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Introduction

Adaptive robotics achieved tremendous progress during the last few years (see Nolfi

(2021) for an introduction and review). The term adaptive robotics refers to methods

which permit the design of robots capable of developing their skills autonomously

through an evolutionary and/or learning process. It focuses on approaches requiring

minimal human intervention in which the behavior displayed by the robots and the

control rules producing such behavior are discovered by an adaptive process

automatically on the basis of a reward or fitness function which rates how well the

robot is doing. It focuses on end-to-end learning, i.e. on systems which receive as input

directly the state of robot’s sensors and determine directly the state of the robot’s

actuators, without involving any type of hand-designed pre-processing. Finally, it

focuses on model-free methods, i.e. on systems which do not have an internal model

of the environment, or in which the internal model is acquired automatically during the

adaptation process. In this article I will review the major advances and the research

challenges.

Advances

The first examples of adaptive robots date back to many years ago (Mahadevan &

Connell, 1992; Nolfi et al., 1994). These works, however, were restricted to rather simple

robots and tasks and to robots characterized by low-dimensional observation and action

spaces. Successful applications of adaptive methods to complex problems were achieved

only recently. Those include robots capable of displaying dexterous manipulation (Gu

et al., 2017; Andrychowicz et al., 2018) and bipedal walking (Salimans et al., 2017; Yu,

Turk & Liu, 2018).

A first major advance was achieved through the development of more powerful

adaptive algorithms. The introduction of deep learning techniques, such as modern

stochastic optimizers and regularization methods (see Arulkumaran et al., 2017 for a

review), permitted to scale-up reinforcement learning methods to problems that were

previously intractable. Moreover, the development of modern evolutionary strategies,

which uses a form of finite difference method to estimate the gradient of the expected

fitness [see Pagliuca, Milano & Nolfi [2020]; Salimans et al., 2007; Pagliuca, Milano &

Nolfi (2020)], permitted to scale-up evolutionary methods to problems involving high-

dimensional observation and action spaces.
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A second major advance concerned the reality-gap problem.

Adaptive approaches generally require long training processes.

Carrying the training in hardware is feasible but expensive (see

for example Levine et al., 2017). Moreover, it usually requires

designing special devices to calculate the reward and to

periodically reset the environment. Carrying the training in

simulation is much more convenient and permits to speed up

the process through the usage of parallel computation. The

development of domain randomization methods permit to

obtain robots which can cross the reality gap, i.e. which can

keep working properly once moved from simulation to the real

world. Domain randomization, originally proposed by Jakobi

et al. (1995), is realized by randomly sampling different

simulation parameters during the training of the robot. The

parameters subjected to variations can include dynamic

parameters of the robot and of the environment (Peng et al.,

2018; Tan et al., 2018) and visual and rendering parameters such

as texture and lighting (Sadeghi & Levine, 2017; Tobit et al.,

2017).

The usage of simulation also permits to improve and speed-

up learning by exploiting the information contained in the

ground-truth state of the robot and of the environment which

is available in simulation and which cannot be accessed in

hardware. Such information can be used to compute the

reward and/or can be provided in input to the critic which is

used to estimate the expected reward during the training process

(for an example, see Andrychowicz et al., 2018).

Finally, a third major advance regards the development of

methods and techniques which improve the exploration capacity

of the adaptive process thus reducing the risk to incur in

stagnation or local minima.

Intrinsic motivation (Badia et al., 2010; Schmidhuber, 2010)

achieves this objective by rewarding the robots also for displaying

new behaviors and/or experiencing new observations. The

rationale behind the approach is that the new behaviors

acquired in this way can be later reused to produce functional

behaviors. Similarly, novel observations can promote the

development of new functional behaviors afforded by them.

Curriculum learning manipulates the learning experiences of

the robot to facilitate the adaptation process and to challenge the

weakness of the adaptive robot. This is realized by varying the

characteristics of the evaluation episodes so as to expose the robot

to conditions which are difficult but not too difficult and which

challenge the weaknesses of the adapting robot (see for example

Milano & Nolfi, 2021). Alternatively, it is realized by storing the

previous learning experiences in a replay buffer and by choosing

the samples on the basis of some measure of usefulness. The

priority can be given to the samples which generate the highest

learning progress (Schaul et al., 2015), the samples with the

highest complexity (Ren et al., 2018), or the samples which are

less common (Cohn et al., 2016).

Competitive co-evolution (Lan, Chen & Eiben, 2019; Simione

& Nolfi, 2021) or self-play (Bansal at al., 2018) expose the

learning robots to environmental conditions which become

progressively more difficult and challenging. This is realized

by training a robot for the ability to defeat a competitor and

by concurrently training the competitor for the ability to defeat

the robot. This form of adversarial learning can produce an open-

ended process in which the abilities of the robot and the

complexity of the task keep increasing in an unbounded manner.

