforcement learning problems
online with model uncertainty [see, e.g., Modares et al. (2013);
Kiumarsi et al. (2014); Qin et al. (2014)]. ADP utilizes parametric
methods such as neural networks (NNs) to approximate the value
function and the system model online. By obtaining an
approximation of both the value function and the system
model, a stable closed-loop adaptive control policy can be
developed [see, e.g., Vamvoudakis et al. (2009); Lewis and
Vrabie (2009); Bertsekas (2011); Bhasin et al. (2012); Liu and
Wei (2014)].

Real-world optimal control applications typically include
constraints on states and/or inputs that are critical for safety
[see, e.g., He et al. (2017)]. ADP was successfully extended to
address input constrained control problems in Modares et al.
(2013) and Vamvoudakis et al. (2016). The state-constrained
ADP problem was studied in the context of obstacle avoidance
in Walters et al. (2015) and Deptula et al. (2020), where an
additional term that penalizes proximity to obstacles was
added to the cost function. Since the added proximity
penalty in Walters et al. (2015) was finite, the ADP
feedback could not guarantee obstacle avoidance, and an
auxiliary controller was needed. In Deptula et al. (2020), a
barrier-like function was used to ensure unbounded growth of
the proximity penalty near the obstacle boundary. While this
approach results in avoidance guarantees, it relies on the
relatively strong assumption that the value function is
continuously differentiable over a compact set that contains
the obstacles in spite of penalty-induced discontinuities in the
cost function.

Control Barrier Function (CBF) is another approach to
guarantee safety in safety-critical systems [see e.g., Ames et al.
(2017)], with recent applications to the safe reinforcement
learning problems [see e.g., Choi et al. (2020); Cohen and
Belta (2020); Marvi and Kiumarsi (2021)]. Choi et al. (2020)
have addressed the issue of model uncertainty in safety-critical
control with an RL-based data-driven approach. A drawback of
this approach is that it requires a nominal controller that keeps
the system stable during the learning phase, which may not be
always possible to design. In Marvi and Kiumarsi (2021), the
authors develop a safe off-policy RL scheme which trades-off
between safety and performance. In Cohen and Belta (2020), the
authors develop a safe RL scheme in which the proximity penalty
approach from Deptula et al. (2020) is cast into the framework of
CBFs. While the control barrier function results in safety
guarantees, the existence of a smooth value function, in spite
of a nonsmooth cost function, needs to be assumed. Furthermore,
to facilitate parametric approximation of the value function, the
existence of a forward invariant compact set in the interior of the
safe set needs to be established. Since the invariant set needs to be
in the interior of the safe set, the penalty becomes superfluous,

and safety can be achieved through conventional Lyapunov
methods.

This paper is inspired by a safe reinforcement learning
technique, recently developed in Yang et al. (2019), based on
the idea of transforming a state and input constrained
nonlinear optimal control problem into an unconstrained
one with a type of saturation function, introduced in
Graichen and Petit (2009), and Bechlioulis and Rovithakis
(2009). In Yang et al. (2019), the state constrained optimal
control problem is transformed using a barrier transformation
(BT), into an equivalent, unconstrained optimal control
problem. A learning technique is then used to synthesize
the feedback control policy for the unconstrained optimal
control problem. The controller for the original system is
then derived from the unconstrained approximate optimal
policy by inverting the barrier transformation. In Greene
et al. (2020), the restrictive persistence of excitation
requirement in Yang et al. (2019) is softened using model-
based reinforcement learning (MBRL), where exact knowledge
of the system dynamics is utilized in the barrier
transformation.

One of the primary contributions of this paper is a detailed
analysis of the connection between the transformed dynamics
and the original dynamics, which is missing from results such
as Yang et al. (2019), Greene et al. (2020), and Yang et al.
(2020). While the stability of the transformed dynamics under
the designed controllers is established in results such as Yang
et al. (2019), Greene et al. (2020), and Yang et al. (2020), the
implications of the behavior of the transformed system on the
original system are not examined. In this paper, it is shown that
the trajectories of the original system are related to the
trajectories of the transformed system via the barrier
transformation as long as the trajectories of the transformed
system are complete.

While the transformation in Yang et al. (2019) and Greene
et al. (2020) results in verifiable safe controllers, it requires exact
knowledge of the system model, which is often difficult to obtain.
Another primary contribution of this paper is the development of
a novel filtered concurrent learning technique for online model
learning, and its integration with the barrier transformation
method, to yield a novel MBRL solution to the online state-
constrained optimal control problem under parametric
uncertainty. The developed MBRL method learns an
approximate optimal control policy in the presence of
parametric uncertainties for safety critical systems while
maintaining stability and safety during the learning phase. The
inclusion of filtered concurrent learning makes the controller
robust to modeling errors and guarantees local stability under a
finite (as opposed to persistent) excitation condition.

In the following, the problem is formulated in Section 2
and the BT is described and analyzed in Section 3. A novel
parameter estimation technique is detailed in Section 4 and a
model-based reinforcement learning technique for
synthesizing feedback control policy in the transformed
coordinates is developed in Section 5. In Section 6, a
Lypaunov-based analysis is utilized to establish practical
stability of the closed-loop system resulting from the
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developed MBRL technique in the transformed coordinates,
which guarantees that the safety requirements are satisfied in
the original coordinates. Simulation results in Section 7
demonstrate the performance of the developed method and
analyze its sensitivity to various design parameters, followed
by a comparison of the performance of the developed MBRL
approach to an offline pseudospectral optimal control
method. Strengths and limitations of the developed method
are discussed in Section 8, along with possible extensions.

