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Shape-sensing in real-time is a key requirement for the development of advanced
algorithms for concentric tube continuum robots when safe interaction with the
environment is important e.g., for path planning, advanced control, and human-
machine interaction. We propose a real-time shape-estimation algorithm for concentric
tube continuum robots based on the force-torque information measured at the tubes’
basis. It extends a shape estimation algorithm for elastic rods based on discrete
Kirchhoff rod theory. For simplicity and efficiency of calculation, we combine it with a
model under piece-wise constant curvature assumption, in which we model a
concentric tube continuum robot as a combination of segments of planar constant
curvatures lying on different equilibrium planes. We evaluate our approach for a single
and two combined additively manufactured tubes and achieve an estimation frequency
of 333 Hz for two combined tubes with a mean deviation along the backbone of the
tubes of 1.91–5.22 mm.
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1 INTRODUCTION AND RELATED WORK

Concentric Tube Continuum Robots (CTRs) are among the smallest and most flexible continuum
robots, whose development is interesting for medical applications specifically for surgery. They
comprise several super-elastic, pre-curved tubes, which are fit into each other and can be moved by
an external actuator system (cf. Figure 1). The tubes are made from shape memory material e.g.,
Nitinol (NiTi) alloy or other elastic materials such as nylon (Amanov et al., 2015; Morimoto and
Okamura, 2016). Considering their dexterity, tracking of the robot’s shape, so-called shape sensing, is
important when the robot navigates through critical parts of the human anatomy, e.g., in
neurosurgery where damaging surrounding tissue can be dangerous or life-threatening.

The development of dedicated sensors for real-time shape-sensing has been the focus of research
in recent years. A promising method for shape-sensing for CTRs is the application of Fiber Bragg
gratings (FBG)–based optical sensors. These are specialized optical sensors that are written onto a
short segment of an optical fiber, which reflects only a narrow range of wavelengths and transmits all
other ranges (Shi et al., 2017). Form shifts create changes in the light wavelengths, the strain on the
sensor can be measured, and the associated curvature calculated from which the shape can be
modeled.

Due to the small dimensions of FBG-sensors, they can be attached to the CTRs for the purpose of
shape sensing. Park et al. (2010) introduced the first FBG-sensor for MRI-compatible biopsy needles
embedding three optical fibers with two FBG sensor array nodes, where a mean tip deflection error of
0.38 mm was achieved. Since then research focused on reducing the measuring error by increasing

Edited by:
Long Wang,

Stevens Institute of Technology,
United States

Reviewed by:
Hunter Gilbert,

Louisiana State University,
United States

Kristin M. De Payrebrune,
University of Kaiserslautern, Germany

*Correspondence:
Heiko Donat

h.donat@tu-braunschweig.de

Specialty section:
This article was submitted to

Soft Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 30 June 2021
Accepted: 27 August 2021

Published: 04 October 2021

Citation:
Donat H, Gu J and Steil JJ (2021) Real-
Time Shape Estimation for Concentric
Tube Continuum Robots with a Single

Force/Torque Sensor.
Front. Robot. AI 8:734033.

doi: 10.3389/frobt.2021.734033

Frontiers in Robotics and AI | www.frontiersin.org October 2021 | Volume 8 | Article 7340331

ORIGINAL RESEARCH
published: 04 October 2021

doi: 10.3389/frobt.2021.734033

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.734033&domain=pdf&date_stamp=2021-10-04
https://www.frontiersin.org/articles/10.3389/frobt.2021.734033/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.734033/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.734033/full
http://creativecommons.org/licenses/by/4.0/
mailto:h.donat@tu-braunschweig.de
https://doi.org/10.3389/frobt.2021.734033
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.734033


the number of embedded fibers (Shi et al., 2017). Most
approaches using FBG-sensors are focusing on the
measurement of curvature and bending forces. Recently, (Xu
et al., 2016), arranged the optical fibers in a helical shape,
supporting the measurements of curvature, torsion, and force,
simultaneously. They achieved a root mean squared error of
2–4% for curvature and torsion measurements.

While the working channel remains free for the surgical
instruments, the embedding of FBG sensors is challenging and
manufacturing difficult (Shi et al., 2017). Furthermore, FBGs
currently are still costly (da Veiga et al., 2020).

