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The use of manipulators in space missions has become popular, as their

applications can be extended to various space missions such as on-orbit

servicing, assembly, and debris removal. Due to space reachability limitations,

such robots must accomplish their tasks in space autonomously and under

severe operating conditions such as the occurrence of faults or uncertainties.

For robots and manipulators used in space missions, this paper provides a

unique, robust control technique based on Model Predictive Path Integral

Control (MPPI). The proposed algorithm, named Planner-Estimator MPPI (PE-

MPPI), comprises a planner and an estimator. The planner controls a system,

while the estimator modifies the system parameters in the case of parameter

uncertainties. The performance of the proposed controller is investigated

under parameter uncertainties and system component failure in the pre-

capture phase of the debris removal mission. Simulation results confirm the

superior performance of PE-MPPI against vanilla MPPI.

KEYWORDS

space robots, model predictive path integral control, space debris removal, parameter

uncertainity, planner-estimator model predictive path integral controller

1 Introduction

The application of a space robot, a manipulator connected to a free-flying
base, is becoming more popular as it can be extended to different space missions
(Figure 1) (Nanos and Papadopoulos, 2017). Many space missions include several
tasks such as inspecting, refueling, assembling and constructing, and removing
space debris. Currently, these operations are performed by astronaut Extravehicular
Activities (EVA). However, the risky nature of such operations can threaten
astronauts’ life and require careful preparation. A suitable solution is performing
such operations by space manipulators (Papadopoulos et al., 2021). Being small
makes these manipulators perfect for moving around the main satellite with faster
acceleration.
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FIGURE 1
A schematic of a space manipulator system (Nanos and
Papadopoulos, 2017).

Small space robots such as the Future Space Debris Removal
Orbital Manipulator (FSDROM) can play a significant role in
future debris removal missions (Shyam et al., 2021). In 2019, the
European Space Agency (ESA) claimed that over 8,000 tons of
space debris are in Earth’s orbit, and this number is increasing.
A large amount of space debris can cause risks to satellites and
astronauts (Chatterjee, 2014). Therefore, removing space debris
is becoming among the top concerns in space missions. One
of the methods for removing space debris is through direct
capture of objects. Direct capture methods are divided into
rigid and flexible capture (Zhao et al., 2020). Several methods for
flexible direct capturing, such as nets, harpoons, and tentacles,
have been proposed (Billot et al., 2014; Zhang and Huang, 2016;
Forshaw et al., 2017). Flexible capturing mechanisms reduce
risks associated with the collision between space robots and
target debris, which decreases the risk of unsuccessful captures
that can generate more debris (Biesbroek et al., 2017). On
the other hand, rigid capturing mechanisms are promising
methods for controlling unknown objects, especially in
detumbling phase, as they have more control over the object.
In addition, they can be accomplished with available tools used
in servicing missions, whereas flexible mechanisms need extra
equipment.

Applying space robots in rigid debris removal missions
is challenging since space debris are mainly non-cooperative
moving objects that do not provide any information to track
them. Several missions for on-orbit rigid capturing using space
manipulators demonstrated their potential for future space
missions. For instance, the Engineering Test Satellite VII “KIKU-
7” (ETS-VII) by the Japan Aerospace Exploration Agency
(JAXA) in 1997 was among the pioneers in demonstrating
space robotic capability using chasers and target satellites
(Yoshida, 2003). In 2016, Aolong-1 (ADRV) was developed by
the China Academy of Launch Vehicle Technology (CALT) to

investigate the removal of space debris in an experiment by
grasping an object and sending it back on a re-entry trajectory.
The satellite used a robotic arm to grasp space debris and throw
them back into the atmosphere.

Space robots’ operation and performance in capturing space
debris rely on their control systems. However, there are some
concerns associated with the design of space robot control
systems due to the following points:

Presently, the average lifespan of some satellites is
approximately 14 years (Tomaszewska et al., 2019), and the
maintenance of satellites is expensive. It means that the robot
control law shall be adaptable to endure the change of system
parameters during its mission.

Human intervention (telerobotics) in space missions is
difficult. For instance, in Biesbroek et al. (2017) authors claimed
the debris satellite ENVISAT is predicted to rotate around five
degrees per second, and capturing such a massive object (about
8 tons) is beyond the human’s performance and needs expertise.
In such cases, it is better to use high-performance controllers to
handle space robots. Hence, autonomy in spacemissions is much
preferred.

