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Fast constraint satisfaction, frontal dynamics stabilization, and avoiding fallovers in
dynamic, bipedal walkers can be pretty challenging. The challenges include
underactuation, vulnerability to external perturbations, and high computational
complexity that arise when accounting for the system full-dynamics and environmental
interactions. In this work, we study the potential roles of thrusters in addressing some of
these locomotion challenges in bipedal robotics. We will introduce a thruster-assisted
bipedal robot called Harpy. We will capitalize on Harpy’s unique design to propose an
optimization-free approach to satisfy gait feasibility conditions. In this thruster-assisted
legged locomotion, the reference trajectories can be manipulated to fulfill constraints
brought on by ground contact and those prescribed for states and inputs. Unintended
changes to the trajectories, especially those optimized to produce periodic orbits, can
adversely affect gait stability and hybrid invariance. We will show our approach can still
guarantee stability and hybrid invariance of the gaits by employing the thrusters in Harpy.
We will also show that the thrusters can be leveraged to robustify the gaits by dodging
fallovers or jumping over large obstacles.
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1 INTRODUCTION

Raibert’s hopping robots Raibert et al. (1984), and Boston Dynamic’s BigDog Raibert et al.
(2008) are amongst the most successful examples of legged robots, as they can hop or trot
robustly even in the presence of significant unplanned disturbances. Other than these successful
examples, many bipedal and anthropomorphic robots have also been introduced. Boston
Dynamics’ dynamic humanoid, ATLAS, has pushed the limits of dynamic legged locomotion
with its 28 hydraulically actuated joints. This robot has showcased impressive mobility feats,
including jumping over obstacles and dynamic flip-turns. Unfortunately, there are no
publications laying out the details of Boston Dynamics works. Therefore, little is known
about the controllers used in ATLAS.

Another successful example is Cassie. Agility Robotics developed this bipedal robot based on an
earlier prototype called ATRIAS led by Oregon State University Apgar et al. (2018). The biped can
negotiate unstructured environments such as ramps and stairs inside buildings robustly and
efficiently. With 20 Degrees of Freedom (DOF) and ten actuators, Cassie is a hard-to-control
floating base possessing 6 Degrees of Under-actuation (DOU). With a smaller number of DOU than
Cassie and ATRIAS and a restricted frontal dynamics, Michigan’s MABEL possesses pogo-stick-style
feet, compliant legs, and an anthropomorphic morphology. This robot has shown stable and natural
running gaits similar to humans Sreenath et al. (2011). Completely blind and relied on no visual
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feedback, MABEL has showcased stable gaits, which involve
traversing along rough terrains even when no information
about the bumps’ whereabouts in its path is available Park
et al. (2012).

Fully actuated systems such as Valkyrie, ASIMO, Mahru,
and Yobotics-IHMC have shown impressive performance
similar to the above examples. NASA’s Johnson Space
Center led a team of partners from academia and industry
and developed NASA’s first bipedal humanoid, Valkyrie
Paine et al. (2015). Valkyrie has showcased the successful
completion of sophisticated human-style tasks in the DARPA
Robotic Challenge (DRC). Other examples such as Honda’s
ASIMO Hirose and Ogawa (2006) and Samsung’s Mahru III
Kwon et al. (2007) have demonstrated capabilities such as
quasi-static walking, running, dancing, and climbing stairs
inside buildings. Or, Yobotics-IHMC lower body, humanoid
biped has shown recovery from severe pushes Pratt et al.
(2009).

Despite all of these accomplishments, state-of-the-art bipedal
robots are prone to fall-over and cannot negotiate highly rough
terrains. Even humans known for their natural, efficient, and
robust locomotion feats cannot recover from unpredictable
situations such as severe external pushes, scuffing, or slippage
on icy surfaces.

Our main goal is to enhance bipedal systems’ robustness
through distributed arrays of thrusters and nonlinear control.
This paper will report our recent efforts in dynamic modeling and
designing closed-loop feedback for the thruster-assisted
locomotion of a legged robot called Harpy, which is shown in
Figure 1. Currently, Harpy’s hardware is being developed at
Northeastern University (NU). This bipedal robot is equipped
with a total number of eight custom-made joint actuators, a pair
of coaxial thrusters fixed to Harpy’s torso, and a light body
structure fabricated out of reinforced carbon fibers.

The overarching goal is to integrate aerial and legged systems’
capabilities in a single platform. Aerial robots possess fast
mobility mainly because they can fly over obstacles. This
property of aerial systems can be highly suitable for
applications such as automated package delivery or monitoring
and inspection from vantage points. While legged robots may
have difficulty negotiating extremely bumpy terrains, e.g., semi-
collapsed buildings in the aftermath of an earthquake, these
systems maintain a superior energetic efficiency of locomotion
compared to aerial drones.

Unlike aerial robots, legged systems can safely operate near
humans and animals and are very suitable for many applications
such as search and rescue inside buildings, digital agriculture,
monitoring livestock for disease symptoms, assisting workers in
construction zones, etc. In all of these applications, the fast-
rotating blades in rotary-wing robots can result in severe
laceration injuries. As a result, there are strict rules on aerial
systems’ operation near humans.

From a control design perspective, thruster-assisted legged
locomotion has not been explored previously. In this work, we are
particularly interested in the closed-loop feedback design implications
of thrusters, and our objective is to apply thrusters to achieve two
distinguished goals. We will briefly discuss these goals below.

1.1 Disturbance Rejection in the Sagittal
and Frontal Planes of Locomotion
One objective is to use the thrusters and robustify the gaits.
Bipedal platforms are incredibly vulnerable to disturbance
and fall-over. Environment and model disturbances are
common contributors to these systems’ tip-over instability
(rotational and postural) Goswami and Kallem (2004), which
can lead to complete loss or severe damages to the system.
Because of the inherent complexity of disturbance rejection, a
handful of mainstream strategies have been successfully
applied to solve such a vulnerability Gubina et al. (1974);
Pratt and Tedrake (2006); Kajita and Tani (1991); Hill and
Fahimi (2015); Mandava and Vundavilli (2018); Song et al.
(2018); Arcos-Legarda et al. (2019). None of these strategies
have been able to mitigate tip-over scenarios entirely.

Rotational stability can be achieved if the external forces and
moments acting on the system yield zero centroidal moments,
i.e., the system’s overall angular momentum is conserved
Vukobratović and Stepanenko (1972). External forces and
moments may arise from various sources, such as gravity,
immature ground contacts, and unexpected external
disturbances. To retain rotational stability the orientation of
the Ground Reaction Force (GRF) should be regulated relative
to the Center of Mass (COM).

Bipedal robots cannot directly control the magnitude and
orientation of the GRF because of the unilaterality of the
contact forces. However, they can modulate the GRF indirectly
through the nonlinear couplings in these systems. The
unilaterality of GRF yields a considerably limited tip-over
recovering and disturbance rejection capability. For instance,
when the extent of the disturbance force is moderately small,

FIGURE 1 | Illustration of Harpy’s CAD model. Harpy is a bipedal robot
with a pair of thrusters and is being developed by the authors to study robust,
efficient and agile thruster-assisted legged locomotion.
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e.g., a gentle push, small body movements can be leveraged to
retain the robot’s rotational balance.

Upper body movements can be applied to induce restoring
moments at the hips and ankles by transferring angular
moments. Traditional forward and inverse kinematics
frameworks that place virtual components such as dampers
and springs in strategic locations in the robot have been
successfully applied to describe these robot-environment
interactions Pratt et al. (2001). Still, their use is limited to
minor disturbances.

Other widely applied methods based on Center of Pressure
(COP) control are limiting. Only limited to quasi-steady gaits,
these frameworks locate and regulate the COP of a bipedal
robot within the support polygon through various strategies,
e.g., applying ankle torques, to oppose the tip-over moment.
That said, the effectiveness of these methods is limited. The
movement of the COP position along the feet, which is
proportional to the torque generated at the ankle, can end
to the boundaries of the support polygon, and tip-over can
occur. As a result, the support polygon’s size is often
interpreted as the decision (stability) margin in the state
space of the COM. The position of the COM relative to the
support polygon is constantly monitored to decide whether the
COP-based controller is enough to retain stability or not Pratt
et al. (2006).

