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Damage detection is one of the critical challenges in operating soft robots in an

industrial setting. In repetitive tasks, even a small cut or fatigue can propagate to

large damage ceasing the complete operation process. Although research has

shown that damage detection can be performed through an embedded sensor

network, this approach leads to complicated sensorized systemswith additional

wiring and equipment, made using complex fabrication processes and often

compromising the flexibility of the soft robotic body. Alternatively, in this paper,

we proposed a non-invasive approach for damage detection and localization

on soft grippers. The essential idea is to track changes in non-linear dynamics of

a gripper due to possible damage, where minor changes in material and

morphology lead to large differences in the force and torque feedback over

time. To test this concept, we developed a classification model based on a

bidirectional long short-timememory (biLSTM) network that discovers patterns

of dynamics changes in force and torque signals measured at the mounting

point. To evaluate this model, we employed a two-fingered Fin Ray gripper and

collected data for 43 damage configurations. The experimental results show

nearly perfect damage detection accuracy and 97% of its localization. We have

also tested the effect of the gripper orientation and the length of time-series

data. By shaking the gripper with an optimal roll angle, the localization accuracy

can exceed 95% and increase further with additional gripper orientations. The

results also show that two periods of the gripper oscillation, i.e., roughly 50 data

points, are enough to achieve a reasonable level of damage localization.
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1 Introduction

Soft robotics is an emerging field that complements

traditional robotics with a flexible structure that simplifies

interaction with complex environments due to an excessive

degree of freedom. This beneficial characteristic of soft robots,

however, raises new challenges going far beyond the theory of

traditional robotics. One downside of soft robots is that soft

matter is prone to damage during contact with sharp objects.

Even small damage that keeps the robot functional at early stages

tends to propagate during operation and render the robot

impractical (Kingsley and Quinn, 2002). Self-healing materials

are able to recover from such damage but requires keeping the

robot idle for some time (Terryn et al., 2021). Therefore, damage

detection and localization are of utmost importance.

The general trend in damage detection follows the bio-

inspired approach of nervous tissue that mimics the pain

perception of living organisms (Li et al., 2021). To simulate

the nervous system of the skin, researchers commonly embed a

network of sensors into the soft matter of a robot. For instance,

Markvicka et al. (2019) proposed to fill the matrix of elastomer

with droplets of liquid metal. Damage in such a system leads to a

change in the local conductivity by creating electrically

conductive pathways. In the study by Thostenson and Chou

(2006) and Hong and Su (2012), the strain and damage of

material were measured by embedding carbon nanotube and

conductive microwire networks, respectively. Pu et al. (2018)

proposed the use of a carbon nanotube network for both

detecting cracks and self-healing by increasing local

temperature through applied electric current. Similarly, Khatib

et al. (2020) embedded the flexible conductive carbon black wire

into the layered architecture of the artificial skin. Damage to this

network cuts the current flow, which helps to detect the damage.

A single conductive carbon black wire was used for damage

detection in the study by Georgopoulou et al. (2021) by

monitoring the strain signal. In order to localize the damage,

George Thuruthel et al. (2021) proposed the use of a network of

air chambers connected to a piezoresistive pressure sensor. The

sudden changes in pressure indicate the damage. A couple of

these sensors allow localizing the damage by estimating the delay

between spikes in pressure signals. The main disadvantage of

these techniques is that the sensors are embedded in the

manufacturing process and are difficult to apply to a readily

available soft robot. Additionally, these methods can be more

prone to failure in high-demand repetitive usage due to

additional sensor circuits and wiring, which makes this

approach less favorable for industrial applications, e.g., soft

grippers (Hughes et al., 2016). Non-invasive damage detection

is also crucial for cost reduction, where damage detection sensors

are continuously in use, while the worn-out robotic elements can

be replaced multiple times. The ultimate goal of the current

research is to detect and localize the damage without embedding

the sensing elements into the soft matter.