A different option for shape sensing is to use
electromagnetic tracking systems (EM) (Franz et al., 2014).
EM-tracking systems either provide small sensors to be put
into a traceable object or track smaller magnets on the object
with an external sensor. With EM-tracking, it is possible to
identify single points along the backbone of a tube in real-time
(Xu et al., 2013). The real-time capability of EM-tracking
enables robot control e.g., stiffness control (Mahvash and
Dupont, 2011). However, external magnetic field distortions
can compromise EM-tracking leading to larger positioning
errors and they have a limited workspace (Shi et al., 2017). In
the case of a single sensor and multiple transmitters, tracking
has been combined with other model-based methods to reduce
the number of traceable points (Wang et al., 2017). A further
disadvantage is that the scarce space of the narrow working
channel of the CTR is occupied.

An alternative to these approaches is vision-based methods for
shape estimation that use image processing. These can be
employed without kinematic modeling and hardware

modifications for the reconstruction of the shape (Shi et al.,
2017). For instance, fluoroscopy was used by Burgner et al. (2011)
to reconstruct the shape of CTRs. Using an algorithm for
automatic shape segmentation, the centerline of the robot was
extracted from two orthogonal views. The shape was then
estimated by correspondence analysis. While this method
works well and gives a mean error of 0.473 ± 0.353 mm, it
requires biplane fluoroscopy systems, which are expensive and
require a high radiation dose. In (Lobaton et al., 2013), a new
shape reconstructionmethod was developed based onmonoplane
fluoroscopy systems by combining information from the
kinematic modeling with 2D features. The method achieved a
less accurate reconstruction with amean error of about 0.8 mm. A
significant disadvantage of all X-ray procedures is that the
patients are exposed to ionizing radiation, potentially leading
to cancer or other health problems (Miller, 2009). To avoid such
effects, alternative medical imaging techniques for shape
recognition have been investigated that involve little or no
exposure to radiation, such as ultrasound or magnetic
resonance imaging (Ren and Dupont, 2012). Further, common
monocular cameras such as endoscopes or microscopes have
been investigated as imaging techniques, which have been used to
estimate pose information for e.g. micro-stent delivery (Wei and
Simaan, 2012).

Besides the advanced technologies discussed above, methods
for the application of classical sensors such as Force/Torque-
sensor (F/T-sensors) have been developed for the shape
estimation of CTRs. In (Xu and Patel, 2012), 2 F/T-sensors
were integrated into an actuation unit of a two tube CTR for
estimating the tip position. The F/T-sensors were attached to

FIGURE 1 | CTRs are especially interesting for medical applications. A major challenge in this area is shape and force estimation. The figure shows a typical
actuation unit with tubes without external forces (faded tubes) and in a contact situation. Calculating the change in the tubes’ shape due to those contacts either by direct
measuring or estimation is the main task of shape sensing and shape estimation, respectively.
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the proximal end of the tubes to measure forces and moments
during operation. The sensory information was used to speed
up the solution for an initial value problem of a mechanics-
based model using Cosserat rod theory. They achieved a
position error of less than 3% w.r.t. the tube’s length. Xu
et al. (2013) further showed an application in real-time control
for a CTR under load.

Furthermore, F/T-sensors have been used in several studies to
estimate the whole shape of a single elastic rod. Atsushi Yamada
et al. (2007) proposed a simple but physically meaningful
algorithm for calculating the three-dimensional shape of an
elastic rod. The algorithm was further developed, validated,
improved, and optimized (Mochiyama, 2016; Takano et al.,
2017). Later, Takano and Nakagawa (Nakagawa and
Mochiyama, 2018) extended the algorithm to consider the
gravitational effects on a rod.

In this work, we extend the analytical model of Nakagawa and
Mochiyama (2018) to enable the shape estimation for multiple
pre-curved tubes. We consider in addition to the forces and
torques at the tubes’ basis their configuration and the effect of
superposed pre-curvatures. Our contribution in this work is
threefold:

• We show how to include the pre-curvature of the tubes into
calculation, without the need to solve a system of ordinary
differential equations (ODEs) (Section 2.1)

• Our approach extends the algorithm of Nakagawa to CTRs
enabling occlusion-free and real-time shape estimation
(Section 2.2).

• We evaluate our approach in two real scenarios for a single
tube (Section 3.2) and multiple tubes (Section 3.3) and
additionally show the real-time capabilities of our
algorithm (Section 3.4).

For this work, we make three modeling assumptions:

• We assume that tubes do not twist relative to one another
independent of their configuration.

• The stiffness of the collection of tubes is independent to the
configuration.

• Only a single external force is applied to the tubes.

