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The paradigm change introduced by soft robotics is going to dramatically push

forward the abilities of autonomous systems in the next future, enabling their

applications in extremely challenging scenarios. The ability of soft robots to

safely interact and adapt to the surroundings is key to operate in unstructured

environments, where the autonomous agent has little or no knowledge about

the world around it. A similar context occurs when critical infrastructures face

threats or disruptions, for examples due to natural disasters or external attacks

(physical or cyber). In this case, autonomous systems may be employed to

respond to such emergencies and have to be able to deal with unforeseen

physical conditions and uncertainties, where the mechanical interaction with

the environment is not only inevitable but also desirable to successfully perform

their tasks. In this perspective, I discuss applications of soft robots for the

protection of infrastructures, including recent advances in pipelines inspection,

rubble search and rescue, and soft aerial manipulation, and promising

perspectives on operations in radioactive environments, underwater

monitoring and space exploration.
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1 Introduction

The ability of securing critical infrastructures in case of sudden disruptions is

paramount to ensure the supply of goods and services that guarantee the stability of

our societies (Lichte et al., 2022). In this context, advanced autonomous systems (mobile

robots, drones, sensor networks) are being employed not only for monitoring the correct

functioning of infrastructures but also to intervene in case of an emergency, either man-

made or caused by natural disasters, leading to the formation of the scientific community

of Safety, Security and Rescue Robotics (Murphy and Kleiner, 2013). The use of

autonomous systems can be explained by several reasons, including prompt and

frequent deployment, reduced operational costs and full digitisation of the tasks.

Nevertheless, the most compelling reason is surely the need of protecting human

lives, minimizing the safety risks that operators and civil protection practitioners

undergo during maintenance and emergency responses.

The robots that populate our factories and revolutionized manufacturing processes

consist of clever assemblies of rigid links and electric motors. They are typically made of

steel or other stiff materials, which make them heavy and sturdy, very dangerous in case of
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collisions with humans operators. This is the reason why we are

used to see industrial robots relegated into cages or in specific

areas with limited access of personnel. Moreover, for the sake of

performing specific and repetitive tasks, robots have been made

even stiffer by implementing controllers to improve accuracy and

repeatability of the motion and avoid any unintended contact

(Della Santina et al., 2017). While this approach revealed to be

extremely successful in the industrial context, it appears to be

detrimental for robots that are intended to operate outside the

factories, in scenarios where tasks are uncertain and unique and

the presence of humans is ubiquitous. We refer to this last type of

scenarios as unstructured environments as it could be a disrupted

infrastructure, whereas assembly lines and warehouses are

typically structured environments.

With these premises, soft robotics aims at introducing

elasticity in the robot body, decreasing the overall stiffness,

while embracing and harnessing mechanical interaction with

the environment (Albu-Schaffer et al., 2008; Rus and Tolley,

2015). The elasticity can be localized in the joints (articulated soft

robots) by adding springs in the actuators or can be distributed in

the whole robot body (continuum soft robots) by using soft

materials, such as elastomers, gels and biohydrid materials (Della

Santina et al., 2020). Continuum soft robotics has recently

attracted a lot of attention due to its multidisciplinary nature,

combining expertise in materials science and solid mechanics.

Soft robotics is anticipated to foster the use of autonomous

systems in fields where human-robot interaction is

preeminent, such as minimally invasive surgery, rehabilitation

devices, elderly care, virtual reality, housekeeping etc (Majidi,

2014; Cianchetti et al., 2018).

In this paper I share thoughts on how soft robotics can be a

game-changer regarding the deployment of autonomous systems

for infrastructures protection. In such extremely unstructured

environments, where there are multiple uncertainties and on-

going risks, providing autonomous systems with extremely

sophisticated artificial intelligence algorithms, which

drastically improve their perception and planning abilities, is

certainly fundamental, but it would not be enough to guarantee

human-like performances as long as the mechanical behaviour of

such systems stays poor. With a poor mechanical behaviour it is

meant a system that does not make an intelligent use of the

physical properties of its body and, therefore, not only cannot

interact and adapt to the environment either passively or actively,

but also cannot store and release elastic energy to increase its

energy efficiency while performing tasks. Those concepts are well

known under the umbrella term of embodied intelligence (Pfeifer

and Bongard, 2006), a paradigm in robotics, neuroscience,

psychology and philosophy that stresses on the fact that the

intelligent abilities of an agent do not depend only on the brain

but also on the body, via the physical interaction with the

environment.

In the next sections, I report examples from the literature that

show promising applications of soft robotics for the protection of

infrastructures as summarized in Figure 1. Finally I discuss

current limitations and give an outlook on future developments.