2 PROBLEM FORMULATION

2.1 Control Objective
Consider a continuous-time affine nonlinear dynamical system

_x � f(x)θ + g(x)u, (1)

where x � [x1; . . . ;xn] ∈ Rn is the system state, θ ∈ Rp are the
unknown parameters, u ∈ Rq is the control input, and the
functions f: Rn →Rn×p and g: Rn →Rn×q are known, locally
Lipschitz functions. In the following, [a; b] denotes the vector
[a b]T and (v)i denotes the ith component of the vector v.

The objective is to design a controller u for the system in
(1) such that starting from a given feasible initial condition x0,
the trajectories x(·) decay to the origin and satisfy xi(t) ∈ (ai,
Ai), ∀t ≥ 0, where i � 1, 2, . . . , n and ai < 0 < Ai. While MBRL
methods such as those detailed in Kamalapurkar et al. (2018)
guarantee stability of the closed loop, state constraints are
typically difficult to establish without extensive trial and error.
To achieve the stated objective, an MBRL framework (see
Figure 1) is developed in this paper, where a BT is used to
guarantee satisfaction of state constraints.

3 BARRIER TRANSFORMATION

3.1 Design
Let the function b : R→R, referred to as the barrier function
(BF), be defined as

b(ai,Ai)(y) :� log
Ai(ai − y)
ai(Ai − y), ∀i � 1, 2, . . . , n. (2)

Define b(a,A): Rn →Rn as b(a,A)(x) :� [b(a1 ,A1)((x)1); . . . ;
b(an,An)((x)n)] with a � [a1; . . .; an] and A � [A1; . . .; An].
The inverse of (2) on the interval (ai, Ai), is given by

b−1(ai,Ai)(y) � aiAi
ey − 1

aiey − Ai
. (3)

Define b−1(a,A) : R
n →Rn as b−1(a,A)(s) :� [b−1(a1 ,A1)((s)1); . . . ;

b−1(an,An)((s)n)]. Taking the derivative of (3) with respect to y yields
db−1(ai,Ai)(y)

dy
� 1
Bi(y), where Bi(y) :� a2i e

y − 2aiAi + A2
i e

−y

Aia2i − aiA
2
i

.

(4)

Consider the BF based state transformation

si :� b(ai,Ai)(xi), xi � b−1(ai,Ai)(si), (5)

where s :� [s1; . . . ; sn] denotes the transformed state. In the
following derivation, whenever clear from the context, the
subscripts ai and Ai of the BF and its inverse are suppressed
for brevity. The time derivative of the transformed state can be
computed using the chain rule as _si � Bi(si) _xi which yields the
transformed dynamics

_si � Bi(si)(f(x)θ + g(x)u)i. (6)

FIGURE 1 | The developed BT MBRL framework. The control system consists of a model-based barrier-actor-critic-estimator architecture. In addition to the
transformed state-actionmeasurements, the critic also utilizes states, actions, and the corresponding state derivatives, evaluated at arbitrarily selected points in the state
space, to learn the value function. In the figure, BT: Barrier Transformation; TS: Transformed State; BE: Bellman Error.
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The dynamics of the transformed state can then be
expressed as

_s � F(s) + G(s)u, (7)

where F (s) :� y(s)θ, (y(s))idBi(si)(f(b−1(s)))i ∈ R1×p, and
(G(s))i :� Bi(si)(g(b−1(s)))i ∈ R1×q.

Continuous differentiability of b−1 implies that F and G
are locally Lipschitz continuous. Furthermore, f (0) � 0 along
with the fact that b−1 (0) � 0 implies that F (0) � 0. As a result,
for all compact sets Ω ⊂ Rn containing the origin, G is
bounded on Ω and there exists a positive constant Ly such
that ∀s ∈ Ω, ‖y(s)‖ ≤ Ly‖s‖. The following section relates the
solutions of the original system to the solutions of the
transformed system.

3.2 Analysis
In the following lemma, the trajectories of the original system and
the transformed system are shown to be related by the barrier
transformation provided the trajectories of the transformed
system are complete [see, e.g., Page 33 of Sanfelice (2021)].
The completeness condition is not vacuous, it is not difficult
to construct a system where the transformed trajectories escape to
infinity in finite time, while the original trajectories are complete.
For example, consider the system _x � x + x2u with x ∈ R and
u ∈ R. All nonzero solutions of the corresponding transformed
system _s � B1(s)b−1(−0.5,0.5)(s) + B1(s)(b−1(−0.5,0.5)(s))2u under the

feedback ζ(s, t) � −b−1(−0.5,0.5)(s) escape in finite time. However,
all nonzero solutions of the original system under the feedback
ξ(x, t) � ζ(b(−0.5,0.5) (x), t) � − x converge to either −1 or 1.