2 PROPOSED METHOD

A common approach for modeling is to consider the tubes of a
CTR as elastic rods, whose static and dynamic behavior can be
described by Cosserat rod theory, more precisely Kirchoff rod
theory for non-extensible rods. For a rod with one end fixed
and the other end free, the shape can be described by four
ordinary differential equations (ODEs), which can be solved
using a measured wrench at the fixed end of the rod as the
initial value. This inital value problem can be solved if only
internal forces and moments are given. Applying external
forces and moments can be modeled by creating a boundary
value problem (Rucker et al., 2010). Both IVP as well as BVP
requires numerical integration, which can be applied in real-

time, but varies in precision depending on the applied
algorithm and the available calculation time. Further, the
solution requires a couple of steps, which can end in an
error as the solver could not find a solution for the results.
This poses a problem for use in hard real-time applications.

The solution’s complexity can be reduced for a single
straight tube, where a result can always be given after a
fixed time span, by modeling the kinematics analytically,
applying discrete Kirchoff rod theory and introducing
compliant joints to the resulting chain of rigid links as
shown by Takano et al. (2017) and Nakagawa and
Mochiyama (2018). The estimation of the tube’s shape
becomes a recursive computation along the chain consisting
of n links, which results in an algorithm with a time complexity
of O(n). In the following section, we show how this idea can be
extended towards tubes with pre-curvature and to multiple
concentric tubes. Note that we focus on the application
towards concentric tubes and restrict the force impact on
the tubes to a single location. This limits the applicability
towards medical applications where only a single force at e.g.
the tip can be considered (Wei and Simaan, 2012) or due to the
operational procedure free space is given (Autorino et al.,
2013; da Veiga et al., 2020).

2.1 Shape Sensing for Concentric Tube
Continuum Robots With Precurved Tubes
Nakagawa and Mochiyama’s shape estimation algorithm can
theoretically be used for CTRs, since the elastic tubes are also
modeled as Kirchhoff rods in kinematic modeling. However,
pre-curvature is present even without applied forces and
torques. We first show how the pre-curvature of tubes can
be considered.

In order to reconstruct the shape of the CTR from measured
wrenches at the base with Nakagawa and Mochiyama’s algorithm,
we consider the undeformed robot’s backbone as a single discrete
kinematic chain, which comprises a series of links and joints. Starting
from the base that is fixed to a F/T-sensor, Mochiyama et al. number
the joints from 0 to n − 1. In contrast to that, we assume the tube
consists ofm segments, such that we number the joints for segment j
from 0 to nj − 1. On each joint, i.e. on joint k, a local coordinate
systemRk ∈ SO(3) is attached to joint kwith its z-axis coincidingwith
the central axis of the previous link. An exception is the base joint,
whose coordinate system is the same as the origin. Virtual torsion
springs are assigned to each axis of the joint coordinate system. If
external loads are present, the torques provided by those virtual
torsion springs can be seen as a discrete frame-invariant
representation of the internal moments along the rod and can be
calculated with the discrete Euler-equation (Yamada et al., 2007;
Takano et al., 2017) to further determine the rotational movement of
each joint parametrised by Tait-Bryan angles:

θk � θk,z θk,y θk,x( )T ∈ R3. (1)

We represent the tubes in our shape estimation algorithm as a
combination of segments with constant curvature, where each
segment j lies on a different equilibrium plane. This is a common
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approach for modeling the CTR’s kinematics (Robert J. Webster
and Jones, 2010). Note that straight segments of the tubes are
described by a curvature of 0 mm−1.

We aim to find the initial configuration of the kinematic
chain, described by joint angles θ*k and local rotation axes a*k at
each joint, by approximating the constant curvatures of each
segment j of a tube i as the angular rate of change of the local
Frenet frame (Robert J. Webster and Jones (2010)) with
respect to the arc-length s. Throughout this work we
consider, without loss of generality, that pre-curvature is
applied locally around the y-axis of a segment:

u*(s) � (RT(s) _R(s))⊕ � 0 κy 0( )T, (2)

where ⊕ is the conversion operator for an element of so (3) to
its corresponding element in R3. Instead of discretizing the
curvature using osculating circles for each segment
(Bobenko et al., 2008), we discretize the tubes into a link
chain with an equal link length of l. In our approach, we
represent pre-curvature as virtual external loads which
deform an originally straight elastic rod to its pre-curved
state (cf. Figure 2). We approximate the deformed shape,
using an initially straight discrete serial chain, by assuming
the energy stored in the virtual torsion springs along the
y-axis of the kth local joint coordinate system (Mochiyama,
2016) is equal to the energy stored in a deformed segment
section between kl and (k + 1)l. Since we assume a planar
pre-curvature, the local curvature indicates that each

segment of the robot only bends about the local y-axis,
such that the joint angles and rotation axes can be
obtained by solving the following equation:

1
2
∫(k+1)l

kl
u*(s)TKu*(s) ds � 1

2
ξj,yθ

*2
k , (3)

where K � diag EiIi EiIi GiJi( ) is the stiffness matrix
constituted of stiffness of the j-th segment, describe the
initial joint angles of the kinematic chain and ξj,y is the
spring constant for each segment section. Note, in the case
of constant pre-curvature, the calculation of the forming
energy simplifies to: E � 1

2 lu
*T
j Ku*j. By assuming ξj,y � EiIi,

which is for all joints in the same segment equal based on the
constant curvature assumption, and that the curvature is a
rotation around the local y-axis ey about ξjl, we can solve
towards θ*k by canceling EiIi on both sides and yield:

θ*k � lu*
j. (4)

2.2 Shape Estimation for Multiple Tubes
We now consider the application with multiple tubes. Thus
the configuration of the tubes relative to each other must be
considered. Note that we make the assumption that the tubes
cannot be twisted relative to another. Further, we assume that
the stiffness is independent of the configuration. Given the
constant curvature assumption, we can apply the CTR-specific
arc parameter mapping stated by Robert Webster and Jones

FIGURE 2 | Initially, all tubes (also nested) are considered as straight and the pre-curvature is accounted as virtual loads. Each tube is divided into a straight and a
curved segments. The m segments are discretized into n sections of length l.
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(2010). Note, we assume that the local z-axis of each frame
along the tube coincides with the backbone of the robot. Each
tube i can be rotated around the z-axis of the base by an angle
αi. Furthermore, each tube can be extended and retracted,
which is described by the parameter βi ∈ [−L, 0], where βi � 0
describes a fully extended tube. From the manufacturing of the
tubes, it is known where each tube’s straight and curved part
starts and ends, which can be described as a sub-interval of arc
length s ∈ [0, 1] parameterizing the tubes’ backbone.
Parameterized by s each end of a straight or curved part
marks the end of a distinct constant curvature segment on
the CTR’s backbone.

For each segment j, we can determine the pre-curvature κj
considering that moments will be constant along the segment.
Given the κ*i which is the pre-curvature of the tube i, we can
determine the curvature components:

κx,j �
∑

i
EiIiκ

*
i cos αi∑

i
EiIi

κy,j �
∑

i
EiIiκ

*
i sin αi∑

i
EiIi

,

(5)

where Ei is the Young’s modulus, Ii the second moments of
area about the local x- and y-axis, which we assume to be equal,
and αi the rotation around the z-axis of the tube i. Because all
tubes share the same neutral axis and we assume that the
material is isotropic, we can sum up their individual stiffness
values. Given the projections of the curvatures onto the new
plane intersecting the combined tubes, we can calculate the
combined curvature:

κj �
��������
κ2x,j + κ2y,j

√
. (6)

The deformed shape of the robot, as well as the position and
orientation of the robot tip, can be then calculated with the given
base position p0 and orientation R0 recursively:

Rk+1 � RkRot(ey, κjl)Rot(θk),
pk+1 � pk + lRk+1ez.

(7)

We follow the work of Nakagawa andMochiyama (2018) and
also consider the influence of the gravitational forces on the
tubes. Therefore, for each segment section of length lj we
calculate the mass Mj with respect to the set of tubes I
acting in this section:

Mj � lj
L
∑I
i

Mi, (8)

where we assume that the weight is uniformly distributed over
a tube and L is the length of the whole backbone. The
calculation for segments is described in pseudo-code in Alg.
1, where c � pk+pk−1

2 for the compensation of gravitational forces
(Nakagawa and Mochiyama, 2018). All input and output
model parameters are listed in Alg. 1, too. Note that the
code in Alg. 1 is executed for each segment j of the
backbone of a CTR. Given m segments and n sections the

overall computational complexity increases to O(m · n) where
for good accuracy m ≪ n.

Algorithm 1: Shape estimation algorithm for each segement of
a CTR with precurved tubes

3 EVALUATION

To validate our proposed algorithm, we investigated two scenarios:
(I) an additively manufactured tube directly connected to the flange
of a F/T-sensor, and (II) nested tubes with different pre-curvature
actuated by a custom-made actuation device.