Space manipulators are in direct contact with unidentified
rotating debris, and damage to the actuators and the robot’s
structure is unavoidable. Therefore, any controlling law shall
be sufficiently robust to maintain its performance in the
possibilities of an actuator failure or malfunction. This event is
more possible in the case of direct capturing methods where
capturing of objects can cause large impacts on the spacecraft
(Seweryn et al., 2022).

Accurate identification of system parameters is inevitable in
rigid capturing missions where many parameters such as inertia,
friction, geometry, and attitude must be identified to ensure the
controller’s performance (Aghili, 2020).

Fulfilling such requirements through classical control
approaches is not a trivial task due to their limitation in
handling system uncertainties and contact modeling. Recently,
model predictive control (MPC) for robot controls has
received significant attention from academia and industry
due to its benefits, such as the power to handle constraints
(Hewing et al., 2020). This paper proposes a novel model-
based controller based on Model Predictive Path Integral
Control (MPPI) to approach debris sites under critical operating
conditions. MPPI is a sampling-based algorithm that applies
the iterative path integral control update law in a model
predictive control setting (Williams et al., 2016). MPPI has
demonstrated great performance in controlling highly nonlinear
dynamic systems. However, its performance is sensitive to
system parameters and dynamic uncertainties due to its reliance
on the system’s dynamic model. To address this limitation,
in this paper, we introduce a Planner-Estimator MPPI (PE-
MPPI) framework to increase the controller’s robustness
against model uncertainties and the change of parameters.
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This framework consists of two parts: Planner MPPI, which
controls the free-flying space manipulator, and Estimator
MPPI, which estimates on-board model parameters. In this
regard, when the on-board model cannot track the real
system, Estimator MPPI readjusts on-board model parameters
to minimize the difference between the real and on-board
models’ responses. Moreover, being sample-based helps MPPI
change its on-board model with respect to actuator failures
or malfunctioning alarms without any need to redesign
the controller, which is a difficult task for classical control
systems.

In the present study, we consider some assumptions to
develop our method. Firstly, in the context of PE-MPPI all
uncertainties are supposed to be structural, and unstructured
uncertainties cannot be handled efficiently by the proposed
algorithm. Secondly, we do not address directly the saturation
problem of control effort. Instead, by defining a cost for actions
we can indirectly penalize control efforts to be as small as
possible.

This paper is structured as follows: Section II describes
current state-of-the-art control systems and techniques for space
robots in space missions. Section III explains the kinematics
and dynamics formulation of space robots. In section IV, the
MPPI algorithm is described. The extension to this algorithm,
which is the main contribution of this paper, is then explained
in section V. The simulation environment, robot operation
scenarios, and simulation results are presented in section VI.
Finally, the conclusions and future works are outlined in section
VII.

2 Related works

Parameters of a space manipulator are reasonably measured
and applied for controller design before launching to space.
However, some parameters such as the joints’ damping
coefficient and stiffness can change over time. Hence, on-
orbit identification is required to guarantee the space robot’s
performance (Zhao et al., 2020). Researchers in Yoshida (2003)
developed a method for identifying the inertial parameters
based on the conservation of momentum and the effect
of gravity gradient torque. They validated their method by
comparing results with data obtained from the ETS-VII
Japanese space robot. Moreover, researchers in Christidi-
Loumpasefski et al. (2017) proposed an agile adaptation law to
identify all parameters of a free-floating space robot based on the
conservation of angular momentum without any data from joint
accelerations or torques.

Designing a motion-planning framework for space
manipulators has been extensively investigated, taking into
account dynamic coupling and singularities, as well as the
physical restrictions of space robots. For instance, researchers

attempted to solve the trajectory planning problem by
minimizing a cost function that satisfies specific criteria,
e.g., power consumption (Seweryn and Banaszkiewicz, 2008;
Rybus et al., 2016). An effective motion planning strategy was
proposed for a 6-DoF space robot based on Particle Swarm
Optimization (PSO) to optimize the base berth position as
an optimizable parameter (Zhang and Liu, 2018). Mu et al.
proposed a unified modeling framework for multiple moving
obstacles that was computationally efficient, as well as a
collision-free trajectory planning approach for a redundant space
manipulator (Mu et al., 2017).

