
TYPE Opinion
PUBLISHED 05 December 2022
DOI 10.3389/frobt.2022.1027389

OPEN ACCESS

EDITED BY

A. E. Eiben,
VU Amsterdam, Netherlands

REVIEWED BY

Elio Tuci,
University of Namur, Belgium

*CORRESPONDENCE

David Howard,
david.howard@csiro.au

SPECIALTY SECTION

This article was submitted to Robot
Learning and Evolution, a section of the
journal Frontiers in Robotics and AI

RECEIVED 24 August 2022
ACCEPTED 22 November 2022
PUBLISHED 05 December 2022

CITATION

Howard D (2022), From the lab to the field

with Evolutionary Field Robotics.

Front. Robot. AI 9:1027389.

doi: 10.3389/frobt.2022.1027389

COPYRIGHT

© 2022 Howard. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

From the lab to the field with
Evolutionary Field Robotics

David Howard*

Robotics and Autonomous Systems Group, Data61, CSIRO, Brisbane, QLD, Australia

KEYWORDS

evolutionary robotics, field robotics, real-world applications, embodied intelligence,

morphological computing

1 Introduction

This commentary follows on from a recently-published guest editorial in Frontiers
in Robotics and AI entitled Evolving Robotic Morphologies (Howard et al., 2022a).
Motivated by findings from the many quality submissions, the central thesis of this
contribution is that evolutionary robotics and field robotics, despite seeming rather
disparate in their application, are in fact closely related by the underpinning theme of
a focus on environment. Furthermore, we highlight the potential benefits should the two
fields be tied more closely together. Evolutionary Robotics (ER) (Doncieux et al., 2015)
applies evolutionary algorithms to create robot behaviours, where behaviour typically
emerges through interactions between the robot’s body (e.g., morphology, geometry,
sensor and actuator placement), its brain (software controller), and the environment it
is assessed in. Experiments are predominantly fitness-driven, where fitness is ascertained
from this behaviour. In other words, ER generates solutions – bodies and brains – that are
bespoke to the particular environmental niche.

Unlike many fields of research, ER has two distinct goals. Firstly, it has a theoretical
goal: to be a reconfigurable experimental apparatus to replicate, understand, and
probe biological processes and the mechanisms of natural evolution, with the goal of
accumulating knowledge and understanding about those processes. In this regard, ER has
been remarkably effective in revealing the purpose and utility behind several mechanisms
seen in natural evolution, and as experiments are typically simulated, it is easy to
investigate a number of different treatments and draw statisticallymeaningful conclusions
from them. Examples of this type of research include mechanistic implementations
of ontogeny (Bongard and Pfeifer, 2003) and environmentally-mediated morphology
development (Kriegman et al., 2018), showing how they simplify the “search” process,
as well as showing the link between environmental and evolving robot complexity
(Auerbach and Bongard, 2014) and inspiring the search for more biologically-rooted
evolutionary mechanisms for future instantiation (Hockings and Howard, 2019).

The second goal of ER is applied: to design new types of high performing,
environmentally-adapted robots and have them deployed into those environments
in reality. The appeal is in creating robots differently to standard engineering
approaches, where evolutionary search exploits the close body-brain-environment
coupling (Pfeifer and Bongard, 2006) to automatically discover highly bespoke, fit-for-
purpose embodiments—robots that no engineer could have conceived of, and robots that
perform better than engineered alternatives. It is this goal we focus on herein.

Unfortunately there are very few examples of this happening in reality, although
there has been noted success in evolving non-sensing and non-actuating solid geometries
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(Hornby et al., 2006), modular physical robot composition
(Brodbeck et al., 2015), and large projects set up to evolve robots
for eventual deployment into nuclear facilities (Hale et al., 2019).
To date, and for a plethora of reasons including a lack of high-
performance printable materials, the reality gap, and difficulties
in body-brain coevolution, evolved physical robots have not
been able to consistently outperform off-the-shelf solutions in
real environments. Natural evolution abounds with powerful
examples of “high performing” creatures that are well-adapted
to challenging environmental niches; the ability to create robots
with similar traits is therefore an attractive one, and this article
proposes a way to progress this research direction.

Unlike ER, Field Robotics (FR) has a singular aim—to
develop and deploy rugged autonomous robotic systems into
unstructured environments to serve some functional role; be
it surveying, agricultural monitoring, ocean floor mapping, or
disaster response (Hudson et al., 2021). Field Robotics is an
active research area with its own Frontiers Topic Area1, and its
focus is closer to the secondary focus of ER, i.e., the development
of real systems.