3.1 System and Experiment Setup
We used a Kuka LBR iiwa 7 R800 robot (Kuka AG, Germany) for
moving the tube with a JR3 F/T-sensor 50M31 A-I25 (JR3, Inc.,
United States) attached at the flange. Two custom-made 3D-
printed clamps fixed the tube to the F/T-sensor and a table
(Figure 3A) shows the general setup of the clamps). We
printed three 150 mm tubes with a constant curvature of 1/
95 mm−1, 1/140 mm−1 and 1/260 mm−1, resembling a bending
angles of 90°, 60°, and 30°. Additionally, we printed small belt line
hooks at the ends of the tubes to keep them fixed. For the two-
tube experiment, we printed one inner tube with a length of
150 mm, and three different outer tubes of length 50 mm, 75 mm,
and 100 mm. All tubes have been made of taulman3D 618 Nylon
(taulman3D, United States). Although, nylon has a higher degree
of plastic deformation it has been shown that CTR made of nylon
achieve similar accuracies as robots made of NiTi (Amanov et al.,
2015; Morimoto and Okamura, 2016). We chose the inner and
outer diameters for the applied tubes such that the plastic
deformability is low and the tubes are printable with an
Ultimaker3 (Ultimaker, United States). Due to fabrication
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limitations, it was only possible to produce a rod with a diameter
of 2.8 mm. A thin rod was preferred over a thicker one for more
elasticity. Further parameters are listed inTable 1, where Ls describes
the length of the straight part of the tube and Lc its pre-curved part,
respectively. The algorithm was implemented in Python3.8 and run
on an Intel Core i7-7,700@4.5 GHz PC. Communication with Kuka
Sunrise.Os and the F/T-sensor was handled with Robotics Service
Bus (RSB) (Wienke and Wrede, 2011) and ROS Melodic Morenia
(Quigley et al., 2009).

3.2 Evaluation for OneConcentric TubeWith
Pre-curvature
For the evaluation of our proposed algorithm on a single pre-
curved tube, we followed an experiment protocol similar to
Nakagawa and Mochiyama (2018) and applied planar
deformation and torsional deformation separately, and in
combination on the tube. Figure 3A) shows an undeformed
tube, where the world coordinate system is fixed in the clamp
at the end of the tube and the tube’s base is mounted in the clamp at
the F/T-sensor which is mounted at the robot flange. The z-axis of
the world coordinate system is tangent to the tube centerline and the

negative x-axis is directed to the center of the osculating circle
with radius of r � 1

κ. The position and orientation of the base of
the tube with respect to the world coordinate system is defined as
follows:

p0 � −1 − cos κL
κ

0
1 − sin κL

κ
( )

R0 �
−cos κL 0 sin κL

0 1 0

−sin κL 0 −cos κL

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(9)

This information is used to transform the calculated shape
from the sensor coordinate system to the world coordinate
system. The pose of the end of all tubes is set as follows and
is compared with the calculated pose:

pn � 0 0 0( )
Rn �

−1 0 0
0 1 0
0 0 −1

⎛⎜⎝ ⎞⎟⎠ (10)

Like in the evaluation of the algorithm of Nakagawa the tubes
are deformed by bending and torsion. In the following, the
different test poses, based on the position and orientation of
the base of the tube after deformation p0 and R0 are presented.

3.2.1 Planar Deformation
Figure 3B), the three pre-curved tubes are deformed by pure
bending to a larger and smaller curvature. The pose of the base of
the tube after deformation p0 and R0 is defined by the following
equations:

FIGURE 3 | Overview of the bending and torsion test for three single pre-curved tube: (A) general setup, (B) positional changes for bending, and (C) positional
changes for torsion.

TABLE 1 | Parameters of the CTR used in this work.

i Ls Lc κ dout din

1 178.80 150 10.47 2.8 0.0
2 109.3 100 6.98 5.1 3.4
2 84.3 75 6.98 5.1 3.4
2 59.3 50 6.98 5.1 3.4

All values in mm, except κ in mm−1. Tube i�2 is listed with three different lengths.
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p0 � −1 − cos κbL
κb

0
1 − sin κbL

κb
( )

R0 �
−cos κbL 0 sin κbL

0 1 0

−sin κbL 0 −cos κbL

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

The curvatures κb, which can be seen inFigure 3B, is set such that
the angle of curvature of the tube to be deformed α � L/r is changed
by approximately ±30° to avoid plastic deformation (Amanov et al.,
2015; Morimoto and Okamura, 2016). In addition, large changes in
curvature are uncommon during the operation of the CTRs, and due
to the resulting plastic deformations that result, they are also not
desirable (Greiner-Petter, 2019).