Lemma 1. If t1Φ(t, b(x0), ξ) is a complete Carathéodory
solution to (7), starting from the initial condition b(x0), under the
feedback policy (s, t)1ζ(s, t) and t1Λ(t, x0, ξ) is a Carathéodory
solution to (1), starting from the initial condition x0, under the
feedback policy (x, t)1ξ(x, t), defined as ξ(x, t) � ζ(b(x), t), then
Λ(·, x0, ξ) is complete and Λ(t, x0, ξ) � b−1(Φ(t, b(x0), ζ)) for
all t ∈ R≥0.

Proof. See Lemma 1 in the Supplementary Material.

Note that the feedback ξ is well-defined at x only if b(x) is well-
defined, which is the case whenever x is inside the barrier. As such,
the main conclusion of Lemma 1 also implies that Λ(·, x0, ξ)
remains inside the barrier. It is thus inferred from Lemma 1 that if
the trajectories of (7) are bounded and decay to a neighborhood of
the origin under a feedback policy (s, t)1ζ(s, t), then the feedback
policy (x, t)1ζ(b(x), t), when applied to the original system in
(1), achieves the control objective stated in Section 2.1.

To achieve BT MBRL in the presense of parametric
uncertainties, the following section develops a novel parameter
estimator.

4 PARAMETER ESTIMATION

The following parameter estimator design is motivated by the
subsequent Lyapunov analysis, and is inspired by the finite-
time estimator in Adetola and Guay (2008) and the filtered

concurrent learning (FCL) method in Roy et al. (2016).
Estimates of the unknown parameters, θ̂ ∈ Rp, are generated
using the filter

_Y � y(s), Yf

���� ����≤Yf,
0, otherwise,

{ Y(0) � 0, (8)

_Yf � YTY, Yf

���� ����≤Yf,
0, otherwise,

{ Yf(0) � 0, (9)

_Gf � G(s)u, Yf

���� ����≤Yf,
0, otherwise,

{ , Gf(0) � 0, (10)

_Xf � YT(s − s0 − Gf), Yf

���� ����≤Yf,
0, otherwise,

{ Xf(0) � 0, (11)

where s0 � [b(x0
1); . . . ; b(x0

n)], and the update law

_̂
θ � β1Y

T
f(Xf − Yfθ̂), θ̂(0) � θ0, (12)

where β1 is a symmetric positive definite gain matrix and Yf is a
tunable upper bound on the filtered regressor Yf.

Equations 7–12 constitute a nonsmooth system of differential
equations

_z � h(z, u) � h1(z, u), Yf

���� ����≤Yf,
h2(z, u), otherwise,

{ (13)

where z � [s; vec(Y); vec(Yf); Gf; Xf; θ̂], h1(z, u) �
[F(s) + G(s)u; vec(y(s)); vec(YTY); G(s)u; YT(s − so − Gf);
β1Y

T
f(Xf − Yfθ̂)], and h2(z, u) � [F(s) + G(s)u; 0; 0; 0;

0; β1Y
T
f(Xf − Yfθ̂)]. Since ‖Yf‖ is non-decreasing in time, it

can be shown that (13) admits Carathéodory solutions.
Lemma 2. If ‖Yf‖ is non-decreasing in time then (13) admits

Carathéodory solutions.
Proof. see Lemma 2 in Supplementary Material.
Note that (9), expressed in the integral form

Yf(t) � ∫t3

0
YT(τ)Y(τ)dτ, (14)

where t3 : � inf
t
{t≥ 0 | ‖Yf(t)‖≤Yf}, along with (11),

expressed in the integral form

Xf(t) � ∫t3

0
YT(τ) s(τ) − s0 − Gf(τ)( )dτ, (15)

and the fact that s(τ) − s0 − Gf (τ) � Y(τ)θ, can be used to
conclude that Xf (t) � Yf (t)θ, for all t ≥ 0. As a result, a measure
for the parameter estimation error can be obtained using
known quantities as Yf

~θ � Xf − Yfθ̂, where ~θdθ − θ̂. The
dynamics of the parameter estimation error can then be
expressed as

_~θ � −β1YT
fYf

~θ. (16)

The filter design is thus motivated by the fact that if the
matrix YT

fYf is positive definite, uniformly in t, then the
Lyapunov function V1(~θ) � 1

2
~θ
T
β−11 ~θ can be used to establish

convergence of the parameter estimation error to the origin.
Initially, YT

fYf is a matrix of zeros. To ensure that there exists
some finite time T such that YT

f(t)Yf(t) is positive definite,
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uniformly in t for all t ≥ T, the following finite excitation
condition is imposed.

Assumption 3. There exists a time instance T > 0 such that
Yf(T) is full rank.

Note that the minimum eigenvalue of Yf is trivially non-
decreasing for t ≥ t3 since Yf (t) is constant ∀t ≥ t3. Indeed, for
t4 ≤ t5 ≤ t3, Yf(t5) � Yf(t4) + ∫t5

t4
YT(τ)Y(τ)dτ. Since Yf (t4) is

positive semidefinite, and so is the integral ∫t5

t4
YT(τ)Y(τ)dτ, we

conclude that λmin (Yf (t5)) ≥ λmin (Yf (t4)), As a result, t1λmin

(Yf (t)) is non-decreasing. Therefore, if Assumption 3 is satisfied
at t � T, then Yf(t) is also full rank for all t ≥ T. Similar to other
MBRL methods that rely on system identification [see e.g.,
Chapter 4 of Kamalapurkar et al. (2018)], the following
assumption is needed to ensure boundedness of the state
trajectories over the interval [0, T].