More aggressive disturbance rejection mechanisms such as a
flywheel effect allow for additional momentum contribution
required to retain a bipedal robot’s stability against more
prominent external disturbances, e.g., a hard impulsive push
force applied to the system Stephens (2007). However, the
flywheel method’s effectiveness can be limited mainly because
significant resisting torques must be applied to the joints to
terminate the flywheel effect after the disturbance is
attenuated, which can yield other issues such as the violation
of contact forces at leg-end points. Larger disturbances can be
handled by taking a few compensating steps, just like humans
retaining their balance under sudden pushes.While this approach
is very promising, its effectiveness is highly affected by other
limitations in the step kinematics and impact dynamics (the
topology of terrain).

1.2 Dynamic Walking and Performance
Satisfaction
Another objective is to explore performance satisfaction
paradigms superior to existing methods. We will briefly
explain this objective here.

Dynamic bipedal walkers possess small support polygons.
Small stability margin and underactuation at the contact
points result in severe challenges to achieve energetically
efficient and robust gaits. These two antagonistic properties
are often achieved at the cost of sacrificing one another, and
satisfying efficiency and robustness at the same time is still an
open problem. Examples such as the robust locomotion feats of
ATLAS robot achieved through the application of energy-hungry
hydraulic actuators and the efficient gaits of Cornell’s passive
walker with a minimum number of electric actuators are two

notable examples that fall on the two opposite ends of the
performance spectrum.

The problem of simultaneously providing asymptotic stability,
optimizing desired performance indices, and satisfying gait
constraints in legged systems has been studied extensively
Westervelt and Grizzle (2007); Galloway et al. (2015); Dai and
Tedrake (2016); Feng et al. (2014). However, the challenges
remain, and there are severe limits with existing methods. For
instance, model-based methods such as Hybrid Zero Dynamics
(HZD), which have offered rigorous ways to assign attributes
such as a minimized total cost of transport and robustness in an
off-line fashion, are restrictive for dynamic scenarios involving
joint trajectory re-planning. Or, in work by, despite increased
cost-of-transport optimization accuracy without additional
computational time using a variable-time-interval trajectory
optimization method, obtaining optimal solutions remain
restricted to simple models and slow gaits.

To better understand existing options, we categorize
performance satisfaction in dynamic systems – regardless of
being a legged or non-legged robot (e.g., robot manipulators)
– into three broad categories. Namely: 1) trajectory optimization
(TO), 2) optimization-based (nonlinear) controls, and 3)
reference trajectory manipulation.

TO problems’ goal is to generate optimal trajectories that
satisfies constraints on states, inputs, and GRF while ensuring
that the trajectories lead to stable walking gaits. TO problems for
the legged robot are challenging to solve due to their nonlinear
dynamics, high degrees of freedom and the system’s hybrid
nature brought on by ground impact. Previous works such as
Posa et al. (2014); Hereid et al. (2016); Medeiros et al. (2020) have
proposedmethods to transcribe this as a Nonlinear Programming
(NLP) problem through direct collocation methods where
polynomial splines are used to approximate the continuous
dynamics and thus reducing computational complexity
without needing to account for the actual dynamics. Other
works such as Hereid et al. (2015) have instead proposed
utilizing multiple shooting methods to break the original
problem down into smaller steps without approximations.

In both cases, however, the system’s dynamics need to be
considered along with contact dynamics to generate the
trajectories. These works Pardo et al. (2017); Xin et al. (2020),
to dodge the need to define ground contact dynamics explicitly,
have employed null space projection methods. Meaning, zero
acceleration constraints are enforced on feet ends in Hereid et al.
(2016). The issue remains, and these methods are extremely
computationally expensive and cannot be implemented in real-
time, taking a few minutes to solve the TO problem. For works
that use reduced-order models such as the centroidal dynamics or
utilize ZeroMoment Point (ZMP) based methods as in Pratt et al.
(2006); Winkler et al. (2015), experimental results of online
optimization are available. These results are restricted to
pseudo-static gaits rather than dynamic ones.

In the second category (i.e., optimization-based control
schemes), the goal is to compute constraint-aware feedback
stabilizing control loops. This goal is most commonly achieved
through a predictive framework, usually by creating a linearized
model over a finite-time horizon. For instance, in Bledt et al.
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(2018); Fahmi et al. (2019); Angelini et al. (2019), in a hierarchical
framework, reduced-order models around the COM are used to
generate reference acceleration for the low-level tracking
controller. The downfall of these options is the need to
linearize and simplify the robot’s underlying dynamics to
make it feasible in real-time, and as a result, not all
constraints can be considered. In Hutter et al. (2014); Xin
et al. (2020); Galloway et al. (2015); Nguyen and Sreenath
(2016), the desired control inputs are computed taking into
account the full-dynamics, and then optimization is carried
out on a simplified least square or QP problem for tractability.

A different approach, which is the focus of the third category
in our list, is to remove optimization from the control strategy
and instead modify the reference trajectories to obey desired
constraints. This idea was popularized through Reference
Governors (RG) Kapasouris et al. (1988), where an efficient
online optimization method is employed. The core to this idea is
that the reference trajectory that the controller must follow can
be manipulated while keeping it close to the original trajectory
in the event that boundaries created by constraints are to be
violated. Since its inception, this idea has spawned many
variations Kolmanovsky et al. (2012); Garone et al. (2017)
including an optimization-free approach known as Explicit
Reference Governor (ERG) Nicotra and Garone (2015).
Besides the possibility of utilizing an optimization-free form,
the other major advantage with RG is that it acts as an add-on
scheme to an existing controller without the need for any
modification on the control scheme. However, these methods
have only proven useful in relatively simple nonlinear systems
as their applications to high-dimensional nonlinear problems
are nearly impossible.

Other emerging paradigms such as Approximate Dynamic
Programming (ADP), reinforcement learning, decoupled
approaches to design control for nonlinear stochastic systems,
etc., can potentially remedy the challenges in the future. For
instance, employed a learning method to understand the stability
and robustness of stability against the external disturbances of a
passive biped walker. They used a multi-objective, multi-modal
particle swarm optimization algorithm to find stable initial
conditions for their biped walker model. These approaches are
currently far from providing any practical solutions to the
problem of performance satisfaction in dynamic bipedal
walkers. They are shown to be only effective on simpler
practical robots, mainly those that can only demonstrate
quasi-static gaits.

2 CONTRIBUTIONS AND THE SUMMARY
OF THE PROPOSED FRAMEWORK

While gait design for complex, multi-DOF legged robots based on
full or reduced-order models has been addressed extensively,
optimization-free gait re-design in a reactive fashion and within
gait strides are often considered only for quasi-static walkers. In
dynamic walkers, such reactive gait adjustments take very
complex forms involving optimization problems to ensure gait
feasibility conditions.

One primary reason that within-strides gait adjustment in
dynamic walkers involves optimization is that these bipeds
possess small support polygons that leave small to no stability
margins and make gait adjustment very intricate. With this
observation and to combat the challenges associated with
dynamic walking, our primary objective is to apply novel
thrust-vectoring-based control actions in bipedal legged
locomotion. Despite their potential merits, as we discussed
above, the application of these thrusters has remained
unexplored and existing studies, are limited to only flight
control and not thruster-assisted legged locomotion.

Specifically speaking, the contribution of this work achieved
due to thrusters’ presence in our robot is four-pronged.

• The first contribution of this work is that it employs thruster
actions during the gait cycles for several vital reasons. These
objectives include securing frontal dynamics stability,
avoiding sagittal plane fallovers, and making aggressive
jumps over obstacles. Previously, to achieve these goals,
bipedal-legged robots entirely relied on indirect methods
such as posture control (at stance phase) and rules of
conservation of angular momentum (at flight phase
during running) to avoid these fallover scenarios.

• This work introduces a decoupled view towards satisfying
two antagonistic properties of efficiency and robustness.
Meaning it shows that one can consider part of the gait cycle
for performance satisfaction and the rest of the step period
for gait robustification. The application of this decoupled
view towards performance satisfaction is impossible in
conventional bipeds. As a result, the decoupled idea
remained unexplored. A major consequence of applying
the decoupled view is that it allows the application of simpler
computational algorithms for joint trajectory planning (or
re-planning), control, and GRF constraint satisfaction,
which constitute the next contribution of this work.

• Introducing an efficient controller, which secures the
feasibility of the gaits and constraints, is the third
contribution of this work. This work presents a
systematic approach based on reference governors, which
are relied on provable Lyapunov stability properties, to
minimize computational overhead. This approach permits
performing motion planning in the state-space of the Zero
Dynamics (ZD) of our bipedal robot, yielding a significantly
lower cost of computation than widely used optimization-
based methods applied on full- or reduced-order dynamical
models. To comprehensively describe this method, we will
extend our previous works Dangol et al. (2020); Dangol and
Ramezani (2020) by conjointly employing state-space
motion planning tools and celebrated bipedal robot
control design frameworks such as the HZD method.