The non-invasive damage detection and localization have

been mainly researched for rigid civil infrastructure like

buildings, bridges, and railways. (Salawu, 1997; Avci et al.,

2021). One of the typical ways to detect the damage is to

induce high-frequency vibrations to the rigid structure and

analyze feedback using a network of accelerators (Avci et al.,

2021). To detect the damage, the signals can be processed in time

(Cunha and Caetano, 2006), frequency (Gul and Catbas, 2008;

Padil et al., 2020), and time–frequency (Ghahari et al., 2017;

Abazarsa et al., 2016) domains by fitting corresponding

parametric models. Statistical approaches that are typically

used for modeling time-series processes can also be used for

damage analysis. For instance, Krishnan Nair and Kiremidjian

(2007) and Carden and Brownjohn (2008) utilized the

autoregressive moving average (ARMA) model to extract

features from the signals. Similarly, Goi and Kim (2017)

employed a multivariate autoregressive (AR) model to detect

damage on a truss bridge. The statistical model with exogenous

input was presented by Gul and Catbas (2011) and Ay andWang

(2014). Recently, machine and deep-learning approaches have

been actively utilized for damage prediction on civil structures

(Avci and Abdeljaber, 2016; Li and Zhang, 2022;

Khodabandehlou et al., 2019; Choe et al., 2021). For instance,

Li et al. applied a physics-informed neural network to detect

damage on a wind turbine (Choe et al., 2021). Likewise, a

convectional neural network (CNN) was used in the study by

Khodabandehlou et al. (2019). Since most of the vibration-based

approaches are primarily designed for rigid structures, it is

challenging to employ them for soft robotics. Attaching rigid

accelerometers to the surface of the soft object might seriously

deteriorate its elasticity, which is a paramount material property

in soft robotics.

In this paper, we present a novel non-invasive data-driven

approach for damage detection and localization on a soft gripper

based on its motion dynamics. The essential idea is to utilize the

key property of non-linear dynamics, i.e., small variations in the

input lead to considerable changes in the output in time. Thus,

we hypothesize that the minor changes in morphology or

material due to damage can produce noticeable changes in

feedback in time that can be used for detection and

localization of damage. Additionally, the dynamics of the

lifted object depend on the external action, which provides an

additional variable that can help to track changes in the

dynamics. To test the hypothesis, we developed the

classification model based on the bi-directional long short-

time memory (biLSTM) network that enables us to discover

unobvious patterns from time-series data of dynamics and map

them to a finite number of damage combinations. We tested the

proposed model under eight action conditions, i.e., shaking the

gripper with different roll angles, for various time horizons. The

experiment results reveal a high classification accuracy for

43 combinations of damage with 99% detection and over 97%

localization rates. The results also confirm the importance of the

Frontiers in Robotics and AI frontiersin.org02

Abdulali et al. 10.3389/frobt.2022.1016883

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1016883


choice of gripper orientation and the minimum number of

timesteps.

The current paper is structured as follows: in Section 2, we

introduce the classification model for the detection and

localization of damage based on the biLSTM network. The

experimental setup and conditions are presented in Section 3.

Datasets that we prepared for training and testing in Section 3.1

and Section 3.2 were used in evaluation which is presented in

Section 4. The conclusion along with a discussion on future

directions is provided in Section 5.

2 Damage modeling

In this section, we develop a model that identifies and

localizes damage on a soft object (Fin Ray gripper in the

current case) based on its dynamics at the mounting point.