The tube with a pre-curvature of 1/260mm−1 is made into a
quasi-straight shape. The position of the tube base is not calculated
with the formula described above, but defined as p0 � 0 0 L( )T.
3.2.2 Torsion
As shown in Figure 3C), the tubes are twisted by rotating the
coordinate system by β � 30°. The pose after the rotation is given by:

p0 � −(1 − cos κL) cos β
κ

−(1 − cos κL) sin β
κ

r sin κL( )
R0 � Rot(e3, β)

−cos κL 0 sin κL

0 1 0

−sin κL 0 −cos κL

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(12)

FIGURE 4 | Comparison discretization steps and position deviation for the three different evaluation scenarios for the tube with a pre-curvature of 1/140 mm−1.
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3.2.3 Combined Deformation
Starting from the poses for planar deformations, rotations around
the z- and x-axis of the coordinate system are additionally
performed at the tube base with an angle of c � 30° each in
succession. Thus, an originally planar tube is deformed into a
spatial curved tube. The pose after deformation can be given as
follows:

p0 � −1 − cos κL
κ

0
1 − sin κL

κ
( )

R0 �
−cos κL 0 sin κL

0 1 0

−sin κL 0 −cos κL

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠Rot(e3, c)Rot(e1, c).
(13)

Due to movement limitation when bending the tube with a
pre-curvature of 1/260 mm−1 straight, no change around the
x-axis was possible, and therefore this case was neglected in
the evaluation. Altogether we evaluated 14 different
deformations.

3.2.4 Simulation Test and Results
We validate our approach for the three pre-curved tubes first in
simulation by comparing our algorithm’s solutions with positions
and orientations given by an implementation of the more precise
but more computational costly method of Rucker et al. (2010) to
evaluate dependency between segment length and positional and

orientation deviation. Figure 4 shows the results for the deviation
of tip position and orientation for different discretization
resolutions compared to the model by Rucker et al. (2010)
relative to the total length for the tube with a pre-curvature of
1/140 mm−1. The results show that the position and the
orientation error reduce fast when the number of segments
increases. For n � 50 we achieved a position error of less than
2.7% w.r.t. the tube’s length and an orientation error of less than
2°. It is worth noting that the position deviation for the same n is
almost the same for all pre-curvatures. The orientation deviation
in twisting depends on the discretization errors. The additional
torsion introduced through planar deformations does not
increase the errors. Therefore, we conclude that the accuracy
does not depend on the complexity of the deformation.

3.2.5 Experiment Results on the Real Tube
For the evaluation of accuracy, the number of links in the
experiment was set to n � 50. A comparison of the position
and orientation deviation from the reference values was again
performed, this time using measurements. A minimum deviation
of 2.068 mm (corresponding to 1.4% w.r.t. the tube length) and
1.877° were calculated where the tube was formed into a straight
shape from a pre-curvature of 1/260 mm−1. The maximum
average deviation was obtained when the tube was bent with
the pre-curvature of 1/95 mm−1, which resulted in 8.783 mm in
position and 6.493° in orientation. All results for rotational,
torsional, and spatial deformations are listed in Tables 2, 3,
and 4, respectively. Given that the tube with a pre-curvature
of 1/260 mm−1 bent the tube into a straight one, no further spatial
movement was possible, such that this data was neglected.

Overall, our algorithm can achieve similar results for
individual tubes 3D-printed from nylon as Nakagawa and
Mochiyama (2018) for steel strips. The average position
deviations for spatial deformations were comparable to those
for straight rods.

3.3 Evaluation for Multiple Pre-curved
Tubes
Since fixing the tubes severely restricts the workspace of a CTR
and combined tubes cause complex movements when rotated
into each other for larger rotations, we chose a different recording
scenario for evaluating our algorithmwithmultiple tubes. Using a
motion capture system, the shape of the robot’s tubes is tracked to
obtain accurate position measurements. For this purpose, we
applied 5 mm wide retro-reflective tape (3M, Germany) to the

TABLE 2 | Results of rotational deformation.

κ(mm−1) κb (mm−1) Mean error Best result

1
95

1
75

8.783 mm 7.938 mm

4.278° 3.073°
1

140
7.438 mm 5.453 mm

6.493° 4.206°
1

140
1
95

5.937 mm 5.623 mm

4.630° 2.785°
1

260
5.778 mm 4.158 mm

6.123° 4.525°
1

260
1

140
5.651 mm 4.691 mm

4.880° 4.252°

0 3.278 mm 2.068 mm
2.937° 1.877°

TABLE 3 | Results of spatial deformation.

κ(mm−1) κb (mm−1) Mean error Best result

1
95

1
75

7.913 mm 7.360 mm

11.263° 9.755°
1

140
8.715 mm 7.094 mm

12.210° 10.990°
1

140
1
95

3.397 mm 2.715 mm

16.758° 16.535°
1

260
12.740 mm 8.873 mm

11.608° 9.102°
1

260
1

140
2.110 mm 1.074 mm

14.632° 13.842°

TABLE 4 | Results of torsional deformation.