Recently, reinforcement learning has received significant
attention from robotic researchers due to its strength in
controlling nonlinear dynamic systems. The reinforcement
learning techniques can be classified as model-free and model-
based techniques. The model-free techniques train a robot
agent through interaction with the environment. Model-free
reinforcement learning is a powerful technique in controlling
complex dynamic systems as they do not use the model of
the system. However, it suffers from sample efficiency and a
long training time. Broida and Linares (2019) created a control
strategy based on Proximal Policy Optimization (PPO) to bring
one satellite into a docking position with another in a relative
orbit reference frame. In Wu et al. (2020), proposed a trajectory
planning methodology based on Deep Deterministic Policy
Gradient (DDPG) for a dual-arm free-floating space robot. The
proposed algorithm was able to approach both moving and fixed
targets. There are some challenges regarding applying model-
free reinforcement learning algorithms in the real world, such
as slow learning rate and the cost of training in the real world,
which makes transfer learning a suitable solution. In contrast,
model-based reinforcement learning uses the model of the
system to make the learning process faster and more efficient
(Morgan et al., 2021).

Model predictive control (MPC) is an advanced control
method that, similar to model-based reinforcement learning,
uses a system model to predict the system’s future behavior.
MPC solves an online optimization algorithm to find the
optimal control action that drives the predicted output to the
reference. One of the state-of-the-art model predictive control
techniques is Model Predictive Path Integral Control (MPPI)
(Williams et al., 2016). Being sampling-based and derivative-
free makes MPPI an ideal candidate for convex and non-convex
constraints, where gradient-based model predictive controllers
suffer significantly (Williams et al., 2017b; Dixit et al., 2019).
Moreover, MPPI’s performance depends considerably on the
number of trajectories sampled using the on-board model, and
the embedding computation can benefit from recent advances
in Graphics Processing Units (GPUs) to achieve better real-
time performance. It means one can adjust MPPI performance
in real-world applications by selecting suitable processors
(Arruda et al., 2017; Kim et al., 2022). MPPI has been used
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FIGURE 2
The configuration of a space robot and the coordinates of the joints.

FIGURE 3
Schematic of planner-estimator MPPI

to control aerial and terrestrial robots (Williams et al., 2016;
Pravitra et al., 2020). Various algorithms have been proposed
to enhance MPPI performance. For example, the authors
of (Lowrey et al., 2018) proposed combining MPPI with the
concept of value function from model-free reinforcement
learning to enhance theMPPI exploration phase. In some works,
researchers worked on making MPPI robust to disturbances.
In Williams et al. (2018), proposed Tube-MPPI by combining
Tube-MPC and MPPI. The result was a robust algorithm that
managed cost functions with discontinuous and sparse gradient
information. In Gandhi et al. (2021), Gandhi et al. developed
Robust MPPI (RMPPI) and investigated its performance on
off-road navigation. The algorithm outperformed MPPI and
Tube-MPPI in terms of agility and robustness to disturbances.
Besides not being robust to disturbances, conventional MPPI’s
performance is sensitive to the on-board model, an approximate
model of the real system. Structural uncertainties like actuator
specifications and lack of environment information like debris
inertia can reduce MPPI’s performance. In Pravitra et al. (2020),
authors combined MPPI control with L1-adaptive control,
resulting in a multirotor controller which was robust to
the changes in the system dynamics. L1-adaptive control
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FIGURE 4
The rest configuration of the space robot and the coordinates systems of the joints.

TABLE 1 The DH parameters of the space robot.

Joint α(rad) a (m) d (m) θ(rad)

1 −π
2

0.0 0.5 θ1
2 π

2
0.0 0.0 θ2

3 π
2

0.9 0.0 θ3
4 −π

2
0.9 0.0 θ4

5 π
2

0.8 0.0 θ5
6 −π

2
0.8 0.0 θ6

7 π
2

0.0 0.8 θ7

TABLE 2 The inertial properties of the space robot.

Base L1 L2 L3 L4 L5 L6 L7

M(kg) 500 20 30.0 30.0 20.0 20.0 20.0 20.0
Ix(kg.m2) 1,400 0.1 0.25 0.25 0.25 0.25 0.25 0.25
Iy(kg.m2) 1,400 0.1 25 25 25 25 25 25
Iz(kg.m2) 1,400 0.1 25 25 25 25 25 25

robustified the architecture; therefore, the overall systembehaved
similarly to the nominal system with MPPI. In this paper,
we propose Planner-Estimator MPPI (PE-MPPI), a novel
planner-estimator framework based on the MPPI algorithm,
which can handle the model’s uncertainties by minimizing
the norm of the difference signal. When the on-board model
cannot track the real system and the resultant error becomes
greater than a threshold, PE-MPPI readjusts the on-boardmodel
parameters.Theproposed frameworkwill be further discussed in
section V.