Our ultimate goal is to relate minor changes in dynamics of

the object, i.e., force and torque feedback, to the location of the

damage (see Figure 1). This problem is generally non-linear, and

building an analytical physics-based model is intractable. There

are multiple sources of nonlinearity-related morphology,

material, and damage conditions. For instance, in case of

partial damage, due to asymmetric deformation of the gripper,

torque feedback is anisotropic. Furthermore, as the damage

occurs in the inner side of the gripper, force feedback is also

anisotropic (force patterns in one direction differ from the ones

in the opposite direction). In case of complete damage, on the

other hand, the self-collision of the hanging-out part of the

gripper provides step-like force/torque feedback (contact non-

linearity). Additionally, there is no smooth transition, for

example, from partial to complete damage, where the

feedback profile changes dramatically. Considering the system

from the material science point of view, the complex morphology

of the gripper fingers and large deformation introduce geometric

non-linearity. The visco-elastic nature of the silicone finger

introduces a material non-linearity. To leverage this problem,

we take a data-driven approach and develop amodel based on the

bi-directional long short-time memory (biLSTM) neural

network. The LSTM is a recurrent neural network (RNN) that

was originally introduced by Hochreiter and Schmidhuber

(1997) to enable learning a temporal dynamic behavior

(Heindel et al., 2022) and time-series data in general (Mayer

et al., 2008; Graves et al., 2008; Zia and Zahid, 2019; George

Thuruthel et al., 2022). The main advantage of the LSTM is that it

partially solves the vanishing gradient problem, which is typically

observed in the training of classic RNN. Bi-directional

implementation of the LSTM also allows learning both

backward and forward information at each step of time

(Graves and Schmidhuber, 2005).

We set up the task of damage detection in the current work as

a classification problem. Even though the biLSTM network can

be utilized for both regression and classification tasks, it is still

quite challenging to define the continuous space of the damage

with respect to object morphology. Additionally, the regression

model requires to populate the input space with the data, which

leads to a need of considerably larger set of damaged samples.

Taking into account the morphology of the two-fingered Fin Ray

gripper, we believe that the classification of the damage into

43 states is sufficient and practical (see Section 3.1 for additional

information). The proposed approach should be also applicable

to other types of actuators, for e.g., cable-driven soft grippers,

where the actuation is needed to be turned off and the model be

retrained for individual gripper designs (Chen et al., 2018). The

current approach might be less sensitive to punctures in

pneumatic grippers, for e.g., PneuNets grippers (Mosadegh

et al., 2014). The damage in pneumatic systems, however, can

be detected by simply monitoring the pressure in chambers or

FIGURE 1
Overview of the proposed damage detection and localization concept. The algorithm applies various action conditions and tracks the change in
dynamics (force/torque feedback) in time. Resultant feedback is then used to classify the damage into one of the pre-trained damage configurations.
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even localized by using the time-of-arrival difference approach

(George Thuruthel et al., 2021), which is not available in cable-

driven and passive grippers. Therefore, we believe that the

proposed approach closes a significant gap in damage

detection and localization in soft grippers.

Another important aspect is the input space of the model. We

define the model input as a three-dimensional space (see

Figure 2). The first dimension of the model denotes the

feedback dimension at the mounting point where we actually

measure the dynamics. In our setup, six strain signals correlated

to three-dimensional force and torque vectors are sensed at the

mounting point of the gripper. The second dimension of the

model space describes the applied actions, which in our case is

the orientation (roll angle) of the gripper. Other types of actions,

for e.g., changing frequency, changing oscillatory patterns, or

various motion trajectories, can also be used depending on the

equipment specifications and gripper morphology. The roll angle

of the gripper, in our case, was sufficient by providing a high level

of both damage detection and localization (see Section 4.2 for

further analysis). Furthermore, the admittance-type robotic

device, which is commonly used in most robotic applications,

provides a narrow dynamic range. This makes frequency

modulation, for instance, less practical. The last dimension of

the model is the time, i.e., the number of data-points in a

sequence. Longer time series accommodate a wider range of

oscillation frequencies, which in turn helps to discover the

changes in dynamics. We assessed the effect of both sizes of

action and time space in Section 4.2.

2.1 Model architecture

The architecture of the classification model is depicted in

Figure 2. We use a single-layer biLSTM network with 50 hidden

units. The number of hidden units was empirically determined.