We take a simulation-based approach to validate our method.
We will use the simulators developed for our Harpy platform,
capitalize on the thrusters’ action to resolve and re-design Harpy’s
gait parameters during its Single Support (SS) phase. The SS
phase is the most extended phase in Harpy’s gait cycle. Then, we
will assume well-tuned supervisory controllers within our
reference governor model and focus on fine-tuning Harpy’s
joints’ desired trajectories to satisfy gait feasibility constraints,
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including saturating controls and retaining feasible contact
forces.

• Finally, this work shows that achieving hybrid invariance in
the face of significant external perturbations, in a finite-time
fashion, using thrust vectoring is possible. Here, hybrid
invariance is violated for an important reason. Since we devise
intermediary filters based on RGs, there can be a mismatch
between the robot’s states at the gaits’ boundaries. Put
differently, Harpy’s gait modifications and impact events can
lead to severe deviations from its nominal periodic orbits. In this
work, we demonstrate that owing to Harpy’s thrusters hybrid
invariance will be achieved by either applying the thrusters
throughout the whole gait cycle or employing them
intermittently.

This work is organized as follows. In Section 3, we will briefly
introduce our platform, Harpy. We will avoid reporting
hardware-related matters in this work as they are beyond the
scope of this publication. Harpy’s hardware will be reported in
subsequent publications. In Section 4, Harpy’s planar dynamics,
which consist of continuous and impact models, will be derived.
The robot’s SS phase will be modeled as a Reduced-Order Model
(ROM) following standard conventions and assumptions found
in textbooksWestervelt and Grizzle (2007). Then, a two-point DS
model followed by an impact map for a non-instantaneous phase
will be obtained. Hybrid invariance will be achieved using a
Nonlinear Model Predictive Control (NMPC) scheme during the
DS phase. Gait design based on HZD method and satisfying
performance constraints based on RG will be explained in detail.
Last, our simulation results will be discussed in Section 6 as we
will report the performance of the proposed approach.

3QUICKOVERVIEWOFHARPYPLATFORM

This section will discuss Harpy’s physical properties and
elaborate on our philosophy regarding the design. Also, we

will briefly discuss the weight considerations and mass
allocation and their impact on modeling.

3.1 Physical Properties
The system, shown in Figure 1, weighs roughly 4 lbs. It is 2.4 ft
tall. The legs are composed of a parallelogrammechanism.With a
highly integrated and unified actuation and sensing applied in the
design of Harpy, which will be explained below, minimum use of
metal components, including fasteners, housings, support
structures, etc., is achieved. Parts are designed for modularity,
energy efficiency, and low weight. It is worth noting that high
energy-to-weight ratios are critical characteristics of birds which
are our design role models. Birds are capable of showcasing
legged and aerial locomotion to perfection.

3.2 Upper Body Design
The torso, shown in Figure 2, hosts two brush-less DC actuators
with harmonic drives to increase the output torque. These
actuators are used to move the legs in the frontal plane of
motion. Two co-axial thrusters are attached to a separate
actuator and can move relative to the torso in the sagittal
plane of locomotion. We will use the thrusters for the
following purposes: 1) to directly regulate the ground contact
forces, 2) to recover the system when incidental tip-overs occur,
3) to generate the lift force required for jumping over obstacles, 4)
to stabilize the frontal dynamics and 5) to secure hybrid
invariance. Additionally, the torso encapsulates power
electronics, including the amplifiers for actuators and
thrusters, sensors, communication nodes, and a computer for
online processing and closed-loop feedback.

The robot is underactuated when the thrusters are off and can
be overactuated when active. Indeed, when Harpy is
unconstrained, i.e., it is not in contact with the environment,
it possesses 14 DOF. Six DOF are associated with the translation
and orientation of the robot. There are two DOF at the locations
where the hips are attached to the torso.

FIGURE 2 | (A) Illustrates the current status of the ongoing Harpy hardware developments at Northeastern University. (B,C) Show successful mono-pedal jumping
tests with and without thrusters. A gantry supports the half-finished prototype in these tests.
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3.3 Payload Reduction and Added Mass
Challenge
The mechanical design and actuation approach applied in Harpy
is different from existing platforms. Instead of the generous
incorporation of metal components, it has been tried to rely
on composite material, fiber-inlay additive manufacturing, and
embedding methods. The design approach based on embedding
all of the components within the composite structure of the robot
has been applied to achieve an ultra-light robot. Gaining a
minimized total weight is essential in Harpy’s design. Harpy
can be looked upon as a self-manipulating system therefore, large
payloads can lead to the need for stronger actuators or thrusters.
These actuators are often heavier, and consequently, extra mass
can be introduced in the design.

3.4 Spring-Loaded Inverted Pendulum
Model Design Considerations
The actuators and Harpy’s structure are designed to deliver a large
range of motion on all DOF. Low-inertia limbs are considered to
capture Spring-Loaded Inverted Pendulum (SLIP) model
characteristics. Each leg, shown in Figure 1, possesses eight
DOF and after considering the mechanical couplings three DOF
remain. Back-driveable, harmonic drive actuators replace extra
torque or force sensors or series compliance which can help reduce
the overall mass of Harpy’s legs.

Low limb inertia and low reflected actuator inertia make the
robot capable of extremely fast leg-swings. Besides, the hip and
leg actuators are located so that their axes of rotation intersect at
the hip joint. This design consideration helps reduce the moment
of inertia in the frontal plane. The inherent compliance in the
legs, particularly in the 4-bar linkage, can potentially reduce
mechanical bandwidth in the legs. This property can affect
foot placement performance. In a recently completed platform
that uses a similar leg mechanism called Husky, fast and precise
foot placement was achieved, supporting the feasibility of Harpy’s
leg design.

4 HARPY MODELING

This section will briefly outline Harpy configuration space,
underactuated and actuated coordinates, full-model, and
ROMs. We will break down the gait cycle into two distinct
phases: 1) an SS phase during which only one leg, called the
stance leg, is in constant contact with the ground and 2) a DS
phase during which both legs are fixated to the ground for a very
short period. The transitions, including SS to DS and DS to SS,
will be marked by the swing leg touch-down and lift-off,
respectively as shown in Figure 3.

Assuming point-foot walking, we will design predefined
periodic gaits for the system following the well-established
design framework of HZD as discussed in Westervelt et al.
(2003). We will avoid discussing gait parameterization, design,
and ZD derivations as the procedure has been exhaustively
reported in the literature.

4.1 Configuration Space and Control Inputs
We assume a body coordinate frame attached to the torso COM
with the x- and z-axis pointing forwards and upwards,
respectively. During the SS phase, Harpy’s full-model possesses
14 DOF. The joint angles include roll (qr), pitch (qp), yaw (qy),
thigh (qiThigh), knee (qiKnee), hip (qiHip), thruster (qiThrust) angles
for i ∈ 1(stance leg), 2(swing leg){ } and stance leg-end
positions (p1 � [ptx, pty, pn]⊤). All of these variables are
stacked inside the vector qs �
[qy, qp, qr, qiThigh, qiKnee, qiHip, qiThrust, p⊤

1 ]⊤ to form the states
vector xs � [q⊤s , _q⊤s ]⊤.

For our planar models, the leg labels are switched at the
moment of impact. The hip qiHip, thigh qiThigh and qiKnee
angles represent leg abduction-adduction, swing and flexion-
extension motions, respectively. The thruster angle, qiThrust,
represents the rotation around the torso y-axis. By considering
p1, we permit the leg-end to bounce and slide on the contact
surface.

Leg joints and thruster joints are actuated for a total of eight
DOF, while attitude angles and stance leg-end positions
constitute the underactuated coordinates, i.e., six DOF. The
control vector u � [u⊤j , λ⊤i , F⊤

1 ]⊤ embodies the joint control
actions uj � [uiThigh, uiKnee, uiHip, uiThrust]⊤, thruster wrench λi
and stance leg GRF F1.

Each co-axial thruster introduces two control actions,
including a net thrust force and yaw moment in the thruster
coordinate frame. These thruster wrench vectors are mapped
(based on Harpy’s geometry) to a net wrench vector in the body
coordinate frame λnet � [FB,MB]⊤. This wrench vector consists
of the net thruster force and moment on the body frame. This
map is given by the adjoint transformation λnet � ∑iAd

⊤
iBλi,

which can be expanded as

λnet � ∑2
i�1

Ri 0
RiS di( ) Ri

[ ]λi (1)

where Ri is a rotation about qiThrust, and S (di) is a skew-
symmetric matrix that represents the distance component of
the cross product �di × Fi (di is the distance from the torso to
the thruster). This full-model will be used to validate the
control design approach. Also, it will be employed to
obtain other low-order models, including five-link, three-
link and VLIP models. All of these models can only
move in the sagittal plane of locomotion and are shown in
Figure 4.