3 Prerequisites

3.1 Kinematics of a space robot

The kinematics of industrial manipulators depends only on
the parameters of the joint space, whereas the kinematics of
the space robots is more complex than terrestrial robots. The
kinematics of a space robot is determined based on the position
and orientation of the base and joint parameters.

According to Figure 2, the space robot can be represented as
a set of n+1 rigid links connected with n joints, resulting in n+6
degrees of freedom. Furthermore, ΣC is the inertial coordinates
system, and ΣB the base coordinates system attached on the base
with its origin at the centroid of the base. Therefore, the position
of the end-effector can be obtained as follows:

pe = r0 + l0 +
n

∑
i=1

li (1)

where:
pe: The position vector of the end-effector in the coordinates

system ΣC
r0: The position vector of the centroid of the base in the

coordinates system ΣC
l0: The connection vector from the base to the first joint
li: The connection vector from joint i to joint i+1.
By differentiating the kinematic equation with respect to

time, the relation between the velocity of the end-effector and
the velocity of the joints can be obtained as follows:

ẋe = Jmϕ̇+ Jbẋb (2)

where:
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FIGURE 5
The position of the end-effector reaches the target position after 60 s in the normal operation scenario (A). The space robot base position is
traversed along the y-orbit (B).

ẋe: The linear/angular velocity of the end-effector in the
inertial coordinates system.

ϕ̇: The angular velocity of the joints.
ẋb: The linear/angular velocity of the base in the base

coordinates system.
Jm: The Jacobian matrix of the manipulator.
Jb: The Jacobian matrix of the base.

3.2 Dynamics of a space robot

The dynamics of space robots are more complicated than
terrestrial robots due to the dynamics coupling effect between
the manipulator arm and its base. For instance, the space
robot base would react based on the momentum conservation
theorem if torque τi is applied to the ith joint (Huang et al., 2006).
Accordingly, the center of mass of the whole structure relative
to the ΣC coordinates system would not change, but the ΣB
coordinates system would move. Determining the dynamics of
the space robot is necessary to ensure the successful execution
of missions. The equation of motion for a free-flying space robot
with n links is as follows:

[
Hb Hbm

Hbm
T Hm

][
ẍb
ϕ̈
]+[

cb
cm
] = [

Fb
τ
]+[

JTb
JTm
]Fh (3)

where:

Hb: The inertial matrix of the base.
Hm: The inertial matrix of the manipulator arm.
Hbm: The coupling inertial matrix between the base and the

manipulator arm
cb: The velocity-dependent non-linear term of the

base
cm: The velocity-dependent non-linear term of the

manipulator arm.
Fb: The force and torque on the centroid of the base.
Fh: The force and torque on the end-effector
τ: The joint torque of the manipulator arm.
When no external forces are applied to the end-effector
(Fh = 0), and the thrusters (or reaction wheels) do not apply
force to the spacecraft base (Fb = 0), the above dynamic equation
will be reduced to the following form:

Hbẋb +Hbmϕ̇ = [
P
L
] = const. (4)

where p and L are linear and angular momentums, which
are constant values. The free-floating space robots are divided
into two sub-types where the initial momentum is zero or no-
zero (Nanos and Papadopoulos, 2011; Basmadji et al., 2020). In
this study, the debris site is outside the reach of the spacecraft
robot. Therefore, it is necessary to use the model of free-flying
space robots in which thrusters and reaction wheels traverse in
space.
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FIGURE 6
System identification scenario; Comparison between PE-MPPI and vanilla MPPI for the end-effector position (A; Top). Convergence of the
parameters of the on-board model to real system (A; Bottom). Comparison between PE-MPPI and vanilla MPPI for the space robot base
position (B).