Assumption 4. A fallback controller ψ: Rn × R≥0 →Rq that
keeps the trajectories of (7) inside a known bounded set over
the interval [0, T),without requiring the knowledge of θ, is available.

If a fallback controller that satisfies Assumption 4 is not
available, then, under the additional assumption that the
trajectories of (7) are exciting over the interval [0, T), such a
controller can be learned online, whilemaintaining system stability,
usingmodel-free reinforcement learning techniques such as Bhasin
et al. (2013); Vrabie and Lewis (2010), and Modares et al. (2014).
Remark 5. While the analysis of the developed technique dictates
that a different stabilizing controller should be used over the time
interval [0, T), typically, similar to the examples in Sections 7.1
and 7.2, the transient response of the developed controller
provides sufficient excitation so that T is small (in the
examples provided in Sections 7.1 and 7.2, T is the order of
10–5 and 10–6, respectively), and a different stabilizing controller
is not needed in practice.

5 MODEL-BASED REINFORCEMENT
LEARNING

Lemma 1 implies that if a feedback controller that practically
stabilizes the transformed system in (7) is designed, then the same
feedback controller, applied to the original system by inverting
the BT, also achieves the control objective stated in Section 2.1. In
the following, a controller that practically stabilizes (7) is designed
as an estimate of the controller that minimizes the infinite
horizon cost.

J(u(·)) :� ∫∞

0
r(ϕ(τ, s0, u(·)), u(τ))dτ, (17)

over the set U of piecewise continuous functions t1u(t), subject
to (7), where ϕ(τ, s0, u (·)) denotes the trajectory of (7), evaluated
at time τ, starting from the state s0 and under the controller u (·),
r (s, u) :� sTQs + uTRu, andQ ∈ Rn×n and R ∈ Rq×q are symmetric
positive definite (PD) matrices1.

Assuming that an optimal controller exists, let the
optimal value function, denoted by Vp: Rn × Rq →R, be
defined as

Vp(s)d min
u(·)∈U[t,∞)

∫∞

t
r(ϕ(τ, s, u[t,τ)(·)), u(·))dτ, (18)

where uI and UI are obtained by restricting the domains of u and
functions in UI to the interval I4R, respectively. Assuming that
the optimal value function is continuously differentiable, it
can be shown to be the unique positive definite solution of
the Hamilton-Jacobi-Bellman (HJB) equation [see, e.g.,
Theorem 1.5 of Kamalapurkar et al. (2018)].

min
u∈Rq

∇sV(s)(F(s) + G(s)u) + sTQs + uTRu( ) � 0, (19)

where ∇(·) :� z
z(·). Furthermore, the optimal controller is given by the

feedback policy u(t) � up(ϕ(t, s, u[0,t))) where up: R
n →Rq defined as

up(s)d − 1
2
R−1G(s)T(∇sV

p(s))T. (20)

Remark 6. In the developed method, the cost function is selected
to be quadratic in the transformed coordinates. However, a
physically meaningful cost function is more likely to be
available in the original coordinates. If such a cost function is
available, it can be transformed from the original coordinates to
the barrier coordinates using the inverse barrier function, to yield
a cost function that is not quadratic in the state. While the
analysis in this paper addresses the quadratic case, it can be
extended to address the non-quadratic case with minimal
modifications as long as s1r(s, u) is positive definite for
all u ∈ Rq.

5.1 Value Function Approximation
Since computation of analytical solutions of the HJB
equation is generally infeasible, especially for systems with
uncertainty, parametric approximation methods are used
to approximate the value function Vp and the optimal
policy up. The optimal value function is expressed as

Vp(s) � WTσ(s) + ϵ(s), (21)

where W ∈ RL is an unknown vector of bounded weights,
σ: Rn →RL is a vector of continuously differentiable nonlinear
activation functions such that σ(0) � 0 and ∇sσ(0) � 0, L ∈ N is
the number of basis functions, and ϵ: Rn →R is the
reconstruction error.

The basis functions are selected such that the approximation
of the functions and their derivatives is uniform over
the compact set χ ⊂ Rn so that given a positive constant
�ϵ ∈ R, there exists L ∈ N and known positive constants �W
and �σ such that ‖W‖≤ �W, sups∈χ‖ϵ(s)‖≤ �ϵ, sups∈χ‖∇sϵ(s)‖≤ �ϵ,
sups∈χ‖σ(s)‖≤ �σ, and sups∈χ‖∇sσ(s)‖≤ �σ [see, e.g., Sauvigny
(2012)]. Using (19), a representation of the optimal
controller, that uses the same basis as the optimal value
function, is derived as

up(s) � −1
2
R−1GT(s) ∇sσ

T(s)W + ∇sϵT(s)( ). (22)
1For applications with bounded control inputs, a non-quadratic penalty function
similar to Eq. 17 of Yang et al. (2020) can be incorporated in (17).
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Since the ideal weights, W, are unknown, an actor-critic
approach is used in the following to estimate W. To that end,
let the NN estimates V̂: Rn × RL →R and û: Rn × RL →Rq be
defined as

V̂ s, Ŵc( ) :� Ŵ
T

c σ(s), (23)

û s, Ŵa( ) :� −1
2
R−1GT(s)∇sσ

T(s)Ŵa, (24)

where the critic weights, Ŵc ∈ RL and actor weights, Ŵa ∈ RL are
estimates of the ideal weights, W.