The planar five-link configuration vector embodies seven
variables. Torso angle (qp) is measured relative to the vertical
line to the ground surface. The thigh and knee angles are defined
similarly to the 3Dmodel while the hip joint angles along with the
yaw and roll angles about the world coordinate frame are ignored.
As a result, only the thruster forces FxThrust and FzThrust, expressed
in the torso coordinate frame, are considered part of the control
input. Stance leg-end positions are parameterized with the
normal (pn) and tangent (pt) terms to complete a 7-DOF
configuration variable vector. The configuration variables for
planar three-link and VLIP models are also constructed
similarly as shown in Figure 4.
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4.2 Restricting Frontal and Transversal
Dynamics Using Thrusters
The thrusters are located at each side of the body and are aligned
with the body COM about the sagittal axis. This design allows the
use of the thruster net force and torque around the COM to
stabilize the robot’s roll and yaw angles. To restrict the motions of
the 3D model to the sagittal plane of locomotion, we employ
thruster actions and a simple closed-loop controller. The
controller stabilizes the frontal and transversal dynamics. As a
result, 2D gaits designed for the sagittal plan of locomotion can be
easily applied to the 3D model. For instance, frontal dynamics
stabilization is achieved by employing opposite thruster forces at
the left and right thrusters.

4.3 Single Support Model
At single support, the system retains only a single point of contact
with the ground. This contact point is not fixed. A simple static
friction model describes the contact force. Regarding the mass
allocation in the system, the torso is modeled as a single point
mass with nomoment of inertia. Since the hip and thigh actuators

are located near each other, a single point mass is considered for
both of them. Similarly, the knee actuator is modeled as a point
mass with no moment of inertia. All of the connecting rods are
assumed to be mass-less.

The mass allocation in the planar models is slightly
different from the 3D model. For instance, in our five-link
model, a single point mass is fixated to the hip joint and is
equivalent to the overall mass at the hip in the 3D model. In
the three-link model, each leg mass is equivalent to the knee
actuator mass, which is fixated to the lower leg in the five-link
model. The hip and thigh from the 3D model are summed up
and fixated at the hip joint in the three-link model. Last, in
the VLIP model, the system’s total mass is considered a
point mass.

The governing equations of motion are derived using the
methods of Lagrange by taking the kineticK(qs, _qs) and potential
V(qs) energies of the system which leads to
L(qs, _qs) � K(qs, _qs) − V(qs). The resulting equations of
motion are expressed in vector form as following

Ds qs( )€qs + Cs qs, _qs( ) _qs + Gs qs( ) � Bs qs( )u, (2)

FIGURE 3 | Illustration of the SS and DS phases. Also, shows the thrusters utilized to regulate the GRF.

FIGURE 4 | Illustrates the stick diagram of the 3D and 2D models. The full 3D model is shown on the (A). The equivalent five-, three-link and Variable-Length,
Inverted Pendulum (VLIP) models are shown in (B–D), respectively.
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where Ds (qs) is the symmetric inertial matrix and is only
dependent on qs, the Cs(qs, _qs) _qs matrix contains the Coriolis
terms,Gs (qs) contains gravity terms, and the control matrix Bs(qs)
maps the inputs to the generalized coordinate accelerations €qs.
Consequently, the full-model can be written in a state-space
form as

_xs � _qs
D−1

s −Cs − Gs + Bsu( )[ ] � fs xs( ) + gs xs( )u, (3)

where the state vector is denoted by xs � [q⊤s , _q⊤s ]⊤.
Other planar models are obtained similarly after
considering the modeling assumptions explained above.
Next, the derivation of the non-instantaneous double
support model follows.

4.4 Non-Instantaneous Double Support
Model
The end of the SS phase is marked by an impulsive impact event
when the swing leg-end p2 � [ptx, pty, pn]⊤ makes contact with
the ground. Then two leg-ends (p1 and p2) will be fixed to the
ground during the DS phase until the new swing leg lifts off. We
will assume fixed DS time intervals for all gait cycles. This
switching from the SS to DS phase is captured by defining the
switching conditions p2n � 0 and p2t > 0. Switching happens when
the swing leg-end height, p2n, is zero and its tangential
(horizontal) position p2t > 0, i.e., the swing leg lands in front
of the stance leg.

The map to describe leg-end impact is modeled as in the
literature Hurmuzlu and Marghitu (1994) which solves for
the post-impact states x+

s and GRF. The widely employed
assumptions of rigid ground models such as instantaneous
duration and inelasticity are considered to capture the
system’s behavior at the impact moment. As a result,
there are no changes in the joints’ position (i.e., q−s � q+s ).
Only angular velocity spikes occur at the impact moment. To
cover every aspect of thruster-assisted legged locomotion
and for the sake of completeness, we will briefly explain this
process.

In order to formulate this impact map Δ(xs), the model given
by Eq. 3 is considered. The vector qs is augmented to include the
new stance leg-end position p2, qd � [q⊤s , p⊤

2 ]⊤. Then, it is
assumed that the angular momentum is conserved about the
previous stance leg-end p1 at the moment of impact. The
equations of motion are re-formulated to include the
impulsive GRF, δJ⊤e Fe, at each leg-end pe � [p⊤

1 , p
⊤
2 ]⊤

Dd qd( )€qd + Cd qd( ) _qd + Gd qd( ) � Bd qd( ) uj

λnet
[ ] + δJ⊤e Fe (4)

where Je � [(zp1/zqd)⊤(zp2/zqd)⊤]⊤ and Fe � [F⊤
1 , F

⊤
2 ]⊤. In this

equation, Fe ∈ R6 is a Lagrange multiplier that assumes both legs
are fixed to the ground at the moment of impact. Based on this
assumption, we can then formulate this as a zero velocity
constraint at the foot-ends, i.e., _pe � Je _qd � 0. Combining this
with the conservation of angular momentum, the post-impact
states and GRF can be solved as follows

_q+d
Fe

[ ] � Dd q−d( ) −Je q−d( )⊤
Je q−d( ) 06×6

[ ]−1
Dd q−d( ) _q−d

06×1
[ ] (5)

The inertial matrix Dd (qd) is a square, symmetric and positive
definite, and Je(qd)Dd(qd)−1Je(qd)⊤ is full rank Westervelt et al.
(2018). As a result, the matrix inversion shown above is possible,
which yields the impact map Δ(·). After the impact event, both
feet stay fixed to the ground. This fixation results in a non-
instantaneous DS phase, which is assumed to last for a fixed time
interval. This condition is enforced by considering appropriate
constraints in the system and is skipped here.

5 CONTROL

Here, we outline an overview of our approach to satisfy state,
control and GRF constraints during gait cycles by deforming the
ZDManifolds whose restriction dynamics governes the gaits. The
notion of directional derivatives Lfy � zy

zx f and holonomic
constraints y � hs (xs) � hs (qs) will be adopted in a similar
way as mainstream publications in this field.

The holonomic constraints (y) are widely known as Virtual
Constraints (VCs) since they are enforced by closed-loop
feedback Westervelt et al. (2018). Based on these constraints,
celebrated control invariant sets of the form Γ �
{[q⊤s , _q⊤s ]⊤ ∈ R2n|G(qs, _qs) � 0} where G �
[h⊤s (xs), L⊤fs

hs(xs)]⊤ ∈ R2(n−1) and rank{Lfshs(xs)} � n − 1 can
be defined. The rank condition guarantees that Γ, i.e., qs � h−1s (0),
is 1-dimensional.

Since there is only one degree of underactuation in all of our
planar models, therefore, h−1s (0) takes the form of a closed curve.
We can find a transformation for the configuration variable,
qs′ � H1qs, such that the actuated coordinates are stacked on top
the underactuated coordinate. With this in mind, we consider the
following parametric descriptions q1 � r1 (qn), . . ., qn−1 � rn−1 (qn)
where qn in all of our planar models can be the last entry of qs. As
a result, the output function almost similarly takes the following
form for all of the models

hs qs( ) � H2H1qs − r qn( ) � qj − r qn( ) (6)

Here qj denotes the actuated joint variables, and H2 extracts qj
from qs′ . Note that r � [r1, . . . , rn−1]⊤ and the matrix
H2 ∈ R(n−1)×n can take a trivial form if each joint independently is
derived with a single actuator only. The classical problem of enforcing
VCs considers fixed gait parameters or, at best, in event-basedmethods,
permits dynamics-free updates of the gait parameters at the boundaries
of the gait cycles. As such, by deforming the manifold Γ at the
boundaries (i.e., after impact moments), gait characteristics,
including average walking speed, step length, etc., are regulated.