4 Model predictive path integral
control

Model predictive path integral control (MPPI) is an
importance-sampling method. Its derivative-free behavior
makes it an excellent choice for optimal control problems
with nonlinear dynamics and non-convex cost functions. The
fundamental notion of MPPI is to sample many trajectories for
a time horizon of T from a dynamical system. Each trajectory
τ = {x0,u0,x1,u1,… ,xT ,uT} is then evaluated according to a
cost function. Accordingly, the optimal trajectory is computed
based on its importance over all trajectories. To determine
near-optimal solutions, increasing the number of trajectories
is necessary. Fortunately, this can be quickly accomplished by
taking advantage of the parallel nature of sampling and using
Graphical Processor Unit (GPU) (Mohamed et al., 2020).

Consider a discrete-time dynamical system as follows:

xt+1 = f (xt,ut + δut) (5)

where xt is the state vector, ut is the control input vector, and
δut is the random vector sampled from a zero-meanGaussian

distribution N (0,Σu) at time-step t. As mentioned, each
trajectory can be evaluated with a cost function as follows:

S (τ) = ϕ (xT) +
T

∑
t=0

q(xt,ut) (6)

where ϕ(xT) and q (xt ,ut) are the terminal and running
costs, respectively. MPPI aims to find the optimal control
input trajectory u* = (u0,u1,… ,uT), which minimizes the
expectation over all generated trajectories as follows:

J =minu (𝔼[S (τ)]) (7)

The solution to this problem has been discussed in
Williams et al. (2017a). The authors used the Feynman-Kac
lemma to turn this problem into a stochastic process. The
consequent update law of the control input is as follows:

ut← ut +
∑K

k=1
exp((−1

λ
)[Sk (τ) −min (S)]δut,k)

∑K
k=1
exp((−1

λ
)[Sk (τ) −min (S)])

(8)

where K is the number of trajectories, and λ is called
inverse temperature. The detailed MPPI algorithm is described
in Algorithm 1.
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FIGURE 7
Comparison between PE-MPPI and vanilla MPPI in the actuator failure scenario for the end-effector position (A) and the space robot base
position (B).

5 Planner-estimator MPPI

This section proposes a novel Planner-Estimator MPPI (PE-
MPPI) strategy to control space robots in on-orbit debris removal
missions, which can fulfill controller design requirements. First,
the controller structure will be given, and lastly, the proposed
algorithm will be explained.

Although many studies have shown the performance of
MPPI in different scenarios, its performance varies with model
accuracy. To make this controller suitable for space explorations,
we propose PE-MPPI to robustify the performance of MPPI
against structural uncertainties. PE-MPPI is composed of two
parts: PlannerMPPI and EstimatorMPPI. As shown in Figure 3,
Planner MPPI selects the optimal control action based on the
on-board model f̃(x̃t,ut, θ̃). The structure of Planner MPPI is the
same as MPPI. It only computes the control input of the system
based on the on-board model. On the other hand, Estimator
MPPI attempts to estimate the model parameters and readjust
the on-board model of the robot based on the norm of an error
signal. In other words, whenever the on-board model fails to
match the dynamic behavior of the space manipulator, Estimator
MPPI estimates the model parameters and updates the model
accordingly. The core idea of estimation is to sample many
parameters θ̃k from a Gaussian distribution and evaluate them
as follows:

Se (θ̃k) =
T

∑
t=0

qe (θ̃k) (9)

where qe(θ̃k) is the running cost for the trajectory generated with
the parameter θ̃k. Consequently, the update law of the parameters
is formulated as below:

Θ̃t =
∑K

k=1
exp((−1

λ
)[Se,k (τ) −min(Se)] θ̃k)

∑K
k=1

exp((−1
λ
)[Se,k (τ) −min(Se)])

(10)

It is important to say that the estimated model does
not necessarily match the real system, but it guarantees
that they would have the same response after sufficient
updates.

Algorithm 2 explains PE-MPPI in detail. Based on the
parameterized model f̃(x̃t,ut, θ̃) with parameters θ̃, Planner
MPPIMp( f̃(., ., θ̃)) outputs near-optimal control effort ut at each
time-step (code lines:7 and 8). Each response of the space robot xt
and the subsequent control input ut is gathered in a replay buffer
B (xt ,ut) (code line: 9). The sensors of the space robot measure
the response of the real system xt+1, while the response of the
on-board model x̃t+1 is calculated by the on-board model (code
lines: 10 and 11). If the norm of the signal error ‖xt+1 − x̃t+1‖ is
greater than a pre-defined threshold, Estimator MPPI updates
the on-boardmodel f̃(x̃t,ut, θ̃) (line code: 12). To find the optimal
parameter θ̃, many parameters θ̃k are sampled from a Gaussian
distribution, and the score of each trajectory is calculated using
the running cost qe(θ̃

k) = ‖xt+1 − x̃t+1‖ (code lines: 13–20). Then,
the parameters of the update law are calculated, and the optimal
parameters θ̃t of the model are computed using the update law
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Algorithm 1. MPPI (Mohamed et al., 2020).