Increasing the number of units leads to over-fitting (the

classification performance of the model evaluated on the

validation set is lower than that obtained on the training set).

On the other hand, decreasing the number of units degrades the

overall classification performance. The activation functions for

the state and the gate of biLSTM units were selected to be

hyperbolic tangent and sigmoid, respectively. To further

reduce the over-fitting, we employed a drop-out layer after

the biLSTM layer, which employs regularization by switching

off the units with a uniform probability of 0.5. The fully

connected layer provides a linear mapping of the biLSTM

output to 43 classes of damage. The probability distribution of

model prediction is then obtained through exponential

normalization by a softmax layer. To train the proposed

network, we employed the stochastic gradient descend (SGD)

strategy along with the adaptive moment estimation (ADAM)

optimizer. The size of mini-batches was set to 600 samples. The

learning rate was set to 1–e3 with no learning rate scheduler

applied.

It is important to notice that the classification of the model is

conditional on the applied oscillation pattern. This means that in

order to detect the damage, a specific pattern of motion is

required to be applied periodically. Developing the model that

determines the damage from the arbitrary motion is on our

agenda for future research.

3 Experiment

In this section, we present the robotic setup equipped with

the soft Fin Ray gripper that we used to test and evaluate the

proposed method for damage detection and localization. We also

explain the sample set used for data collection of 43 damage

configurations, i.e., partial and complete damage at the inner side

of the Fin Ray fingers (see Section 3.1 for detail). Finally, the data

processing and preparation of training and testing datasets are

described in Section 3.2. The flow diagram of data collection and

processing is depicted in Figure 3.

To evaluate the proposed model, we built an experimental

setup, as depicted in Figure 4. To oscillate the object and

capture changes in gripper dynamics, we utilized the robotic

FIGURE 2
Architecture of the proposed damage detection/localization model.

Frontiers in Robotics and AI frontiersin.org04

Abdulali et al. 10.3389/frobt.2022.1016883

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1016883


manipulator (UR5, Universal Robots; Odense, Denmark). The

robotic device was operated in a servoing mode with a

300 gain and a 0.1 look-ahead time. These parameters

allow the stable operation of the robot to shake the gripper

with 22 and 4 Hz excitation magnitude and frequency (see

Section 3.2 for further detail). We manufactured the mock-up

of a Fin Ray gripper with replaceable silicone fingers. The

fingers were cased in a 3D-printed mold using a two-

compound silicone (Dragon Skin 20, Smooth-On Inc.;

Macungie, Pennsylvania, United States). To capture

changes in gripper dynamics, we utilized a six-degree-of-

freedom force/torque sensor (Nano43, ATI Technologies;

Markham, Ontario, Canada). The force/torque sensor is

connected to two data acquisition devices (USD-6002 and

USB-6008, National Instruments; Austin, Texas,

United States) through a signal amplifier. The force/torque

signals were obtained at the sampling frequency of 125 Hz. It

is to be noted that we use raw signals obtained directly from

strain gauges of the force/torque sensor with no conversion to

physical units. The conversion, i.e., linear scaling using a

calibration matrix, is not required in our setup as we

normalize signals to zero mean and unit variance before

training.

The robotic manipulator was controlled in a servoing mode

with an update frequency of 125 Hz. The initial configuration of

the gripper was aligned to horizontal orientation, as can be

observed in Figure 6. To oscillate the gripper, we modulated

the angular displacement (pitch) of the last link of the

manipulator. The roll of the gripper can also be adjusted

before shaking it. In the current experiment, we collected the

data on eight levels of roll with a 45° interval. It is to be noted that

the last link was extended by an aluminum profile to increase the

amplitude of oscillations. This allows using the setup in a

laboratory environment with the robotic arm mounted on a

table. In a grounded configuration, typically used in industry, the

longer link (e.g., second to last) can be oscillated to increase the

magnitude of vibrations.