5.2 Bellman Error
Substituting (23) and (24) into (19) results in a residual term,
δ̂: Rn × RL × RL × Rp →R, referred to as Bellman Error (BE),
defined as

δ̂(s, Ŵc, Ŵa, θ̂) :� ∇sV̂(s, Ŵc) y(s)θ̂ + G(s)û(s, Ŵa)( )
+ û(s, Ŵa)TRû(s, Ŵa) + sTQs. (25)

Traditionally, online RL methods require a persistence of
excitation (PE) condition to be able learn the approximate
control policy [see, e.g., Modares et al. (2013); Kamalapurkar
et al. (2016a); Kiumarsi et al. (2014)]. Guaranteeing PE a priori
and verifying PE online are both typically impossible. However,
using virtual excitation facilitated bymodel-based BE extrapolation,
stability and convergence of online RL can be established under a
PE-like condition that, while impossible to guarantee a priori, can
be verified online by monitoring the minimum eigenvalue of a
matrix in the subsequent Assumption 7 [see, e.g., Kamalapurkar
et al. (2016b)]. Using the system model, the BE can be evaluated at
any arbitrary point in the state space. Virtual excitation can then be
implemented by selecting a set of states sk | k � 1, . . . ,N{ } and
evaluating the BE at this set of states to yield

δ̂k(sk, Ŵc, Ŵa, θ̂) :� ∇skV̂(sk, Ŵc) ykθ̂ + Gkû(sk, Ŵa)( )
+ û(sk, Ŵa)TRû(sk, Ŵa) + sTkQsk, (26)

where, ∇sk :� z
zsk
, yk :� y (sk) and Gk :� G(sk). Defining the actor

and critic weight estimation errors as ~Wc: � W − Ŵc and
~Wa :� W − Ŵa and substituting the estimates (21) and (22)
into (19), and subtracting from (25) yields the analytical BE
that can be expressed in terms of the weight estimation
errors as

δ̂ � −ωT ~Wc + 1
4
~W

T

aGσ
~Wa −WT∇sσy~θ + Δ, (27)

whereΔ :� 1
2W

T∇sσGR∇sϵT + 1
4Gϵ − ∇sϵF,GR :� GR−1GT ∈ Rn×n,

Gϵ :� ∇sϵGR∇sϵT ∈ R, Gσ :� ∇sσGR−1GT∇sσT ∈ RL×L, and
ω :� ∇sσ(yθ̂ + Gû(s, Ŵa)) ∈ RL. In (27) and the rest of the
manuscript, the dependence of various functions on the state,
s, is omitted for brevity whenever it is clear from the context.
Similarly, (26) implies that

δ̂k � −ωT
k
~Wc + 1

4
~W

T

aGσk
~Wa −WT∇skσkyk

~θ + Δk, (28)

where, Fk :� F(sk), ϵk :� ϵ(sk), σk :� σ(sk), Δk :� 1
2W

T∇skσkGRk∇skϵTk+
1
4Gϵk − ∇skϵkFk,Gϵk :� ∇skϵkGRk∇skϵTk , ωk :� ∇skσk(ykθ̂+
Gkû(sk, Ŵa)) ∈ RL, GRk :� GkR−1GT

k ∈ Rn×n and
Gσk :� ∇skσkGkR−1GT

k∇skσ
T
k ∈ RL×L. Note that sups∈χ‖Δ‖≤ d�ϵ

and if sk ∈ χ then ‖Δk‖≤ d�ϵk, for some constant d > 0. While
the extrapolation states sk are assumed to be constant in this
analysis for ease of exposition, the analysis extends in a
straightforward manner to time-varying extrapolation states that
are confined to a compact neighborhood of the origin.

5.3 Update Laws for Actor and Critic
Weights
The actor and the critic weights are held at their initial values over
the interval [0, T) and starting at t � T, using the instantaneous BE
δ̂ from (25) and extrapolated BEs δ̂k from (26), the weights are
updated according to.

_̂Wc � −kc1Γ
ω

ρ
δ̂ − kc2

N
Γ∑N

k�1

ωk

ρk
δ̂k, (29)

_Γ � βΓ − kc1Γ
ωωT

ρ2
Γ − kc2

N
Γ∑N

k�1

ωkω
T
k

ρ2k
Γ, (30)

_̂Wa � −ka1 Ŵa − Ŵc( ) − ka2Ŵa + kc1G
T
σ Ŵaω

T

4ρ
Ŵc +∑N

k�1

kc2G
T
σk
Ŵaω

T
k

4Nρk
Ŵc,

(31)

with Γ(t0) � Γ0, where Γ: R≥t0 →RL×L is a time-varying least-
squares gain matrix, ρ(t) :� 1 + c1ω

T(t)ω(t),
ρk(t) :� 1 + c1ω

T
k(t)ωk(t), β> 0 ∈ R is a constant forgetting

factor, and kc1, kc2, ka1, ka2 > 0 ∈ R are constant adaptation
gains. The control commands sent to the system are then
computed using the actor weights as

u(t) � ψ(s(t), t), 0< t<T,
û s(t), Ŵa(t)( ), t≥T,{ (32)

where the controller ψ was introduced in Assumption 4. The
following verifiable PE-like rank condition is then utilized in the
stability analysis.