(code lines: 21–23). Finally, the on-boardmodel is updated (code
line: 27).

6 Simulation

This section investigates the performance of PE-MPPI in
a MuJoCo simulation (Todorov et al., 2012) environment for
a space robot (Figure 4). To analyze the performance, we
consider four different scenarios, from simple to complex.
The first scenario (SEN1) represents a normal operation
condition with no parameter change or actuator failure. The
second scenario (SEN2) represents events in which the system
parameters are subject to change, while the third scenario (SEN3)
represents events with actuator failure cases. The fourth scenario
represents the worst operational condition in which both
parameter variation and actuator failure happen concurrently.
In each experiment, the space robot is planned to traverse
on a y-axis orbit while its manipulator is commanded to
approach the debris zone. To execute this mission, Planner

Algorithm 2. Planner-Estimator MPPI.

MPPI controls six thrusters of the space base and a 7-DoF
robot folded around, making a 13-dimensional control output
space.

6.1 The general specifications of the
space robot

The space robot consists of a base and a manipulator
connected to the base. In non-operational conditions, the
manipulator is in its resting position, folded around the base
(Figure 4). However, in cases where debris is located far from
the main satellite’s structure, the mission is launched to remove
or catch the debris with the help of the manipulator. The
7-DoF manipulator’s length then unfolds to allow the space
robot to reach far debris zones. The redundant degree of
freedom assures the robot’s performance even in actuator failure
conditions.
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FIGURE 8
System identification and actuator failure scenario; Comparison between PE-MPPI and vanilla MPPI for the end-effector position (A; Top).
Convergence of the parameters of the on-board model to the real system (A; Bottom) Comparison between PE-MPPI and vanilla MPPI for the
space robot base position (B).

The Denavit-Hartenberg parameters of the manipulator and
the inertial properties of the space robot used in this simulation
are given in Tables 1, 2, respectively.

6.2 Operational scenarios of the space
robot

6.2.1 Normal operation
In normal operation, no actuator failure or system

degradation occurs. Therefore, the on-board model accurately
tracks the response of the real system. In this perfect
situation, the spacecraft is commanded to traverse on y-axis
while its manipulator approaches from the initial position
xinitial = [−1.2,−1.2,0]T to the desired target debris site
xtarget = [−2,8,0]T . The mission requirements are i) to reach the
debris site, ii) tomaneuver on orbit stack around axis y, and iii) to
reduce control effort. Since there is no parameter uncertainties,
only Planner MPPI is used. In order to meet the requirements
of the mission, the cost function of Planner MPPI is designed as

follows:

q(xt,ut) = 4‖xtarget − xend−effector‖ + 0.1‖u‖ + 5‖xbase − xorbit‖
(11)

where:
xtarget : The position of the target debris site
xend−effector : The position of the end-effector of the

manipulator
xbase: The position of the base
xorbit : The position of the orbit
u: The control effort.The position of the end-effector relative

to the inertial coordinate and the position of the space robot base
are illustrated in Figure 5. After 60 s, the end-effector approaches
the target site andmaintains its position.The steady-state error in
thismission is less than 15 cm,which is acceptable.Moreover, the
space robot base position successfully tracks the orbit position,
which is the y-axis.

6.2.2 System identification
The damping coefficient of the space robot joints is assumed

to differ from the on-board model parameters in the second
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FIGURE 9
The space robot control effort bounds in the system identification and actuator failure scenario.

scenario. The difference between the model and the real system
can result in poor approaching behavior. Hence, adopting a
strategy to identify the system’s parameters in real-time is crucial
in this mission. Thus, both Planner MPPI and Estimator MPPI
are used. Since the goal of the mission is the same as the normal
operation scenario, the cost function of the Planner MPPI is the
same. On the other hand, the running cost function of Estimator
MPPI is defined as below:

q(θ̃k) = 2‖xt+1 − x̃t+1‖ (12)