However, these methods happen in a discrete-time fashion,
and the resulting closed-loop system possesses a very small basin
of attraction. Part of the reason the continuous deformation of Γ
has never been considered before is that standard bipedal robots,
with their small support polygon, cannot achieve stable periodic
orbits when qs � h−1s (0) is deformed. With this observation, we
aim to apply the thrusters in two different ways, as discussed
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earlier in Section 1. In a nutshell, the idea is to continuously
deform qs � h−1s (0) such that the following conditions are satisfied.
First, we want h−1s (0) to remain continuous and form closed curves,
i.e. r (qn(t)) � r (qn (t + T)), where T is the gait period.

Second, we want Γ to remain stabilized at all times; otherwise,
enforcing VCs will be impossible. Last, we want gait feasibility
conditions, including the equality Ceq(qn, _qn) � 0 and inequality
constraints 0≤Cineq(qn, _qn), to be satisfied. This problem (we refer
the readers to Westervelt et al. (2003) for more details) can take the
following constrained ordinary differential equation form:

€qn � a1 qn( ) + a2 qn( ) _q2n + effects of deforming h−1s 0( )

0≠
zhs
zxs

0⊤, D−1
s qn( )Bs qn( )[ ]⊤[ ]⊤ for deformed h−1

s (0)

qn t + T( ) � qn t( )
_qn t + T( ) � _qn t( )
0 � Ceq qn, _qn( )
0≤Cineq qn, _qn( ) (7)

where the first line governs the restriction dynamics (ai (qn) are
nonlinear terms) and the second line is the condition for the
stabilizability of Γ. Widely considered gait feasibility constraints
such as |xs| < xmax, |u| < umax, 0 < FN and |FT

FN
|< μ can form the

equality and inequality constraints, where FT, FN are the
tangential and normal components of GRF and μ is the
coefficient of friction.

In our approach, the positive invariance property plays a key
role and is closely dependent on how qs � h−1s (0) is deformed.
Positive invariance allows finding the control input u such that
when qs (0) is on qs � h−1s (0) the velocities _qs(t) remains tangent
to qs � h−1s (0) yielding the solutions qs(t) remain on the manifold
Γ for all t > 0.

If this property is guaranteed, the constraint satisfaction
problem can be transformed into a motion planning
problem in the state space of the internal dynamics that
can be conveniently tackled using simple path-planning
tools. This particularly becomes important and handy
when fast and reactive gait planning is needed in dynamic
walkers. We will further elaborate on this concept with a
simple example.

5.1 Motivation Behind Valid Deformations
of qs =h−1

s (0)
To motivate our idea, we will consider Σ: [ _x1, _x2]⊤ �
[x1, x2 + u]⊤ and part of S1 set – unit circle in R2 – which is
Γ � x1, x2|0<x1 < 1, G(x1, x2) � x2

1 + x2
2 − 1 � 0{ }. It is

straightforward to show that u � −x21
x2

− x2 will stabilize the
solutions of Σ, x(t) � [x1(t), x2(t)]⊤, on Γ. In this case, the
restriction dynamics f |Γ, which is prescribed by u, takes the
following form f|Γ � [x1,−x2

1/x2]⊤. The reason that in our
definition of Γ we considered part of S1 is evident here,
i.e., x2 ≠ 0.

Now, assume that we have the means to deform Γ and that the
goal is to satisfy the constraint given by x1 ≤ 1/2. The deformation
shown in red in Figure 4D cannot result in a stabilizable and
consequently positive invariant Γ set. Notice that the control
vector field in this example is g � [0,1]⊤ which is shown in
Figure 4D. Please note that possible options where zG

zx and g(x) are
not orthogonal – or g(x) is transversal to the deformed manifold
(Γ) – are not unique.

With this simple example describing the challenge, our first step
would be to identify the valid deformations of qs � h−1s (0) that
naturally do not violate the transversality condition (i.e., zGzx ⊥̸g(x)).

5.2 Choices and Options on How to
Manipulate h−1

s (0)
Consider the state-space representation of the system dynamics
given by Eq. 3. Here, we will explore our options and choices in
order to manipulate Eq. 6. While many options can be
considered, we will focus on two general frameworks, as
explained below.

With this in mind that the control vector field is given by
g � [0(n−1)×n, (D−1

s Bs)⊤]⊤, two possible options are considered:
1) scaling ωiqn and 2) shifting qn + ωi. We are interested in
knowing how the stabilizability of Γω is affected if these two
options are applied to manipulate the state-dependent
equilibrium point of the actuated coordinates. In equilibrium
shifting scenario (case ii), notice that the position and velocity
priming can be trivially equivalent as is evidently seen below

qj − r qn( ) + ω t( )
_qj − r′ qn( ) _qn + _ω t( )[ ]5 qj − r qn( ) + ∫T

0
] τ( )dτ

_qj − r′ qn( ) _qn + ] t( )
⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ (8)

where r′ � zr(qn)
zqn

, ω(t) and ](t) are used for manipulating hs (xs)
and Lfshs(xs), respectively. Notice that in our approach the
primer variables are time-varying. Constant priming terms
yield a discrete collection of parameterized systems, i.e., xs � fs
(xs) + gs (xs)uω, which is not desired here. To see this, it is enough
to consider the numerical parameters ω, which are used to
parameterize r (qn, ω), as auxiliary control input in discrete
Poincare maps. These auxiliary control inputs can only
provide discontinuous means of priming Γω at its boundaries.

5.2.1 Stabilizability Condition and First Scenario
We will show that by choosing (i), the continuous manipulation
of the primer parameters can violate the transversality condition
(gs (xs) ⊥̸zh (xs)/zxs). To do this, consider y � qj − r (qn, ω). Then,
consider the fact that the inertia matrix Ds (qn) only depends on
angles which are evaluated here on Γω, i.e., qn′ � [r⊤(qn,ω), qn]⊤.
For a fixed qn, it is possible to show that

B*
sDs qn( ) r′ ω t( ), qn( ), 1[ ]⊤ (9)

where B* � [01×(n−1), 1] and Eq. 9 can vanish on a point on Γω
which implies gs (xs) and zhs(xs)

zxs
can be orthogonal. While the

orthogonality condition may get violated at only a finite number
of points on Γω, these violations are not acceptable in our
proposed framework and we avoid that. Without loss of
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generality, consider Mth order polynomials (e.g., Bezier forms
with degree M as in ref. [40]) to define

r qn,ω t( )( ) � diag ω t( )( )NQn (10)

where diag(ω(t)) ∈ R(n−1)×(n−1) is a matrix with ω(t) as diagonal
entries, N ∈ R(n−1)×(M+1) is a matrix of constant coefficients and
Qn � [1, qn, q2n, . . . , qMn ]⊤. Then Eq. 9 is re-written in the
following simplified form

D3 qn( )diag ω t( )( )NQn′ +D4 qn( ) � 0 (11)

where Di (qn) are the block matrices of Ds (qn). This algebraic
relationship can be easily solved for a fixed qn and ω(t) where
Qn′ � zQn/zqn � [0, 1, 2qn, . . . ,Mq(M−1)

n ]⊤. Meaning, using this
choice of VC priming, it is possible that for some values ω(t) the
transversality condition can be violated on Γω.

5.2.2 Stabilizability Condition and Second Scenario
We will now consider the other option, i.e., scaling. It is
straightforward to show that _y � _qj − r′(qn) _qn + ω(t) yields
relative degree 2, . . . , 2{ } on every points on Γω. It is also
noticeable that this choice of manipulating y has no effects on

null zhs
zqs

{ } � [r′⊤(qn), 1]⊤ which means that at least the primer

has no influence over the transversality condition as long as y � qj
− r (qn) is a valid VC. Notice that the role of the primer ω(t) in this
form is comparable to the role of a disturbance term in the system
given below

_y
€y

[ ] � _qj − r′ qn( ) _qn
L2
fs
hs

[ ] + 0
I,−r′ qn( )[ ]D−1

s qs( )Bs
[ ]u

+ I
0

[ ]ω t( ) (12)

where
L2fs

hs � −[I,−r′(qn)]D−1
s (qs)(Cs(qs) _qs + Gs(qs)) − r′′(qn) _q2n. As

a result, the closed-loop system has to possess strong disturbance
rejection properties.