κ(mm−1) Mean error Best result

1
95

10.414 mm 8.865 mm

5.963° 4.761°
1

140
8.664 mm 7.452 mm

9.762° 9.331°
1

260
8.486 mm 7.475 mm

11.121° 9.172°
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FIGURE 5 |Overview of the recording with labels for the hardware parts and visualization of their recordings. (A) Experimental setup (B) Schematic of custommade
actuation unit with F/T-sensor. Further, a) shows the combination of an inner tube of 150 mm with and outer tube of 50 mm and a weight of 25 g, which yielded large
deflections of the tubes.

FIGURE 6 |Comparison of measured (red) and estimated (green) tip positions on the left, with the measured force in x-, y-, and z-direction of the base frame on the
right, respectively.
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tubes by attaching 15 markers separated by a distance of 5 mm.
These markers were recorded with seven cameras of the motion
capture system (Optitrack-Prime-13-System, NaturalPoint,
United States) with a mean position error of 0.235 mm.

The printed tubes were rotated using a custom-made drive
unit consisting of two stepper motors and a 3D-printed gear box
(c.f. Figure 5). Lacking a translation joint in our actuation unit
due to the integration of the F/T-sensor, we printed three outer
tubes of different lengths as mentioned above to emulate
elongation. We assumed that the outer tube can elongate a
maximum of 100 mm. As mentioned previously, due to
limitations in the additive manufacturing of the small 3D-
printed tubes, the inner tube was produced as a nylon rod. An
additional ring was printed on its tip to attach two different
weights (15 and 25 g) for applying load to the tubes.

We recorded 9,814 data samples without applied loads to an
outer tube elongation of 100 mm and a step width of 1° for the
tubes’ rotation. Furthermore, we recorded 2,863 data samples
with applied loads for the three described outer tube lengths with
a step width of 9°. Each single sample recording without, applied
loads lasted 0.5 s to reduce the possibility of frictional snapping
effects. Each sample recording with applied load to the tubes’ tip
lasted 6 s, consisting of 5 s to relax vibrations introduced by the
inertia of the applied weight at the end of the tube plus 1 s to
measure and average the measured force and torque. The
recorded movements were limited to the range [−π/2, π/2]
(rad) for the inner and outer tubes.

The restrictions have been introduced because a rotation
over π/2 rad did not lead to any significant tip movement due
to the applied weight. The resulting torsional forces twisted
the tube and snapping effects occurred when overwinding,
which represents a special case in the application of CTRs we
did not want to investigate. The outer tube performed one step
in a positive direction of rotation as soon as the inner tube
had reached the angle − π/2 or π/2. After recording, samples
with missing positions along the shaft or additional points due
to noise were dropped. The recording setup is shown in
Figure 5.

Based on the recorded wrenches, we calculated the
corresponding virtual positions (positions given by our
algorithm derived in Section 2) for each configuration. As
discussed above, 15 points were recorded with the tracking
system and the same number of virtual points were generated
per sample. A comparison of measured and corresponding
calculated tip positions with respect to the measured forces is
shown in Figure 6. We calculated the maximum absolute error

(MAE) between the virtual (model-based calculated) and
measured points along the robot shaft and the inner tube’s tip
position and calculated the standard deviation (STD) of the error.
For the data without loads applied to the robot, we achieved a
MAE of 3.63 ± 3.32 mm for all points along the shaft and 1.74 ±
1.98 mm for the tip position deviations. Table 5 shows the results
for all six tube-weight combinations. The best tip position MAE
of 4.47 ± 2.94 mm and the best MAE of 1.39 ± 1.68 mm
accounting for all positions along the backbone was achieved
for an outer tube of length 100 mm and 15 g tip load.

In contrast to the results for individual tubes in Section 3.2.5,
the results for multiple concentric tubes show larger variances in
error. Specifically, for the deviation in z-direction our model is
overestimating the deflection. This is particularly evident in the
results with an outer tube of only 50 mm, where the deviations are
in the centimeter range, caused by larger bending due to the
weight.

As Takano et al. (2017) state in their work, the
approximation of the bending by the discrete Euler-equation
produces larger deviations to the actual curvature, if the tubes
experience a strong bending. In addition to that, larger
deflection as given in this evaluation lead to relative
movement between the tubes, which we do not consider in
our model. Note that such large deflections are not commonly
assumed for tubes with such stiffness. Still, a solution should be
found in further investigations, however, this was not the main
focus of this work and the tests with larger deflection show the
limitation to our approach. Further, smaller factors for the
deviations occur partially due to the evaluation setting, in
which the greater weight of the actuation unit generates an
additional force, which is substracted out, but still affects the
sensor readings. Furthermore, the JR3 FT-sensor as displayed in
Figure 5 has a slight coupling between the force and torque axes,
which increases the measurement error. Another minor factor is
the inaccuracy in the determination of the material properties.
We assume a symmetrical cross-section, which, however, is an
idealization and not possible to be achieved perfectly with the
applied printing process. The disadvantage of dependence
against sensor data quality and well chosen model
parameters is also mentioned by Takano et al. (2017).