2 Soft robotics for infrastructure
protection

2.1 Pipelines inspection

Pipelines are a fundamental component of terrestrial

infrastructures and their correct operations are vital to the

stability of our societies, considering freshwater supply and

sewage. Pipelines inspection can therefore prevent failure

events that may lead to a critical disruption of the

infrastructure. Robotic systems are a preferable solution over

human maintenance, for cost and safety reasons, since it is not

required to shut down and empty the pipe (Adams et al., 2018).

However, rigid robots are limited in terms of flexibility needed to

navigate pipes of different dimensions, which is the reason soft

robots are anticipated to outperform them.

Most soft robots designed for pipes inspections are inspired

by the movement of inchworms, and perform a peristaltic

crawling locomotion across the tubular shape of the pipe.

Those robots typically use flexible components at their

extremities to anchor to the inner surface of the tube, and

FIGURE 1
Schematic overview of possible areas of application of soft
robotics in the context of the protection of critical infrastructures,
such as inspection and monitoring of pipelines, rubble search and
rescue, soft aerial manipulation, underwater monitoring and
exploration, operations in radioactive environments and space
exploration.
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extending actuators distributed along the body to move forward.

The anchors can consist of passive elements like rubber

membranes with embedded grooves for differential friction

(Zhang Z. et al., 2019) or active elements, such as radially

expanding inflatable actuators, that can be made of fabrics

(Adams et al., 2018) or rubber (Zhang B. et al., 2019, 2018;

Liu et al., 2022). Additional extending actuators can be added to

the structure of such robots to give them the ability to turn in

presence of a pipe split (Zhang et al., 2019a,b). Liu et al. (Liu et al.,

2022) demonstrated some functional characteristics for pipes

inspections (Figure 2A), such as following the pipe path

regardless the direction of gravity, carrying weights, moving in

dry, wet and oily pipes, removing objects from the pipes and

moving underwater. The soft robot of Zhang et al. (Zhang et al.,

2018) was succesfully tested in pipes with varying diameters.

Other authors were able to embed a camera in the robot (Zhang

et al., 2019b,a), actually providing the inspection ability.

2.2 Rubble search and rescue

Collapses of buildings due to explosions (bomb attacks or

accidental gas leakages) or natural disasters (earthquakes or

flooding) may unfortunately result in people trapped under

the rubble. In this scenario, a robotic system deployed for

search and rescue has to be able to navigate narrow and

cluttered environments to locate people and establish a

communication, undergoing inevitable interaction between the

robot and the rubble, which may cause further collapses. Soft

robots are ideal candidates not only due to the low forces exerted

FIGURE 2
Examples of soft robotic systems performing tasks useful for infrastructure protection. (A) Soft crawler navigating an S-shaped pipe [Figure adapted
from Liu et al. (2022), (CC BY 4.0)]. (B) Inspection skills of a vine robot [Figure adapted from Hawkes et al. (2017), © [2017] AAAS. Reprinted with
permission]. (C) Aerial dynamic grasping using a soft gripper [Figure adapted from Fishman et al. (2021), © [2021] IEEE. Reprinted with permission].
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during those interactions, but also due to their ability to harness

mechanical contact as feedback for navigation.

A class of soft robots that have a great potential for this task

are growing robots. Growing robots (growbots), as one may

deduce, consists of robotic systems that expand their body from

the tip, inspired by the movements of plants’ roots. Contrary to

mobile soft robot, growing robot have the advantage of a fixed

base that can house the energy supply and the control systems,

avoiding the technical challenge of integrating such components

on board of the soft robot body. The growing tip has the

directional control, enabling steering, while the “grown body”

maintains its deformed shape. Growing can be achieved through

continuous 3D printing (Sadeghi et al., 2017) or by inflation of

inverted thin-wall tubes (so-called vine robots), either single tube

(Hawkes et al., 2017; der Maur et al., 2021) or multiple small

tubes (Tsukagoshi et al., 2011). In 3D printing growbots, steering

is achieved through a differential material deposition along the

cross-section, resulting in the formation of a curvature. Vine

robots (Figure 2B), instead, can steer through an asymmetric

lengthening of the inflated tip. In both systems the tip acts as

sensors’ carrier to enable monitoring and inspections tasks, using

cameras (Tsukagoshi et al., 2011; Hawkes et al., 2017), IMUs,

speaker and microphone for communicating with possible

trapped persons (der Maur et al., 2021), environmental

sensors (Sadeghi et al., 2017).

Regarding tests in realistic environments, RoBoa, a vine robot

developed at ETH Zurich (der Maur et al., 2021), has been

successfully deployed in a debris site used for training civil

security practitioners. The robot was teleoperated to navigate

through rubble and locate a trapped person 10 m far from the

growing starting point, showing the potential of such soft robotic

systems.