The roles of this disturbance term will be beneficial for us,
though, as it will adjust the equilibria of hs (xs) and Lfshs(xs)
under stabilizing controllers with adjustable (and measurable)
basins of attraction to successfully satisfy state, control, and
GRF constraints. To do this, we need to design an update law for
the primer variable vector ω(t) such that the finite-time
convergence of the solutions to Γω in the closed-loop system
is unaffected. In addition, while the evolution of the trajectories
in the constraint-admissible subspace (this will be explained
shortly) of the state space is secured, we want qj closely track
predefined r (qn, ω(t)) when possible. While stronger stability
properties (e.g., global exponential stability) are desirable, our
major concern will be the finite-time enforcement of the
changed virtual constraints.

As far as the design of u is concerned, any nonlinear controller
(or linear controllers if the nonlinear terms are bounded and the
bounds are known) can satisfy the VCs. We will limit ourselves to
the following modest feedback law u �
−(LgLfhs(xs))−1(L2fhs(xs) +KPy + KD _y) where
Ki ∈ R(n−1)×(n−1) are constant matrices and instead will remain

focused on deforming Γω in order to satisfy our constraints. Hence,
we will assume stabilizing supervisory controllers that guarantee the
enforcement of the virtual constraints. However, their disturbance
rejection properties have to be carefully considered.

The control law given above can generate Global Asymptotic
Stability (GAS) at the equilibrium point of the system given by
Eq. 12 when the primer variable vector is time-invariant, i.e., ω(t)
� ω. Subsequently, Γω takes the following form

Γω � xs ∈ X | hs xs( ) � K−1
P KDω, Lfshs xs( ) � −ω{ } (13)

where the equilibrium points for hs (xs) and Lfshs(xs) under ω are
obtained by solving

hs xs( )
Lfshs xs( )[ ]

ω

� K−1
P KD K−1

P

−I 0
[ ] ω

0
[ ] (14)

Of course, realizing GAS property under ω(t), i.e., when the
primer variable is time-varying, as we shall see later, will not be
achieved trivially and requires a regulated rate of change in the
primer variable vector. We will discuss this in the proof of GAS
property of the closed-loop system later in Section 5.4.

A traditional approach to deal with a time-varying disturbance
is to synthesize a family of linear controllers at each equilibrium
point of the system given by Eq. 12 and then synthesize the
stabilizing controller based on interpolating between the linear
controllers by gain scheduling. However, nonlinear update laws
will produce better results. Using them, it would be possible to
directly incorporate the constraints, particularly when gait re-
planning has to happen quickly.

Next, with the role of the primer variable ω(t) in our output
function y � hs (qs, ω(t)) set, we will show that states, joint torques
and GRF can be expressed in terms of the primer variable.

5.3 Constraints Derivation
Consider the configuration variable vector qs′ � H1qs �
[q⊤j , p⊤

1 , qn]⊤ where qj ∈ Rm are actuated joint angles, m is the
number of these joints in the planar models and p1 is stance leg
contact point as defined previously. The control matrix in the
Euler-Lagrange equations can take the following form

Bs �

0 0
zpT,COM

zqj
( )⊤

Im×m 0
zpT,COM

zp1
( )⊤

0 I2×2
zpT,COM

zqn
( )⊤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

where pT,COM is the physical location of the thruster action FB.
Notice that based on how the thruster actions FB are incorporated
in the Euler-Lagrange equations (Eq. 2), the coordinate qn, which
was primarily assumed to be underactuated, will be actuated.
While this is not a problem, to keep our desired normal form –
i.e., qn remains underactuated – and to allow the direct regulation

of GRF, FB is found such that FB ∈ null zpT,COM

zqn
{ }. As result, the

models shown in Figure 4 will be equivalent and the thruster
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forces FB can be translated to the base of the VLIPmodel based on

the law of translating forces and moments.
In other words, if it is assumed that tan(qn) � FB

x

FB
z
, the GRF

components FB
x and FB

z can be shifted to the leg-end point. This
leaves us with an underactuated qn angle as it was planned and the
possibility of directly regulating GRF. Note that aligning λnet with
the virtual leg in the model takes place by employing the thruster
joint actuators FB which are responsible to move the thrusters
with respect to the body.

One interesting interpretations of the orthogonality condition

(i.e., FB ∈ null zpT,COM

zqn
{ }) is that thruster-assisted legged

locomotion over any surface with friction coefficients as small
as near zero values becomes feasible. However, the major
challenge, when walking over a very slippery surface,
i.e., tan(qn) � FB

x

FB
z
� FT

FN
< < 1, is that smaller COM swing

motions (i.e., Δqn) are allowed which can be problematic given
that in our design framework all joint motions are parameterized
based on qn. In other words, very small Δqn means no
locomotion.

Based on the adjustment we made in the control matrix Bs and
that qs � h−1s (0) is stabilizable, for the previously defined B*

s the
following will hold B*

sDs(qn)[r′⊤(ω(t), qn), 1]⊤ � α where α ≠ 0.
As a result, the following equation can be obtained at every point
on Γω and it governs the dynamics of the [qn, _qn]⊤ curve

€qn � −α−1 β1 _qn( )2 + β2( ) (16)

In this equation β2 � B*
sGs(qn) and β1 is given by

β1 � Bp
s Ds qn( ) r′′

⊤
, 0[ ]⊤ + Σn

i�1 r′
⊤
, 1[ ]Qi qn( ) r′

⊤
, 1[ ]⊤( ) (17)

where Qi (qn) are the Christoffel Symbols. A similar algebraic
relationship for the constraints [u⊤j , λ⊤net]⊤ is obtained. Following
the relationships given by Eqs. 6 and 8, constraints equations can
be written in terms of y and _y, which is skipped here to avoid a
cluttered notation.

Next, we will steer y and _y using the primer variableω(t) in Eq.
12 in order to make sure the solutions of Eq. 16 stay within the
constraint-admissible space. To do this, consider y- _y space.
While a similar analysis is possible in the qn- _qn space, the y- _y
space can offer some geometric tools that can help formulate the
problem as a classical motion planning problem. Obviously, the
result of such adjustments would be the deviation from the
nominal gait trajectories, which can affect, e.g., hybrid
invariance. We will use the thrusters’ actions to deal with
these issues.

Since we assumed a pre-stabilized system – in fact all of the
above derivations only make sense if qj � r(qn) + ∫t

0
ω(τ)dτ and

_qj � r′(qn) _qn + ω(t) – it is reasonable to evaluate the constraints
cl ≤ [u⊤j , F⊤

1 ]⊤ ≤ cu (cl and cu are constraint lower and upper
bounds) based on the steady-state solutions, i.e., yω and _yω,
and ignore the transient solutions,
i.e., [y⊤, _y⊤]⊤ � eAtz0 + ∫t

0
eA(t−τ)Bωw(τ)dτ, where z0 �

[y⊤
0 , _y

⊤
0 ]⊤ is the initial condition and

A � 0 n−1( )× n−1( ) I n−1( )× n−1( )

−KP −KD
[ ] (18)

This assumption may cause the intermittent violation of the
constraints, which is expected. However, because finite-time
convergence to the constraint-admissible sub-spaces at the
neighborhood of yω and _yω is guaranteed – currently we
assume that this holds true and later we ensure the GAS
property is achieved – by the GAS property of the controller,
any transient constraint violations are quickly compensated.

Other than simplifying the nonlinear constraint satisfaction
problem given in Eq. 7, considering [y⊤

ω , _y
⊤
ω]⊤ has another

interesting result which will be explained below. Consider the set

Yω � z ∈ R2 n−1( )| I n−1( )× n−1( ),−K−1
P KD[ ]z � 0{ } (19)

which is the locus of all of the steady-state solutions of the system
Eq. 12. We will show that it is possible to create positive invariant
sets around any point zω � [y⊤

ω , _y
⊤
ω]⊤ in the set defined by Yω.

Then, one can slide [y⊤
ω , _y

⊤
ω]⊤ over the hyperplane defined by Yω

using a suitable update policy to ensure the following objectives
are achieved.

First objective is the realization of positive invariance property
in a neighborhood around the steady-state solutions on Yω.
Second objective is to satisfy gait feasibility constraints as
outlined before. Last, we want to maintain a minimal distance
from the origin, i.e., min ‖[y⊤

ω , _y
⊤
ω]⊤ − 0‖{ }. The last condition

implies that the modified gaits should closely match the
predefined gaits. The nominal (predefined) gait parameters are
obtained off-line without taking into account the constraint
equations given by Eq. 7.