Assumption 7. There exists a constant c 3 > 0 such that the set
of points sk ∈ Rn | k � 1, . . . , N{ } satisfies

c 3IL ≤ inf
t∈R≥T

1
N

∑N
k�1

ωk(t)ωT
k(t)

ρ2k(t)
⎛⎝ ⎞⎠. (33)

Since ωk is a function of the weight estimates θ̂ and Ŵa,
Assumption 7 cannot be guaranteed a priori. However, unlike
the PE condition, Assumption 7 does not impose excitation
requirements on the system trajectory, the excitation
requirements are imposed on a user-selected set of points in
the state space. Furthermore, Assumption 7 can be verified

online. Since λmin(∑N
k�1

ωk(t)ωT
k (t)

ρ2
k
(t) ) is non-decreasing in the

number of samples, N, Assumption 7 can be met,

heuristically, by increasing the number of samples.
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6 STABILITY ANALYSIS

In the following theorem, the stability of the trajectories of the
transformed system, and the estimation errors ~Wc, ~Wa, and ~θ
are shown.

Theorem 8. Provided Assumptions 3, 4, and 7 hold, the gains
are selected large enough based on (46) - (49) in Supplementary
Material, and the weights θ̂, Ŵc, Γ, and Ŵa are updated according
to (12), (29), (30), and (31), respectively, then the estimation
errors ~Wc, ~Wa, and ~θ and the trajectories of the transformed
system in (7) under the controller in (32) are locally uniformly
ultimately bounded.

Proof. See Theorem 8 in Supplementary Material.
Using Lemma 1, it can then be concluded that the feedback

control law

u(t) � ψ b(a,A)(x(t)), t( ), 0< t<T,
û b(a,A)(x(t)), Ŵa(t)( ), t≥T,{ (34)

applied to the original system in (1), achieves the control objective
stated in Section 2.1.

7 SIMULATION

To demonstrate the performance of the developed method, two
simulation results, one for a two-state dynamical system, and one
for a four-state dynamical system corresponding to a two-link
planar robot manipulator, are provided.2

7.1 Two State Dynamical System
The dynamical system is given by

_x � f(x)θ + g(x)u (35)

where

f(x) � x2 0 0 0
0 x1 x2 x2(cos(2x1) + 2)2[ ], (36)

θ � [θ1; θ2; θ3; θ4], and g(x) � [0; cos(2x1) + 2]. The BT version
of the system can be expressed in the form (7) with G(s) �
[0;G21] and y(s) � F11 0 0 0

0 F22 F23 F24
[ ], where

F11 � B1(s1)x2, F22 � B2(s2)x1, F23 � B2(s2)x2,
F24 � B2(s2)x2(cos(2x1) + 2)2, andG21 � B2(s2) cos(2x1) + 2.

The state x � [x1 x2]T needs to satisfy the constraints x1 ∈
(−7, 5) and x2 ∈ (−5, 7). The objective for the controller is to
minimize the infinite horizon cost function in (17), with Q �
diag(10, 10) and R � 0.1. The basis functions for value function
approximation are selected as σ(s) � [s21; s1s2; s22]. The initial
conditions for the system and the initial guesses for the weights
and parameters are selected as x (0) � [ − 6.5; 6.5], θ̂(0) � [0; 0; 0; 0],

Γ(0)� diag (1, 1, 1), and Ŵa(0) � Ŵc(0) � [1/2;1/2;1/2]. The
ideal values of the unknown parameters in the system model are
θ1 � 1, θ2 � − 1, θ3 � − 0.5, θ4 � 0.5, and the ideal values of the actor
and the critic weights are unknown. The simulation uses 100 fixed
Bellman error extrapolation points in a 4 × 4 square around the origin
of the s − coordinate system.

7.1.1 Results for the Two State System
As seen from Figure 2, the system state stays within the user-
specified safe set while converging to the origin. The results in
Figure 3 indicate that the unknown weights for both the actor
and critic NNs converge to similar values. As demonstrated in
Figure 4 the parameter estimation errors also converge to a small
neighborhood of the origin.

Since the ideal actor and critic weights are unknown, the
estimates cannot be directly compared against the ideal weights.
To gauge the quality of the estimates, the trajectory generated by

the controller u(t) � û(s(t), Ŵ*
c), where Ŵ*

c is the final value of
the critic weights obtained in Figure 3, starting from a specific
initial condition, is compared against the trajectory obtained
using an offline numerical solution computed using the
GPOPS II optimization software [see, e.g., Patterson and Rao
(2014)]. The total cost, generated by numerically integrating (17),
is used as the metric for comparison. The costs are computed over
a finite horizon, selected to be roughly 5 times the time constant
of the optimal trajectories. The results in Table 1 indicate that
while the two solution techniques generate slightly different
trajectories in the phase space (see Figure 5) the total cost of
the trajectories is similar.

7.1.2 Sensitivity Analysis for the Two State System
To study the sensitivity of the developed technique to
changes in various tuning parameters, a one-at-a-time
sensitivity analysis is performed. The parameters kc1, kc2,
ka1, ka2, β, and v are selected for the sensitivity analysis. The
costs of the trajectories, under the optimal feedback
controller obtained using the developed method, are
presented in Table 2 for five different values of each
parameter. The parameters are varied in a neighborhood
of the nominal values (selected through trial and error) kc1 � 0.3, kc2

FIGURE 2 | Phase portrait for the two-state dynamical system using
MBRL with FCL in the original coordinates. The boxed area represents the
user-selected safe set.