2.3 Soft aerial manipulation

In critical situations it is often not sufficient to deploy

autonomous systems that can only perceive the environment,

but it is necessary that they are provided with the ability of

performing an action, which may be needed to restore the

security of an infrastructure. In this context, aerial robots are

widely employed due to their fast motion and independence on

the ground conditions, and, therefore, implementing a gripper on

an aerial robot is a promising approach to equip autonomous

systems with grasping capabilities. A thorough review of aerial

manipulation is reported in (Bonyan Khamseh et al., 2018).

Recently, within the paradigm of soft robotics, many new

designs of soft hands and soft grippers have been proposed,

which harness the compliance of the fingers to grasp objects of

different shapes and materials with a reduced amount of

computation in the control system (Shintake et al., 2018).

Accordingly, such soft grippers are being implemented on

aerial robots to enable universal and dynamic grasping.

Underactuated tendon-driven grippers have been the earliest

implementation of soft aerial manipulation, proving its feasibility

with retrieving unstructured objects (Ghadiok et al., 2011;

Pounds et al., 2011). Soft bag actuators with variable

restriction mechanism to control the bending motion have

been used in an aerial manipulator that can push doors and

twist knobs (Tsukagoshi et al., 2015). Four completely soft

tendon-actuated fingers have been attached to a quadrotor to

grasp objects of unspecified shapes during fast movements

(Figure 2C), inspired by the grasping capabilities of biological

systems (Fishman et al., 2021). Similarly, RAPTOR (Appius et al.,

2022) is a soft aerial manipulator equipped with a customized Fin

Ray® gripper (Festo and KG, 2018) to also perform fast aerial

grasping, reporting grasping velocities up to 1 m/s.

2.4 Further potential applications

The three applications reported in the previous sections are

currently the most advanced in the context of soft robotics for

infrastructure protection, based on the success of the proof of

concepts reported by the authors. However, there are also

perspectives about the advantage of adopting soft robotic

technology in other aspects of critical infrastructures, such as

autonomous operations in radioactive environments (Vitanov

et al., 2021) and even space exploration (Zhang et al., 2022).

Yirmibesoglu et al. (Yirmibeşoğlu et al., 2019) studied the impact

of gamma radiation on the mechanical properties of

polydimethylsiloxane (PDMS), the most common silicone

rubber used for soft robotic fabrication. They found a

degradation of the mechanical properties with increasing

exposure to radiation, but with minimal effect up to 20 kGy,

inducing the authors to conclude that there is a great promise for

such application. Regarding space exploration, Zhang et al.

(Zhang et al., 2022) note that soft robots can potentially solve

the technological challenges that occur in space, related to high-

vacuum, microgravity, radiations and extreme temperatures, due

to their advanced materials and structural flexibility.

An additional thematic area that is key for the protection of

infrastructures is underwater soft robotics. Maritime

infrastructures are as critical and vital as terrestrial ones,

considering the strategic importance of underwater pipelines,

offshore wind power and oil and gas, and naval monitoring.

Moreover, fishes, octopuses and other aquatic organisms are a

preeminent bioinspired paradigm for soft robots due to their

flexible bodies and their swimming technique that can be

mimicked by soft actuators (Cianchetti et al., 2015;

Katzschmann et al., 2018). Indeed, bioinspired soft robots are

foreseen as future technology for unmanned underwater vehicles

(UAVs) thanks to the capability to adapt to the maritime

environment (Youssef et al., 2022) and withstand extreme

conditions as high pressures and hydrodynamic perturbation

(Aracri et al., 2021).
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3 Current limitations and
perspectives

Current limitations and problems are common to any type of

soft robots and reflect some fundamental challenges that need to

be addressed to push the technology further.

Soft robots are still largely tethered to their energy supplies

and control units, posing a serious limit to the operational space.

As discussed earlier, this problem does not concern growing

robots with a fixed base, but is particularly pressing for soft

crawlers that inspect pipelines, where the robot is supposed to

autonomously move for tens of meters. At this current stage of

technology, softness is mainly confined to the actuators and the

structural elements of the robot body, whereas other components

(pumps, batteries, electronics, cameras) are still made of rigid

materials, compromising the overall flexibility and increasing the

weight of the system. Therefore, at the laboratory level, such

robots are tethered to external pumps and the focus is on the

locomotion performances. However, recent research works are

tackling those issues, elaborating designs and manufacturing of

soft pumps (Cacucciolo et al., 2019; Tang et al., 2021), soft

computing systems (Garrad et al., 2019; Preston et al., 2019)

and flexible batteries (Mukherjee et al., 2021). Alternatively, a

reduction of the number of tethers can be achieved by

mechanically programming simple control tasks (e.g. a pattern

of actuation sequences) in the hardware of the system, by

harnessing the nonlinear response of soft actuators (Gorissen

et al., 2019; Milana et al., 2022) or soft valves (Rothemund et al.,

2018; van Laake et al., 2022).