Field Robotics systems undergo rigorous evaluation under
challenging environmental conditions, and are expected to work
reliably and repeatedly in those environments. Field Robotics
environments include real terrains, slip, mud, water currents,
weather, seasonality, day/night cycles, and so on. FR typically
involves interactions within those environments. Development
focuses on the use of classical engineering and integration, and
testing is primarily done in reality, in a variety of challenging
conditions, with emphasis on reliability.

With Evolutionary Robotics and Field Robotics introduced,
Evolutionary Field Robotics can be straightforwardly defined as
the use of Evolutionary Robotics to provide solutions for Field
Robotics problems. For ER, the main transition is from simple
(often simulated) environments to complex real environments.

2 Evolution, environment, and
embodied cognition

Embodied Cognition is a philosophy derived from the study
of natural organisms, and postulates that fit (in the Darwinian
sense) or high-performing creatures display behaviour that
emerges via a tight coupling between their environment, their
body, and their brain. In other words, the environment is a key
determinant of the ability to produce useful behaviour.The key to
embodied cognition is ability to interact with environment—o be
situated—and many fields across machine learning and robotics
are converging on embodied intelligence as a framing device to
drive their research into the real world (Roy et al., 2021).

1 https://www.frontiersin.org/journals/robotics-and-ai/sections/
field-robotics.

Although they vary greatly in their approach to generating
solutions, ER and FR are united in placing significant focus
on the role of the environment in their solution-generating
processes. With this in mind, it makes sense to view both ER
and FR through the lens of Embodied Cognition (Pfeifer and
Bongard, 2006), to understand the interplay between the two
fields and what could be gained by closer ties between them.

Evolutionary Robotics and Embodied Cognition share a
rich history. ER instantiates a form of Embodied Cognition,
including delineation of an adaptive body, coupled brain, and
assessment in an environment. The environment and coupling
mechanism are directly exploited to drive the emergence of
useful behaviour. Results are frequently discussed in the language
of Embodied Cognition, e.g., emergence, coupling, and behaviour.
ER experiments are frequently used to prove theories related to
Embodied Cognition, and as such ER can be viewed as a de facto
algorithmic implementation of Embodied Cognition.

Field Robotics also focuses on the environment, although
more as a challenge to be overcome than a driving force
behind adaptation. FR does not purposefully exploit Embodied
Cognition, although it can be viewed as (frequently control-only)
optimisation. Morphological optimisation is not automatic as
with ER, but rather a narrower, human-driven search based on
engineering principles. FR is bereft of both the inspiration and
the vernacular of Embodied Cognition, and the design process
does not promote emergence of behaviour. Compared to ER,
FR focuses on performance in more demanding, high-fidelity
environments that are much closer to the environmental niches
found in biological evolution.

3 The benefits of Evolutionary Field
Robotics

What is to be gained from this merger?The high level answer
is that Evolutionary FieldRobotics (EFR) brings both fields closer
to a natural form of Embodied Cognition, which is known to
be a powerful generator of “field-ready” solutions that directly
consider the environment.

The crux of the argument is that each element of the body-
brain-environment triad must be balanced against the others;
the complexity of the controller must match the capabilities
of the body and the challenge imposed by the environment
(Pfeifer and Bongard, 2006). Raising the complexity and fidelity
of the environment promotes the raising of the other two
elements to achieve that balance at a higher level. Simulation
in ER is typically low resolution. Higher-quality environments
allow for more complex embodied interactions to be promoted,
leading to higher-fitness robots. The addition of complex real-
world environments to ER offers the potential of providing
rich, informative learning signals to guide the discovery of
tightly coupled body and brain to environment, and drive the
discovery of highly capable behaviours to solve these more
difficult environments.
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This can be attained in three broad steps:

• focus on real “Field” environments,
• make real environmental assessment feasible for ER by

increasing simulation accuracy (hybrid data-driven and
physics simulation), and
• exploit the scalable, accurate simulator using environment-

centric learning techniques already available to ER.

Evolutionary Field Robotics means adoption and focus
on the real, challenging environments of Field Robotics. This
is a natural progression for ER, that began with simulation-
only assessment (Sims, 1994; Cheney et al., 2014). Later, 3D
printing allowed for various morphologies to be physically
realised (Lipson and Pollack, 2000; Brodbeck et al., 2015;
Collins et al., 2018; Howard et al., 2022c) with a view towards
real-world deployments (Auerbach et al., 2014; Eiben and
Smith, 2015; Hale et al., 2019) and assessment in Field-relevant
environmental conditions (Miras et al., 2020).