3.1 Damage samples

To test the proposed concept, we prepared a mock-up of the

two-fingered Fin Ray gripper. Each finger of the gripper can be

changed to the damaged one. Three types of damage

considerably affecting the performance of the gripper were

introduced, i.e., a complete cut on a single side of the gripper

and partial cuts on both edges of the finger (see Figure 5 for

example). Taking into account that the damage typically happens

at the contact areas of the gripper with objects, we consider only

the inner sides of both fingers in this study. For convenience, we

labeled damage using the following strategy: we named each

finger of the gripper using capital letters of the English alphabet,

FIGURE 3
Data collection procedure. The 43 damage combinations are collected bymanually replacing the fingers of the Fin Ray gripper (see red line). For
each damage combination, the robot collected data for eight roll angles of the gripper. The collected data are further segmented into 125-point-
long signals using the sliding window strategy with the 10 points of the shift step between each pair of consecutive segments.

FIGURE 4
Experimental setup used for data collection.
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i.e., A** and B**, for the case of the two-fingered Fin Ray gripper.

Then, starting from the top end of the finger, we numbered the

area between each cross-beam from 0 to 7, for e.g., A1*. Finally,

we labeled three types of damage using the abbreviation F for

complete damage and L and R indicating partial damage starting

from the left and right edges, respectively. For instance, B3F

means that the finger B is damaged across the complete contact

area 3. Likewise, A4L indicates partial damage of the contact area

4 starting from its left edge. In total, there are 42 possible

combinations of the damage for the current gripper.

Additionally, we consider the case with no damage to the

gripper, which we denote using label 0. Therefore, we can

classify the state of the deformation of the current gripper

into 43 classes.

It is important to note that we selected passive soft

grippers in our experiment to eliminate the additional

factor of actuation. The interaction of the damaged gripper

with a third-party object is beyond the scope of the current

study. In future works, the actuation can be incorporated as an

additional input signal, for instance, or even used as the main

source of actuation to determine the changes in dynamics.

Additionally, the performance of the gripper with various

damage sites can be evaluated during interaction with

arbitrary objects. The damage types, in this case, can be

further classified as severe damage (the gripper is no longer

applicable and requires human attention) and damage that

allows particular interactions. In a similar fashion, this

approach can be scaled-up to multiple fingers and fingers

with different topologies.

3.2 Dataset

We collected two sets of data for each damage configuration.

The first set of data was used for training and cross-validation

and consisted of 25 recording trials. The second set of five

recording trials was collected for testing for the corresponding

damage configuration but from different Fin Ray fingers, which

we additionally prepared to evaluate the generalization of the

learning approach. In each data collection trial, we shook the

gripper with an angular magnitude of π/22 and frequency of 4 Hz

for eight orientations of the gripper (see Figure 6). The

combination of the magnitude and frequency was selected

based on the device’s characteristics. Further increase in

frequency or magnitude leads to skipping the motion steps or

jerky movement of the robotic arm. The recording time for each

orientation was 5 s. Thus the total number of recordings for

43 classes was 8,600 (43 × 8 × 25) for training and 1,720 (43 × 8 ×

5) for testing sets. Each recording was further segmented into

short time-series data using a sliding window of 125 points length

with 10 points of the shift step. Examples of time-series segments

for different deformations and gripper orientations are illustrated

in Figure 7. As shown in Figure 7, the dominant frequency of

signals corresponds to 4 Hz, i.e., the signal of applied excitation.

The signal, however, consists of additional frequency

components (as the reviewer has mentioned) that play an

utmost important role in our approach. This additional

frequency captures morphological and material aspects of the

gripper, as well as possible damage. This means that the

introduced damage affects the frequency content of respective

FIGURE 5
Two-fingered Fin Ray gripper and examples of possible damage. On the left, the gripper equipped with a force/torque sensor at the mounting
point of soft fingers is illustrated. Examples of partial and full damage are presented to the right. Partial damage starting from both edges is considered
in this study individually.
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magnitudes to the ones captured from the non-damaged gripper.