Soft manipulation has proofed universal grasping

performances and its success relies on the fact that the

compliant fingers passively conform to the objects thanks to

the mechanical deformation. This allows the control system to

be reduced to a switch between a “grasp” and “no-grasp” state

and it typically requires no sensor feedback to successfully

operate. However, the absence of the “sense of touch” limits

the understanding of the grasping failure, as the system cannot

determine whether the force applied is not sufficient or the

gripper is wrongly positioned. The soft grippers implemented

in the aerial manipulators reported in the previous section do

not have this sense of touch, while it would be extremely

beneficial, for example during dynamic grasping, to

compensate for extra inertial forces generated by the

grasped objects. Sensorizing soft grippers is not

straightforward as the vast majority of commercially

available force and strain sensors are made of rigid

materials, limiting the structural compliance as mentioned

also in the previous paragraph. Innovative solutions consist of

highly stretchable strain sensors that can be directly embedded

in the soft fingers, for example using 3D printed ionic

conductive gels (Truby et al., 2018) or stretchable optical

waveguides (Zhao et al., 2016). Other sensing technologies

applied in soft grippers are reported by Shintake et al. in their

literature review (Shintake et al., 2018). Another promising

alternative is the GelSight technology, which consists of a

combination of computer vision and soft materials for tactile

reconstruction (Johnson and Adelson, 2009). Recently, Liu

and Adelson presented a Fin Ray® gripper with integrated a

GelSight sensor to sense object orientation and deformation

fields while grasping an object, performing reorientation and

placement of a delicate object such as a wine glass (Liu and

Adelson, 2022).

Most of the soft robotic systems reported in the previous

section have some active control rules to make them operate

fully autonomously. Soft aerial manipulators have

implemented trajectory optimization and adaptive control,

pipeline crawlers passively follow the tube shape due to

their bodily compliance and growing robot can actively

steer following visual or other sensory feedback. However,

such control schemes, which are successfully implemented in

lab environments, may be inadequate or insufficient in real

world scenarios. In fact, the growing robot RoBoa has been

teleoperated when tested in a realistic rubble search and rescue

task. Complete autonomous operations in complex

unstructured scenarios still requires research and

development efforts from both the software and hardware

side, and a prompter use of soft robotic systems for the

protection of infrastructures can be the remote control

from a civil security practitioner or other trained personnel.

This would make it possible to deploy a soft robotic system

without risking human lives and at the same time involving

humans in the planning and decision of the robot actions.

A compelling problem that soft robots share with their rigid

counterparts is energy consumption, which severely limits the

deployment time of such autonomous system. This is particularly

important in fields operations where the tasks are not clearly

defined (e.g. response to emergencies) and therefore several

hours of autonomy should be guaranteed. Legged robots like

Boston Dynamics Spot are starting to be used for infrastructure

protection due to their ability of walking on uneven terrains and

climbing stairs, but their operational autonomy last maximum

90 min1, if the batteries are new and not powering any additional

payload. Legged robots as well as soft robots are generally

inspired by biological systems, whereas the latter can

obviously “operate” much longer. In fact, biological systems

make use of distributed energy sources and their bodily

components are strictly interconnected and multifunctional,

while current robots are designed as assemblies of separated

building blocks (structure, actuators, sensors, control and power

units), making them less efficient at using energy to perform tasks

(Aubin et al., 2022). In this direction, recent trends in soft

robotics show efforts in creating autonomous systems that

exhibit some degrees of hardware multifunctionality (Aubin

et al., 2022).

Mechanical properties aside, another advantage of

using soft robots is their low cost and simplicity, due to
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the use of inexpensive silicone rubbers and the low amount of

components to assembly. This makes it economically viable to

use a large number of operating devices and, depending on the

application, disposable soft robots as well.

4 Conclusion

Intelligent autonomous systems are an asset for

infrastructure protection, from monitoring correct

operations to emergency response. Recent developments of

soft robotics are pushing the use of innovative autonomous

systems for specific tasks where entirely rigid robots may fail

or underperform, such as pipe inspection, rubble search and

rescue, and soft aerial manipulation. Further, there are

promising perspectives of soft robots being deployed for

operations in radioactive environments, underwater and

even in space. We discussed the current technological

limitations in such applications and highlighted new

promising solutions to overcome them, spanning between

the design of soft basic computers, sensors and batteries

and the augmented multifunctionality of the robot

hardware. In perspective, the embodied intelligence

approach, inspired by the biological systems that we

aim at mimicking, will be paramount to build the

next generation of robots with augmented duration of

autonomy, to be deployed for infrastructure protection and

other challenging unstructured environments.
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