2The source code for these simulations is available at https://github.com/scc-lab/
publications-code/tree/master/2021-Frontiers-BT-MBRL.
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� 5, ka1 � 180, ka2 � 0.0001, β � 0.03, and v � 0.5. The value of β1 is
set to be diag(50, 50, 50, 50). The results in Table 2 indicate that the
developed method is robust to small changes in the learning gains.

7.2 Four State Dynamical System
The four-state dynamical system corresponding to a two-link
planar robot manipulator is given by

FIGURE 3 | Estimates of the actor and the critic weights under nominal
gains for the two-state dynamical system.

FIGURE 4 | Estimates of the unknown parameters in the system under
the nominal gains for the two-state dynamical system. The dash lines in the
figure indicates the ideal values of the parameters.

FIGURE 5 | Comparison of the optimal trajectories obtained using
GPOPS II and using BTMBRL with FCL and fixed optimal weights for the two-
state dynamical system.

FIGURE 6 | State trajectories for the four-state dynamical system using
MBRL with FCL in the original coordinates. The dash lines represent the user-
selected safe set.

FIGURE 7 | Estimates of the critic weights under nominal gains for the
four-state dynamical system.

FIGURE 8 | Estimates of the unknown parameters in the system under
the nominal gains for the four-state dynamical system. The dash lines in the
figure indicates the ideal values of the parameters.
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_x � f1(x) + f2(x)θ + g(x)u (37)

where

f1(x) �
x3

x4

−M−1Vm
x3

x4
[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,f2(x) �

0, 0, 0, 0
0, 0, 0, 0

−[M−1,M−1]D
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (38)

g(x) �
0, 0
0, 0

(M−1)T
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, D :� diag x3, x4, tanh(x3), tanh(x4)[ ],

(39)

M :� p1 + 2p3c2 p2 + p3c2
p2 + p3c2 p2

[ ] ∈ R2×2, and

VM :� −p3s2x4 −p3s2(x3 + x4)
p3s2x3 0

[ ] ∈ R2×2,
(40)

with s2 � sin(x2), c2 � cos(x2), p1 � 3.473, p2 � 0.196, and p3 � 0.242.
The state x � [x1 x2 x3 x4]T, that corresponds to angular
positions and the angular velocities of the two links, needs to
satisfy the constraints x1 ∈ (−7, 5), x2 ∈ (−7, 5), x3 ∈ (−5, 7), and
x4 ∈ (−5, 7). The objective for the controller is to minimize the
infinite horizon cost function in (17), with Q � diag(1, 1, 1, 1) and
R � diag(1, 1) while identifying the unknown parameters θ ∈ R4

that correspond to static and dynamic friction coefficients in
the two links. The ideal values of the unknown parameters
are θ1 � 5.3, θ2 � 1.1, θ3 � 8.45, and θ4 � 2.35. The basis
functions for value function approximation are selected as
σ(s) � [s1s3; s2s4; s3s2; s4s1; s1s2; s4s3; s21; s22; s23; s24]. The initial
conditions for the system and the initial guesses for the weights
and parameters are selected as x (0) � [−5; −5; 5; 5],
θ̂(0) � [5; 5; 5; 5], Γ(0) � diag(10, 10, 10, 10, 10, 10, 10, 10, 10,
10), and Ŵa(0) � Ŵc(0) � [60; 2; 2; 2; 2; 2; 40; 2; 2; 2]. The
ideal values of the actor and the critic weights are unknown. The
simulation uses 100 fixed Bellman error extrapolation points in a 4 ×
4 square around the origin of the s − coordinate system.

7.2.1 Results for the Four State System
As seen from Figure 6, the system state stays within the user
specified safe set while converging to the origin. As demonstrated
in Figures 7 and 8, the actor and the critic weights converge, and
estimates of the unknown parameters in the system model converge
to their true values. Since the true actor and critic weights are
unknown, the learned optimal controller is compared with an offline
numerical optimal controller. The results of the comparison (see

TABLE 2 | Sensitivity Analysis for the two state system.

kc1 � 0.01 0.05 0.1 0.2 0.3
Cost 72.7174 72.6919 72.5378 72.3019 72.1559
kc2 � 2 3 5 10 15
Cost 71.7476 72.3198 72.1559 71.8344 71.7293
ka1 � 175 180 250 500 1,000
Cost 72.1568 72.1559 72.1384 72.1085 72.0901
ka2 � 0.0001 0.0009 0.001 0.005 0.01
Cost 72.1559 72.1559 72.1559 72.1559 72.1559
β � 0.001 0.005 0.01 0.03 0.04
Cost 72.2141 72.1559 72.1958 72.1559 72.1352
v � 0.5 1 10 50 100
Cost 72.1559 72.4054 72.6582 79.1540 81.32

TABLE 3 | Costs for a single barrier transformed trajectory of (37), obtained using
the developed method, and using pseudospectral numerical optimal control
software.