The damping coefficients of the on-board model were set to
5000Ns

m
at the beginning of the simulation, while the damping

coefficients of the real system were one-tenth of the damping
coefficients of the on-board model. A comparison between
the performance of PE-MPPI and vanilla MPPI applied to the
model with parameter uncertainties is illustrated in Figure 6A.
Moreover, the convergence of damping coefficients is depicted in
Figure 6A. PE-MPPI can reach the target position in the system
identification mission after 70 s. In contrast, the performance of
vanilla MPPI deteriorates due to the lack of a mechanism for
adjusting the parameters of the model. All parameters converge
to the real systemparameters after 20 s, while there is a significant
error in estimating the first and last parameters. However, these
errors have little impact on system performance as the end-
effector can reach the debris site after 70 s. It can be concluded
that estimating the parameters θ̃ increases the stability of the
system and reduces the steady-state error resulting in better
performance. In addition, as is shown in Figure 6B, for both

PE-MPPI and vanilla MPPI, the space robot base position is
traversed on the y-axis. Since the parameter uncertainties are
related to the joint parameters, the parameter uncertainties
mainly affect the end-effector position rather than the base
position.

6.2.3 Actuator failure
Due to many sources of failure in the space missions, such

as debris collision or system degeneration, actuator failure can
happen during the robot’s lifespan. The main challenge is that
the systemdynamics will change suddenly, resulting in instability
and poor performance. In this critical condition, the source of
failure is well understood; hence parameter estimation is not
required and Estimator MPPI is not used. However, adopting
a robust and adaptable control strategy, which can alter in
real-time, is required to guarantee the system’s stability with
minimum human intervention. The cost of Planner MPPI is the
same as the two previous scenarios.

In the third scenario, the space robot will lose one of its
degrees of freedom, and consequently, this actuator cannot
be controlled anymore (the second actuator is chosen to be
locked). The performance of PE-MPPI is compared to vanilla
MPPI in which the on-board model is not changed by actuator
failure. As shown in Figure 7, a lack of updating mechanism for
the on-board model in vanilla MPPI causes poor performance
compared to PE-MPPI, and it can conveniently update its model
and successfully reach the target position and remain at this
position after 60 s. Moreover, the base position is traversed on
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the y-axis. Similar to the system identification scenario, since
actuator failure is mainly related to the joint space, it affects the
end-effector position more than the base position.

6.2.4 System identification and actuator failure
In the last and worst scenario, both actuator failure

and system parameter change occur simultaneously. In this
condition, the estimator section would help the planner to
control the space robot and reach the desired position while the
failed actuator (the third actuator is chosen) is locked. The cost
function of PE-MPPI is the same as the system identification
scenario. Similar to the second scenario, all damping coefficients
were initialized to be 5000Ns

m
while the real system parameters

were one-tenth of the on-board model.
As shown in Figure 8A, after 20 s, all parameters converged

to the real system parameters, while there was a significant
error in estimating the first and last parameters. The estimated
parameters θ̃ showed more fluctuation compared to the system
identification scenario, indicating the combination of events
could reduce the controller’s performance in both estimating
parameters and steady-state error. Moreover, PE-MMPI takes
more time to reach the target position (after 70 s), while vanilla
MPPI cannot accomplish the mission (Figure 8A). In addition,
the base position successfully traverses on the y-axis (Figure 8B).
Figure 9 shows the bounds of the control effort of both PE-
MPPI and vanilla MPPI for the system identification and
actuator failure scenario. As it is expected, PE-MPPI needs more
control effort than vanilla MPPI, since it manages parameter
uncertainties and actuator failure.

7 Conclusion

This study proposed a novel Planner-Estimator MPPI (PE-
MPPI) algorithm to control space robots in debris removal pre-
capture phase missions subject to system malfunctioning and
structured parameter changes. Four scenarios were considered
for testing the controller’s performance: normal operation,
system identification, actuator failure, and combined system
identification and actuator failure. In each scenario, the
performance of PE-MPPI is compared to vanilla MPPI. Results
proved the superiority of the proposed algorithm over vanilla

MPPI, especially in the fourth scenario, where the combination
of events results in poor performance. It was shown that PE-
MPPI could maintain its performance in different scenarios,
with negligible degeneration compared to normal operation.
Furthermore, the estimator assures that the on-board model
tracks the real system, while some errors are in estimating
parameters (especially the first and last actuators’ damping
coefficient). It is worth mentioning that the convergence of
damping coefficients to their real values is not guaranteed, but
the norm of difference signal would be minimized.
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