The segmentation strategy that we applied allows the classifier to

be invariant to the initial condition and improve the

generalization of the model. The total size after segmentation

of the training and testing datasets becomes 54,825 and

10,965 six-dimensional signals, respectively. It is to be noted

that we did not apply any filter to the data to prevent loss of

important information. Additionally, the natural noise in data

FIGURE 6
Eight roll angles of the gripper used for data collection. The angular displacement between each neighboring pair orientation is 45°.

FIGURE 7
Normalized force (sg-1–sg-3) and torque (sg-4–sg-6) strain gauge signals for four damage configurations. The plots show that differences
between two signals of different damage locations but in the same gripper orientation are not obvious.
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prevents over-fitting of the network, which further improves its

generalization.

4 Results and discussion

The goal of the current section is to evaluate the proposed

classification approach in terms of damage detection and

localization. Damage detection is the ability of the model to

determine the presence of any damage at the current

configuration of the gripper. Damage localization is, on the

other hand, the classification accuracy of a particular damage

type and location (see Section 4.1 for detail). Additionally, in

Section 4.2, we analyze the effect of the input space design in

terms of the dimension of applied actions, i.e., the orientation

of the gripper, and the number of data points of the time

series.

4.1 Damage detection and localization

To evaluate the detection and localization of damage on

the two-fingered Fin Ray gripper, we trained the model (the

loss function of training and validation is shown in Figure 8A)

FIGURE 8
(A) Training progress of the biLSTM network. The validation is performed using unseen data during training, which we also use for testing (see
Section 3.2). Damage localization results. (B) Classification results for 43 individual damage configurations. The red line indicates the threshold used
to reduce the number of classes in the confusionmatrix in (C). (C) Reduce confusionmatrix. Only damage configurations with classification accuracy
up to 90% are presented to increase readability. The original 43 × 43 confusion matrix is sparse as much damage exhibits a near-perfect
classification.
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and tested it using the datasets from Section 3.2. The overall

classification result for unseen testing data was over 97%. To

reveal the damage detection rate, i.e., accuracy for the “no-

damage” class, we plot the classification results for all test

classes in Figure 8B. The accuracy of the correct “no-damage”

prediction was 89.4%. If we consider the binary case of

detecting if there is damage or not, then the damage

detection rate is over 99%. Both precision and recall, in

this case, are over 0.99.

For further analysis, we plotted the confusion matrix in

Figure 8C for classes where the classification accuracy was

below 90% (the threshold is represented by a red line in

Figure 8B). This helps to reduce the number of entries in

the matrix and see the most misclassified test-prediction pairs.

The classifier tends to confuse the no-damage class with the

B5L one. This also holds the other way around, where the B5L

was misclassified as a “no-damage” case in 27 out of 255 tests.

It is reasonable to consider that the dataset of B5L with an

overall classification accuracy of 70% is rather an outlier as the

result for A5L (symmetric damage in the other finger of a

gripper) is nearly perfect with 98% detection accuracy (see

Figure 8B). The accuracy for 5BL is a bit lower than that of

others, presumably due to sticking of the cut edges (of the

damage). Therefore, some data were detected as “no-damage”

for 5BL. We observed this behavior during preliminary

experiments. This problem could be potentially resolved by

applying silicon oil at the damaged location. However, to keep

the experiment more realistic, we decided to leave the samples

damaged more naturally. The worst accuracy of 83.1% for

localizing full damage belongs to the A2F case. Localizing

damage closer to the tip of the gripper is generally more

challenging due to lower inertia of the remaining body parts

after the damage location.