The consideration of Field problems specifically places the
onus on environmental accuracy to instantiate rich information
flows between agent and environment and drive the evolutionary
process (Nygaard et al., 2021); low fidelity, approximate models
wont appropriately capture this behaviour. The physics that
governs simulated environments are highly abstracted and
simplified. This is particularly detrimental to ER assessment,
which typically encompasses a wide range of materials, soft
bodies (Mengaldo et al., 2022), rigid and soft environments, and
complex contacts (Collins et al., 2021). Although it is known
that in some cases abstract representations are enough to
promote embodied cognition [e.g., (Narayan et al., 2018)], this
simplification may also impose a limit on richness of embodied
behaviours that can be simulated. This balance between use
of abstract and detailed representations is an open research
topic, and one which can be studied through Evolutionary Field
Robotics.

The standard Field approach is simply to assess everything
in reality, where fidelity is guaranteed and appropriately tight
embodiment couplings are encouraged. Conversely, real-
world assessment provides this fidelity, but doesn’t scale
well when combined with the generational, iterate-and-test
approach that underpins ER. Critically for Evolutionary
Field Robotics, it will undoubtedly leave an unwanted
trail of dead robots in whichever environment it is
tested in.

To support the move to richer environments, EFR must
develop hybrid approaches combining data-driven modelling
with physics simulation. In particular, real data needs to be
sent back to the simulator to make it more accurate. Such
approaches have been theorised but not fully adopted by
ER (Howard et al., 2019; Howison et al., 2021), and pair well
with recent advances in Physics-Informed Machine Learning
(Karniadakis et al., 2021) to provide accurate, fast simulation of
complex physical phenomena.

From the view of Embodied Cognition, Field Robotics
does not fully integrate environmental feedback into the
design loop. For FR, incorporation of ER serves to shift
the fundamental methodology of design towards the natural,
emergent intelligence of Embodied Cognition and focuses
on tightly coupling robot performance to its environment,
including a shift from manual engineering to scalable automated
techniques. Further benefits include more consideration for
morphology-generating algorithms, which are rarely seen in FR,
providingmore design freedom in generating solutions andmore
opportunities to exploit embodiment. Moreover, ER algorithms
are black-box in nature, and agnostic to the environment they
are tasked to solve. ER can therefore be seen as a general-
purpose embodiment generator solver for a range of FRproblems
and environments to maximise perforamnce and robustness
(Carvalho and Nolfi, 2022).

FR can also benefit from the numerous research works
investigating how the environment influences both the
evolutionary process and evolved robots. Evolution is
shown to be tolerant of moderate environmental variations
(Milano et al., 2019), and that presenting dynamic environments
generates more robust behaviours, matching solution
complexity to the difficulty of the environment (Auerbach
and Bongard, 2014). Useful environmental mechanisms for FR
include Interoceptive signals, which can be used to smooth out
complex fitness landscapes, e.g. by modulating mechanical stress
directly from environmental interaction (Kriegman et al., 2018).
We can also actively shape the learning process through the use
of evolutionary curricula (Howard et al., 2022b); options that are
not usually a part of the core FR methodology.

4 Discussion

Whether autonomously mining on Mars or sustaining deep-
ocean surveys, the common long-term vision of applied ER is in
solving Field scenarios (Nitschke and Howard, 2021). The main
thesis of this article is that is that combining ER and FR, primarily
through exploiting richer environmental representations, can
create tighter body-brain-environment couplings for the benefit
of both fields. As well as providing explicit consideration of
Embodied Cognition for Field Robotics, it also provides a route
to accelerate technology in applied ER to match the success
that theoretical ER has enjoyed to date. By allowing for more
expressive environment-robot couplings, theory can also benefit
from having more detailed experimental setups with which to
probe the fundamental mechanisms of natural evolution.

Of course, this merger is not without it challenges,
nor does it solve some common issues that persist in
Evolutionary Computing2. What it does do, however, is

2 Including methods to efficiently sample the fitness landscape, setting
optimal parameters, and fitness function design, amongst others.
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provide a focus on improving the applied outputs of ER, and
a route to solving some of the embodiment-related issues
that are unique to ER, rather than generically to Evolutionary
Algorithms.

To summarise, a focus on Field deployment brings
the potential to increase impact by solving real-world
tasks, together with corresponding validation of ER
as a practical problem-solving tool in the Roboticists’
arsenal.
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