Since we calculate the positions along the backbone bym · n
discrete transformations the errors along the tubes add up. It
can be seen that the deviation towards the tip of the tubes
becomes more and more pronounced, which can be explained
by the structure of the discretized model, which accumulates
errors through the iterative calculation from the basis to the

TABLE 5 | Results of multi-tube experiment. All deviations are measured in mm. Column labels describe length of outer tube/weight at tip.

50 mm/15 g 50 mm/25 g 75 mm/15 g 75 mm/25 g 100 mm/15 g 100 mm/25 g

MAE along backbone 5.22 5.29 2.89 3.69 1.39 1.91
STD along backbone 7.91 8.34 3.76 6.01 1.68 2.43
MAE tip position 16.11 14.74 9.50 14.52 4.47 6.02
STD tip position 12.77 11.95 6.52 11.50 2.94 3.98
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tip. This is, however, inevitable, as we rely on a measurement at
the basis.

Continuous models achieve better results when large
deflections are present and tip position and orientation is
given. However this information is not always available and
the proposed approach can estimate the shape solely based on
the wrench information at the basis. Furthermore, the results
have a favorable trade-off between good accuracy at highly
efficient computation as the algorithm always produces the
same result in the same duration. It makes the approach
applicable for hard real-time applications, where cycle
deadlines always need to be met, and which are necessary for
ensuring the safety of medical applications.

3.4 Real-Time Capability
To evaluate our assumption about real-time application, we
evaluated the computation time of the algorithm, which
depends on the number of links, i.e. the number of
computational steps required. For n � 50, an average
computation time of less than 3ms was measured, which
enables an estimation frequency of ca. 333 Hz. This is
sufficiently fast for real-time shape estimation. However, if the
sensor is noisy, a filter is needed to improve the shape estimation
results. In this work, a fifth-order Butterworth low-pass filter was
used to suppress noise. This delays the calculation, but still a
shape estimation with 20 Hz can be achieved which can be
hardware optimized in potential real applications. Given that
the algorithm always produces a response after n · m calculation
steps, we concluded that hard real-time deadlines for control can
be met.

4 CONCLUSION

In this work, we introduced an algorithm for shape estimation of
CTRs which is applicable for real-time applications. It extends
the algorithm of Nakagawa and Mochiyama (2018) for pre-
curved tubes combining it with constant curvature modeling to
achieve the application in multiple concentric tube settings. Pre-
curvature is represented as virtual torques applied on the virtual
joints of the discrete kinematic chain which models a CTR’s
backbone. Furthermore, to enable the application with CTRs,
we extend the algorithm towards multiple tubes of a robot, using
the constant curvature assumptions for the segments of
the tubes.

In comparison to conventional approaches, which compute
the shape of a CTR as a system of ODEs and apply numerical
integration, our approach is based on recursively applied linear
operations. The robot is modeled as m segments, where each
segment is described as a discrete chain of n links, which yields
the computation complexity of O(m · n), where m ≪ n. Our
discretization of the m segments under the assumption of
constant curvature into equal-length sections simplifies the

modeling and in combination with the representation of pre-
curvature as virtual torques preserves the joint and tip
orientation well.

We evaluated our approach with two experimental setups and
obtained similar results as the referenced literature with an
estimation frequency of up to 333 Hz. The current
measurements are based on a Python 3.8 implementation,
which limits the cycle time due to the weak performance of
Python in loop executions. In future work, we plan to realize the
algorithm in a compiled language.

A limitation of this proposed discretization method occurs
when a larger deformation is applied to the tubes, as seen in
the evaluation for multiple tubes, which leads to greater
position errors. This is caused by the discrete Euler-
equation, the not modeled relative motion of the tubes and
in a minor case by the dependency on well determined model
parameters.

Although the accuracy is lower for large deflections in
comparison to the referenced methods the algorithm only
depends on the signal of a single conventional F/T-sensor,
which renders it as a cost-efficient alternative to e.g., FBGs.
Furthermore, the algorithm never exceeds O(m · n) calculation
steps, which makes the algorithm useful for application in hard
real-time scenarios. In future work, we want to combine the
algorithm with monocular vision-based methods to enhance the
vision information with kinematic information given by our
algorithm. Further, we aim to combine the proposed
algorithm with real-time capable machine learning techniques
for shape and force estimation.
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