Method Cost

BT MBRL with FCL 95.1490
GPOPS II 57.8740

TABLE 4 | Sensitivity Analysis for the four state system.

kc1 � 0.01 0.05 0.1 0.5 1
Cost 95.91 95.4185 95.1490 94.1607 93.5487
kc2 � 1 5 10 20 30
Cost 304.4 101.0786 95.1490 92.7148 93.729
ka1 � 5 10 20 30 50
Cost 94.9464 95.1224 95.1490 95.1736 95.1974
ka2 � 0.05 0.1 0.2 0.5 1
Cost 95.2750 95.2480 95.1490 94.9580 94.6756
β � 0.1 0.5 0.8 0.9 0.95
Cost 125.33 109.7721 95.1490 92.91 93.7231
v � 50 70 100 125 150
Cost 92.2836 93.34 95.1490 96.1926 97.9870

TABLE 1 | Comparison of costs for a single barrier transformed trajectory of (35),
obtained using the optimal feedback controller generated via the developed
method, and obtained using pseudospectral numerical optimal control software.

Method Cost

BT MBRL with FCL 71.8422
GPOPS II (Patterson and Rao (2014)) 72.9005

FIGURE 9 | Comparison of the optimal angular position (top) and
angular velocity (bottom) trajectories obtained using GPOPS II and BT MBRL
with fixed optimal weights for the four-state dynamical system.
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Table 3) indicate that the two solution techniques generate slightly
different trajectories in the state space (see Figure 9) and that the
total cost resulting from the learned controller is higher. We
hypothesize that the difference in costs can be attributed to the
exact basis for value function approximation being unknown.

In summary, the newly developed method can achieve online
optimal control thorough a BT MBRL approach while estimating
the value of the unknown parameters in the system dynamics and
ensuring safety guarantees in the original coordinates during the
learning phase.

The following section details a one-at-a-time sensitivity
analysis and study the sensitivity of the developed technique
to changes in various tuning parameters.

7.2.2 Sensitivity Analysis for the Four State System
The parameters kc1, kc2, ka1, ka2, β, and v are selected for the
sensitivity analysis. The costs of the trajectories under the optimal
feedback controller, obtained using the developed method, are
presented in Table 4 for five different values of each parameter.

The parameters are varied in a neighborhood of the nominal
values (selected through trial and error) kc1 � 0.1, kc2 � 10, ka1 �
20, ka2 � 0.2, β � 0.8, and v � 100. The value of β1 is set to be
diag(100, 100, 100, 100).

The results in Tables 2 and 4, indicate that the developed
method is not sensitive to small changes in the learning gains.
While reduced sensitivity to gains simplifies gain selection, as
indicated by the local stability result, the developed method is
sensitive to selection of basis functions and initial guesses of the
unknown weights. Due to high dimensionality of the vector of
unknown weights, a complete characterization of the region of
attraction is computationally difficult. As such, the basis
functions and the initial guess were selected via trial and error.

8 CONCLUSION

This paper develops a novel online safe control synthesis
technique which relies on a nonlinear coordinate
transformation that transforms a constrained optimal control
problem into an unconstrained optimal control problem. Amodel of
the system in the transformed coordinates is simultaneously learned
and utilized to simulate experience. Simulated experience is used to
realize convergent RL under relaxed excitation requirements. Safety
of the closed-loop system, expressed in terms of box constraint,
regulation of the system states to a neighborhood of the origin, and
convergence of the estimated policy to a neighborhood of the optimal
policy in transformed coordinates is established using a Lyapunov-
based stability analysis.

While the main result of the paper states that the state is
uniformly ultimately bounded, the simulation results hint
towards asymptotic convergence of the part of the state that
corresponds to the system trajectories, x (·). Proving such a result
is a part of future research.

Limitations and possible extensions of the ideas presented in
this paper revolve around two key issues: (a) safety, and (b) online
learning and optimization. The barrier function used in the BT to

address safety can only ensure a fixed box constraint. A more
generic and adaptive barrier function, constructed, perhaps, using
sensor data is a subject for future research.

For optimal learning, parametric approximation techniques
are used to approximate the value functions in this paper.
Parametric approximation of the value function requires
selection of appropriate basis functions which may be hard
to find for the barrier-transformed dynamics. Developing
techniques to systematically determine a set of basis
functions for real-world systems is a subject for future
research.

The barrier transformation method to ensure safety relies
on knowledge of the dynamics of the system. While this paper
addresses parametric uncertainties, the BE method could
potentially result in a safety violation due to unmodeled
dynamics. In particular, the safety guarantees developed in
this paper rely on the relationship (Lemma 1) between
trajectories of the original dynamics and the transformed
system, which holds in the presence of parametric
uncertainty, but fails if a part of the dynamics is not
included in the original model. Further research is needed
to establish safety guarantees that are robust to unmodeled
dynamics (for a differential games approach to robust safety,
see Yang et al. (2020)).
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NOMENCLATURE

RL Reinforcement Learning

MBRL Model-based Reinforcement Learning

ADP Approximate Dynamic Programming

NN Neural Network

BF Barrier Function

BT Barrier Transformation

CL Concurrent Learning

FCL Filtered Concurrent Learning

PE Persistence of Excitation

FE Finite Excitation

TS Transformed State

BE Bellman Error

HJB Hamilton-Jacobi-Bellman

VI Value Iteration

PI Policy Iteration.
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