We also performed the 10-fold cross-validation only for the

training dataset. Each test result from cross-validation was

concatenated, and the final classification accuracy was

computed. The overall accuracy was 99%. The worst

performance was observed for the A6R case with 93%,

whereas the rest of the damage cases are correctly classified as

97% or higher. The reason for that is the segmentation strategy

used in Section 3.2, where the signals overlap one another.

Therefore, part of the signal used in training can appear as a

part of testing, which simplifies the task to the classifier. This

cross-validation analysis once again justifies the choice of using

the unseen data for testing that we utilized in the main

experiment.

4.2 Input dimension analysis

To analyze the effect of each roll angle that we used in the

action dimension of the model, we ran the training for

reduced input size of the individual gripper orientation.

The results of this experiment are presented in Figure 9.

The classification accuracy significantly differs for various

roll angles. The classification results for various angles are

different mainly due to the morphology of the gripper,

i.e., two fingers are vertically aligned. The changes in the

dynamics while shaking the gripper in certain directions are

more prominent than other changes. This mainly explains

the reason for the noticeable difference in classification

accuracy. The best performance is observed for π/2 and

FIGURE 9
Damage classification results. Left, classification accuracy for different orientations of the gripper illustrated in Figure 6. Middle, the damage
localization accuracy for combinations of N worst gripper orientations (ranked according to their classification accuracy). Right, the classification
results with respect to the number of data points in the time series.
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3π/2 (horizontal configuration, i.e., orthogonal to the

direction of oscillation) having nearly 96% classification

accuracy. This means that even the data collected for a

single gripper orientation can be already used for damage

detection. To perform further analysis, we sorted roll angles

accordingly to classification accuracy and ran the training for

input spaces with first N orientations having the worst solo

performance (see the middle plot in Figure 9). It is clearly

seen that 2–4 orientations having 94% detection are worse

than either π/2 or 3π/2 angles only. Furthermore, the

accuracy for π/2 and 3π/2 orientations is as high as that

of the other roll angles combined. To analyze the effect of the

number of samples in the sequence, we used all eight

orientations and ran training for eight different lengths of

signals (see the right plot in Figure 9). Five data points of the

48-dimensional signal (6 strain signals × 8 roll angles) can

produce a detection rate of over 75%. The signal length of

10 samples, which is almost a half period of applied

oscillation, exhibits a classification accuracy of roughly

87%. The detection rate increases over 95% for the

sequence equal to the full period of a sine wave applied to

oscillate the gripper. It is important to notice that the initial

condition of each signal in the training and testing datasets is

shifted according to the segmentation rule presented in

Section 3.2. This means that any 25 points of the signal

can produce a reasonable level of damage localization.

Approximately 75 data points are enough to realize the

full potential of the classification model.

5 Conclusion and future work

In this paper, we develop a novel approach to damage

detection and localization on a soft Fin Ray gripper. This

identifies damage based on changes in dynamics observed at

the mounting point of the gripper, which in turn does not

require embedding strain sensors into the gripper and visual

tracking of morphological changes. The proposed approach

classifies the location of both partial and full cuts on either of

the two fingers of the Fin Ray gripper. The proposed approach

is evaluated using the unseen data with a damage detection

accuracy of 99% and average localization of the damage of

97%. We have also shown that oscillating the gripper with an

optimal orientation can outperform the classification accuracy

of the model with an input of six roll angles combined.

Additionally, we discovered that the length of the signal of

the order of complete sine wave of oscillation can provide a

reasonable level of damage localization.

There are several research directions that we are planning

to explore in our future work. First, we would like to develop a

model that identifies damage locations based on arbitrary

movement, with no need to stop the operation of the robot

and perform a predefined pattern of oscillatory movement.

Second, the regression model can be beneficial to damage

detection and localization of a continuum of the gripper’s

matter. Third, it would be great to explore non-invasive

material identification and characterization using non-

linear dynamics. Finally, we would like to extend our

approach to other types of the gripper with additional

actuation methods, such as tendon-driven, pneumatics, and

hydraulics.
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