FIGURE 5 | Geometric interpretation of the level set {ζw|V ≤ Vmax}. For a
constant reference r, the update law _w to the manipulated referencew, places
the new valuew* at the edge of the level set V � Vmaxwhile trying to be as close
to the actual reference as possible without violating the constrains Ci(z,
ω(t)), which are depicted in red.
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5.4 Primer Variable Vector, ω(t), Update
Policy and Achieving Global Asymptotic
Stability Property Over Yω
Consider the support hyperplane given by

ci � ∇Ci z,ω t( )( )|zω′( )⊤ z − zω′( ) � 0 (20)

at the point zω′ where the nonlinear constraintCi(z,ω(t)) – i.e., the
ith entry in the constraint vector C (z, ω(t)) given by Eq. 7 – and
Yω intersect (see Figures 5, 6). Since there are multiple
constraints, we consider the constraint with the shortest
distance from zω on Yω. While there are many ways to
simplify the geometric representation of the nonlinear
constraints Ci(z, ω(t)) at the neighborhood of zω on Yω, the

approach adopted here is very efficient with a minimum
computation overhead.

Our approach is motivated by classical methods widely used in
constraint optimization problems based on support hyperplanes.
These methods are usually very conservative, but in our case their
use is justified as the system is highly nonlinear, unpredictable.
That said, the location and distance of these hyperplanes from zω
has to be carefully defined.

We will use Lyapunov functions with quadratic forms to
define level sets around zω. The largest invariant set confined
in the constraint-admissible space will define the maximum
distance between zω and ci (z, ω(t)). These invariant sets,
geometrically, can take various forms using non-quadratic
energy functions. It is important to note that the geometry of
the invariant set around zω directly affects the performance of this
approach, i.e., the convergence rate to z⊤ω � 0 and constraint error
margins (shown in Figure 6).

Motivated by deepest gradient descent method which is a key
mechanism of manipulating pre-compensated systems, we
consider two search parameters including a step direction, ρ �
− ω(t)/‖ω(t)‖2, ‖ω(t)‖2 ≠ 0, and step length, δ ∈ R+.

The step direction ρ is trivially obtained based on the
observation that the primer variable ω(t) and consequently the
steady-state solutions zω should remain possibly very close to the
origin. The step length δ is obtained based on the difference

FIGURE 6 | (A–C) Illustration of constraint satisfaction based on manifold deformation; Also, it shows the concept with various norm definitions. (D) Illustration of
the relationship between the stabilizability of the manifold Γ (unit circle is used as an example) and the transversality condition, i.e., zGzx ⊥̸g(x) at any point on Γ; G(x) is the
algebraic equation that defines Γ and g(x) is the control vector field used to stabilize the trajectories on Γ.

FIGURE 7 | An overview of Harpy’s controller architecture.
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between the values of a candidate Lyapunov functions and the
largest invariant sets around zω. Based on these two search
parameters, the following update law for the primer variable
vector ω(t) is considered:

_ω t( ) � kρδ (21)

where k ∈ R+ is the tuning parameter.
Consider ζ � P−0.5z and ζω � P−0.5zω where P is a positive

definite matrix. The maximum level set value Vmax,i (ω(t)) for the
quadratic Lyapunov function V(ζ , ζω) � V(ζ ,ω(t)) �
(ζ − ζω)⊤P(ζ − ζω) is obtained by doing the change of variable
given above. In this way, Vmax,i (ω(t)) can geometrically be
interpreted with unit circles around zω in z-space. The size of
the largest level set Vmax,i (ω(t)) that is not violating the closest
constraint ci(z,ω(t)) � c⊤i,1z + ci,2 to the point zω can be better
imagined when 2-norm ‖.‖2 is used, shown in Figure 6. The unit
vector eci along the shortest distance between zω and the
constraint hyperplane ci � 0 is given by ec � ∇Ci|zω/‖∇Ci|zω‖2
and the largest level set value is given by Vmax,i(ω(t)) �
ci,2/

     
c⊤i,1ci,1

√
.

Now consider the quadratic norm ‖ζ‖P. Notice that using
the change of variable ζ � P−0.5z in the constraint equation ci
(z, ω(t)) � 0, 2-norm and the quadratic norm become
interchangeable. In this way, the maximum level set value
for any candidate, quadratic Lyapunov function can be

TABLE 1 | Model parameters.

Parameter Value Description

mT 300 g Mass of torso
mh 200 g Mass of hip
mk 100 g Mass of each leg
lT 30 cm Length from hip to torso
l1/2Thigh 18 cm Length from hip to knee
l1/2Tibia 32 cm Length of tibia
l1/2Meta 32 cm Length of metatarsus
l1/2 63.25 cm Length of leg on three link ROM

FIGURE 8 | Illustration of thruster-assisted locomotion over a rough terrain simulated on Harpy’s full-dynamics. Blue and red arrows show the thruster actions and
GRF, respectively.
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obtained. Therefore, the step length in Eq. 21 is given by δ �
Vmax,i (ω(t)) − V (ζ , ω(t)). After the change of variable, the
unit vector eci which now is the maximum distance traveled
towards the constraint hyperplane from ζω in a unit ball of
‖.‖P is given by

eci � − c⊤P−1c( )−0.5P−1c (22)

where c � ∇Ci|zω. To obtain the equation, we considered the dual
norm of the quadratic norm ‖c‖p which is ‖c‖* � ‖P−0.5c‖2 and
this algebraic relationship eci � −P−1c/‖c‖*.

Now, we make sure under the update law given by Eq. 21
the constraint-admissible set defined at any point on Yω is a
positive invariant set. Taking any Lyapunov function of the
form given above and using Barbashin-Krasovskii-LaSalle
principle, for a constant primer variable ω the GAS
property of the closed-loop system given by Eq. 12 is
readily achievable.

Take the time-varying primer variable ω(t) governed by the
update law given above, then _V(ζ ,ω(t)) is given by

_V ζ ,ω t( )( ) � − ζ − ζω( )⊤Q ζ − ζω( ) + 2 ζ − ζω( )⊤P _ζω (23)

whereQ is a positive definite matrix. For _ω(t) ≠ 0, there exists 0 <
κ ≪ 1 such that

‖2 ζ − ζω( )⊤P0.5A−1Bω
_ω t( )
κ

‖≤ λmin Q( )‖ζ − ζω‖2 (24)

As a result, the resulting inequality
_V(u,ω(t))< (κ − 1)λmin(Q)‖z‖2 < 0 holds because it is
assumed κ ≪ 1. This result shows that if the primer dynamics
is very fast, i.e., 1/κ in Eq. 21 is a very large value, then the closed-
loop system given by Eq. 23 is GAS.

Next, we briefly show how the thruster can be used to achieve
hybrid invariance.

5.5 Thruster-Assisted Impact Invariance
One critical aspect of HZD-based methods is selecting y � hS
(xs) that leads to a hybrid zero dynamics. In these methods, the
assumption of underactuation at the contact points does not
leave any options for control better than the deadbeat hybrid
extension of these systems to achieve impact invariance. This
section briefly discusses another use of the thruster actions to
secure hybrid invariance, complementary to HZD-based
methods.

At the transition from SS to DS phase, the two-point impact,
as discussed in Section 4.4, renders all of the body joints except the
torso jointfixated to their pre-impact values.Hence, large deviations in
joint velocities from the reference trajectories and subsequently from
the ZD manifold (Γω) will be resulted.

Since the joint actuators are not able to make corrections
needed to steer the states back to Γω the thrusters can be leveraged
in the DS phase to achieve hybrid invariance. Here, impact
invariance such that the initial DS phase state xd,0 returns to
the initial SS phase state xs,0 is sought where xd � [q⊤d , _q⊤d ]⊤.

As opposed to the SS phase, the constraints in the DS phase
take a more complex form. Additionally, we have to ensure that
the final state of the DS phase (xd,f) matches the initial states at the
SS phase (xs,0).

We apply a Nonlinear Model Predictive Control (NMPC)
scheme to steer the post-DS states back to the ZD manifold.
This scheme is known for being costly. However, the duration of
the DS phase is significantly shorter than the SS phase. Note that
a reference trajectory for each DS state rd [k] is generated
at every kth sample over the duration of the DS phase.
The reference trajectory can be a simple linear trajectory
between the post-impact states xd,0 and the initial SS phase
state xs,0.