Finally, experience replay (Andrychowicz et al., 2017)

permits generating positive training data. This is obtained by

transforming the training data leading to failure with respect to a

given objective to training data leading to success with respect to

a different objective, i.e. the objective which corresponds to the

actual outcome of the robot’s behavior. Generating positive

training data is particularly useful in problems in which the

probability to receive positive rewards is initially low.

The aspects discussed above are still actively investigated as

the topics reviewed in the next Section. The difference lies in the

fact that the former already produced consolidated results.

Promising research directions

In this section, I will briefly illustrate promising research

directions that may enable substantial further progress in the

field.

A first research line concerns the usage of modular

architectures supporting knowledge re-use. The importance of

knowledge re-use is demonstrated by the efficacy of

convolutional neural networks which are commonly used for

vision processing. Such efficacy is largely due to the fact that the

same connection weights are used for processing different sub-

sections of the image. Modular architecture of different kinds

suited to process different types of information might provide

similar advantages. The architecture proposed by Huang et al.

(2020) to control the joints of multi-segments robots (see also

Wang et al., 2018) represents an interesting proposal of this kind.

The model includes neural modules that have identical

connection weights. Each module controls a corresponding

joint and receives inputs from the local sensors only. The

differentiation of the activity of the joints is obtained through

messages passed between neighboring modules which propagate

to distant modules. As shown by the authors a single modular

policy can successfully generate locomotion behaviors for robots

with varying morphologies and can generalize to new

morphologies not encountered during training such as

creatures with extra legs.

A second important research line concerns the developments

of methods supporting the development of multiple behaviors

and behavior re-use. Current research focuses on the

development of a single skill from scratch. Such skills might

involve lower-level skills which are instrumental for achieving

the corresponding function. On the other hand, the behavioral

repertoire which is functional to the achievement of a single goal
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is limited. We should find methods enabling the robots to

progressively expand their behavioral repertoire during the

adaptation process in an open-ended manner. This also

involves the synthesis of systems with multi-level and multi-

scale organizations in which the lower level skills are combined

and re-used to produce higher level skills (Nolfi, 2021).

Finally, a third important research line concerns world

models, i.e. the possibility to design agents capable of

acquiring a model of the world and of their interaction with

the world and to use it to maximize their expected reward (Ha &

Schmidhuber, 2018a and, 2018b; Hafner et al., 2018, 2020). Such

world models can incorporate the large amount of information

possessed by humans and animals which is usually indicated with

the term common sense (Le Cunn, 2022). Examples of common

sense knowledge are the fact that the world is tridimensional, the

fact that the world includes objects of different kinds, the fact that

objects preserve their properties and move smoothly etc.

Common sense knowledge can be acquired conveniently

through a form of latent or self-supervised learning. The

challenge is thus to design robots capable of acquiring a

model of the world through self-supervised learning, capable

of exploiting the common sense knowledge acquired to improve

their adaptive capability, and eventually capable of using their

world model to reason and plan mentally without necessarily

interacting with the external environment.

The latent learning process which can be used to acquire the

world model can be realized by training the robot’s neural

network to capture the mutual dependencies between its

inputs, e.g. by training the robot to predict future observation

and rewards on the basis of the previous observations and on the

basis of the action that the robot is going to perform. The idea to

use neural networks and self-supervision to learn models for

control is not new and has been proposed originally in the 90s by

Jordan & Rumelhart (1992). The interest in the idea renewed

after the proposal of new methods which overcome the problem

caused by the fact that the world is only partially predictable by

predicting a representation of the state of the world instead of

directly the state of the world. This is realized by learning

concurrently how to represent the world and how to predict

the next representation on the basis of the previous

representations. Moreover, it is realized by choosing

representations which maximize both the information

preserved in the representation and the predictability of future

representations (Le Cunn, 2022).

The world model can be used in two different modalities

which correspond to the “System 1” and “System 2” components

described by Daniel Kahneman (2011), see Le Cunn (2022). In

the first case the policy produces the action directly on the basis

of the observation and on the basis of the state of the world model

which anticipates the future state of the world. In the second case,

the agent reasons and plans by using the world model. More

specifically, it proposes an initial sequence of actions, uses the

world model to compute future states of the world and reward,

propose better action sequences, and finally execute the action

sequence. The action sequence to be executed can be obtained by

using a form of dynamic programming (Bertsekas, 2019) or by

identifying the best action directly through a gradient-based

method.

Although the first realizations of the idea (Ha & Schmidhuber,

2018a and, 2018b; Hafner et al., 2018, 2020) are promising, several

aspects still represent open challenges. A first challenge concerns

the identification of methods ensuring that the data experienced

are sufficiently rich and varied to acquire an effective world model.

A second challenge concerns the identification of methods

ensuring that the learning process does not become unstable.

Finally, a third challenge concerns the identification of how the

System-2 component can be implemented in detail and can be

integrated with the System-1 component.

Conclusion

Developing intelligent robots capable of acquiring their skills

autonomously in interaction with the environment is one of the

most ambitious objectives of science. The challenges which are

still open are substantial but appear feasible in light of the

progresses achieved in the last years.
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