FIGURE 9 | Illustrates the state values and forces during walking and jumping feats simulated with Harpy’s 3D full-dynamics. The reference joint trajectories (z0) are
manipulated (zω) such that the applied constraint equations do not violate the constraint as shown at t � [9.5, 11.5]s.

FIGURE 10 | Illustrates the effects of reducing the control thresholds on
the control actions and their corresponding phase portraits.
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The continuous DS phase model as described in Eq. 4, along
with the kinematic constraint Jd€q + _Jd _q � 0 results in the
following differential algebraic equation

Dd qd( ) −J qd( )T
Jd qd( ) 0 6×6( )[ ] €qd

Fe
[ ] � Bdη −Hd qd, _qd( )

− _Jd qd, _qd( )[ ] (25)

where η � [u⊤, λnet] is an augmented input vector that consists of the
control action from the SS phase alongwith the net thrust force along the
torso, which can be expressed in the state-space form given by
_xd � fd(xd) + gd(xd)η. This model is discretized at each sample
time. To cast this as an NMPC problem a cost function ϕ(xd, η) to be
minimized is formulated resulting in the following optimization problem

min
η k[ ]

ϕ xd, η( ) � ∑N
k�1

Wr‖ xd k[ ] − rd k[ ]( )22 +Wηδη k[ ]22
subj.to:

Ceq xd, η( ) � 0
Cineq xd, η( ) � 0

(26)

In Eq. 26,Wr is the weighting term for the cost associated with
tracking the reference trajectory rd [k], Wη similarly contains the
weight that penalizes rapid changes δ in the input η, andN denotes

the total simulation time steps. The constraints of the optimization
problem are denoted byCeq (xd, η),Cineq (xd, η) which represent the
equality and inequality constraints, respectively. The equality terms
include the initial DS state, which is obtained from the post-impact
SS state x+s , and the discretized dynamics _xd.

Ceq xd, η( ): xd 0[ ] � Rd
s x

+
s

xd k + 1[ ] � f xd k[ ]( ) + g xd k[ ]( )η k[ ]{ (27)

In Eq. 27, the matrix Rd
s swaps the roles of the legs. The

inequality equations include the difference between the final DS
state and initial SS state, GRF constraints and the limits imposed
on the state and input vectors.

Cineq xd, η( ):
|xd N[ ] − xs 0[ ]| ≤ ϵ

|FT k[ ]| < μ|FN k[ ]|
0 < |FN k[ ]|

|xd k[ ]| <xd max

|η k[ ]| < ηmax

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(28)

Here ϵ is a relaxation term applied to the final state. With
all constraints satisfied, the NMPC guides the DS states
towards the initial condition of SS phase, resulting in
impact invariance.

6 SIMULATION RESULTS

In this section, we will report the result of our simulation works.
An overview of the control architecture explained previously is
given in Figure 7. We consider walking on flat ground when
Harpy makes point contacts with the surface. Using the full-
dynamics model explained above, we will apply the thruster
actions and proposed framework to demonstrate the desired
capabilities, including, frontal stabilization, trajectory
manipulation to stay in constraint-admissible regions of the
state space, hybrid invariance and high jumps over obstacles.

Since one of the motivations behind our approach is to reduce
computation overhead, we will briefly demonstrate the results
from integrating our ROMs (i.e., the VLIP, 3-link, etc., models
explained previously) in this process. We will demonstrate that
this integration can further reduce the costs.

We note that the gaits are designed based on the HZD
approach. In the SS phases, the desired trajectories hd (xs) are
parameterized as Bezier polynomials with the coefficients tuned

FIGURE 11 | Illustrates the closeup view of the constraint violations
during 3D walking and jumping at t � [9.5, 11.5]s. The reference trajectories
violate the constraints and the controller manipulates the applied references to
prevent the constraints from being violated.

FIGURE 12 | Illustrates the reference joint angle trajectories in the 3-link ROM.
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offline. All model parameters used in the simulation closely
match Harpy’s properties and are listed in Table 1.

The full-dynamics model can be constrained in its frontal plan
of locomotion using the thrusters. We note that frontal dynamics
stabilization due to underactuation can be very challenging. We
ran the simulations using the full-dynamics model of Harpy
where the legs are modeled with all DOF including the hip frontal,
hip sagittal, and knee sagittal joints. Figure 8 shows the stick-
diagram results from several key states during walking. The
thrusters not only are used to stabilize the frontal dynamics,
but also to jump over obstacles, and assist the robot to land stably.

The simulation results such as the robot’s states and GRF are
shown in Figure 9. In general, planar gaits are unstable in 3D
systems. The simulation result demonstrate that the thruster-
assisted robot is capable of tracking the target body trajectory and
walk stably even when the 2D gait is used. The thrusters can assist
the robot to walk with a stable and nearly zero roll and heading
angles throughout the simulation and can be seen in Figure 8.

In Figures 9, 10, the thrusters are used to satisfy the
constraints including saturating the control actions and
enforcing no-slip conditions. First, a desired trajectory for the
COM of the full-dynamics is considered and using the priming

approach explained above it is manipulated during the walking
phase to satisfy GRF feasibility constraints. The primer is disabled
during the flight phase. As shown in Figure 9, the GRF
constraints are violated at around t � [9.5, 11.5]. Figure 11
depicts a close-up view of the priming performance at t �
[9.5, 11.5].

In addition, we considered constraining the control actions.
To do this, the control inputs were saturated in the low-
dimensional space of the ROMs and then were mapped to the
full-dynamics. The priming problem to saturate control inputs in
the three-link ROM is considered. Figures 12, 13 show the
desired joint angles and velocities, respectively.

In Figure 10, the results after applying the primer are
shown. The first two figures from left show the effects of
changing the limits on the control inputs during the SS phase.
The limits are adjusted from high to low values resulting in
the peak control to decrease below the desired thresholds.
However, a large gap can be seen between the threshold and
maximum control input. Note that the geometries of the
positive invariant sets around steady-state responses in the
output dynamics are not optimal in our work as explained
before and shown in Figure 5. The phase portraits (q1- _q1)
corresponding to each control limits are shown in Figure 10.
It can be seen that h−1s (0) � qs is deformed to satisfy the
constraints which can affect hybrid invariance in the
locomotion system.

Hybrid invariance can be achieved using the thruster actions.
Figure 14 shows the feasibility conditions during the DS phase
where NMPC is applied. The friction cone condition is feasible
which indicates that both feet are fixated to the ground
throughout the DS phase.

Note that the static friction coefficient is assumed to be μ
� 0.3. Also note that the normal forces spike to 60 N
during the DS phase. The total weight of the biped is
only 0.8 kg which suggests that the unusual behavior is

FIGURE 13 | Illustrates the reference joint velocity trajectories in the 3-link ROM.

FIGURE 14 | Illustrates the friction constraints during the DS phase of leg
1 and 2. In this plot, the intermediate SS phases are omitted. Dashed blue lines
are the thresholds.

Frontiers in Robotics and AI | www.frontiersin.org December 2021 | Volume 8 | Article 77051416

Dangol et al. Harpy’s Thruster-Assisted Legged Locomotion

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


only possible because of the thruster actions. Figure 15
shows the control actions for the thrusters during the
DS phase.

7 CONCLUDING REMARKS

In this work, we studied the roles of thrusters in addressing the
prevailing challenges in bipedal robotics, potentially paving the
way to see new designs with unexplored capabilities. Some of the
common challenges faced by bipedal robots include constraint
satisfaction, frontal dynamics stabilization, and avoiding
fallovers. Combatting these issues can be pretty challenging in
these systems due to underactuation and high vulnerability to
external perturbations.

In this publication, we introduced a thruster-assisted bipedal
robot called Harpy. Harpy platform possesses two legs and two
coaxial thrusters attached to its torso. We capitalized on
Harpy’s unique design to propose an optimization-free
approach to satisfy Harpy’s gait feasibility conditions,
including control and contact forces. The reference
trajectories were manipulated based on deforming
stabilizable zero-dynamics manifolds to fulfill constraints
brought on by ground contacts and those prescribed by
states and inputs without violating hybrid invariance.

In standard bipedal robots, unintended changes to the
restriction dynamics over the zero dynamics manifold,
especially those optimized to produce periodic orbits, can
adversely affect gait stability. Not only we showed that the
manipulation of the system trajectories is possible in Harpy
full-dynamics, but also hybrid invariance can be realized by
employing the thrusters, something that is often achieved in a
limited fashion by event-based regulators.

In addition, we demonstrated that the thrusters can be utilized
to robustify the gaits by dodging fallovers or even jumping over
large obstacles.
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