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Surgical skills can be improved by continuous surgical training and feedback,

thus reducing adverse outcomes while performing an intervention. With the

advent of new technologies, researchers now have the tools to analyze surgical

instrument motion to differentiate surgeons’ levels of technical skill. Surgical

skills assessment is time-consuming and prone to subjective interpretation. The

surgical instrument detection and tracking algorithm analyzes the image

captured by the surgical robotic endoscope and extracts the movement and

orientation information of a surgical instrument to provide surgical navigation.

This information can be used to label raw surgical video datasets that are used to

form an action space for surgical skill analysis. Instrument detection and

tracking is a challenging problem in MIS, including robot-assisted surgeries,

but vision-based approaches provide promising solutions with minimal

hardware integration requirements. This study offers an overview of the

developments of assessment systems for surgical intervention analysis. The

purpose of this study is to identify the research gap and make a leap in

developing technology to automate the incorporation of new surgical skills.

A prime factor in automating the learning is to create datasets with minimal

manual intervention from raw surgical videos. This review encapsulates the

current trends in artificial intelligence (AI) based visual detection and tracking

technologies for surgical instruments and their application for surgical skill

assessment.
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1 Introduction

The intraoperative and post-operative impediments in surgical practice remain a

clinical challenge. Procedure-related factors and the lack of technical skills of a surgeon

sometimes increase the risk of adverse surgical outcomes (Fecso et al., 2019). A study

involving 20 bariatric surgeons was conducted in Michigan, and it was observed that the

technical skill of practicing bariatric surgeons varied widely, and better surgical skill with

peer rating of operative skill leads to decreased postoperative complications (Birkmeyer
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et al., 2013). Therefore, in order to enhance patient outcomes, it is

imperative to regularly provide objective feedback on the

technical performance of surgeons. Compared with traditional

open surgery, minimally invasive surgery (MIS) results in minor

trauma, less bleeding, and faster recovery of the patient (Zhao

et al., 2017). The surgeon’s skill level and the cooperation

between the surgeons are key to this procedure (Rosen et al.,

2011). To address the surgical skill assessment platform, existing

works are placed in various stages of a typical learning method in

Figure 1, which are as follows: first, a surgical scene is captured

using an endoscope in the form of videos. These videos contain

multiple instruments with different parts (the shaft and the

metallic clasper or end effector) and varied and complex

backgrounds. Second, surgical instruments used in a surgical

intervention are to be tracked and detected. This procedure is a

two-step procedure: 1) the detection or segmentation algorithm

is trained to identify and localize surgical instruments (as shown

in the orange box). Segmentation and detection algorithms are

used to solve this purpose. 2) Motion features are extracted from

the detected instrument localization throughout the video (as

shown in the green box). The tracking of the instrument’s

location from frame to frame can be initialized using learning

algorithms. The two abovementioned steps are used to

automatically generate labeling for a raw surgical video

dataset. These dataset labelings comprise detected surgical

instruments and motion features extracted from the tracking

algorithm during an intervention. Third (as shown in the yellow

box), an action space is generated based on the labeling to predict

surgical skills, avoiding entirely simulator-based assessments.

The action space comprises the locations of bounding boxes

containing the shaft and the end effector captured during the

movement of the surgical instrument and the rotation angle that

the shaft made with the reference frame and the end effector

made with respect to the shaft. The actions identified are then

coded in order to generate rewards. These rewards are quantified

to predict the surgical skill level of an individual surgeon.

The actions can be used by trainer surgeons to train newly

budding surgeons in this field and used as an intraoperative

assistance system to perform a surgical intervention. This three-

stage modeling approach can be used to generate rewards and

can help in distinguishing good versus poor surgical skills. While

the degree of surgical skill cannot yet be reliably quantified using

the technique represented, it represents an important advance

toward the automation of surgical skill assessment. It is clear that

a detection and tracking system is required to systematically

quantify surgical skills for better assessment and training systems

for laparoscopic surgeons. However, the challenge lies in dealing

with complex operation scenes that are captured using

endoscopes wherein raw surgical images have occlusions, i.e.

blurry patches due to smoke, a variety of tissues, organs, etc.(Jin

et al., 2020). In these complex scenarios, video processing for

segmentation, feature identification, and tracking needs special

attention. The study of a detection and tracking algorithm [based

on artificial intelligence (AI) and machine learning (ML)] that

meets the requirements of real-time accuracy and robustness for

the development of surgical robots is an important step (Rosen

et al., 2011).

In this review, we focus on the research contributions in the

field of surgical instrument detection and tracking using AI

methods. We will review some existing instrument detection

and tracking algorithms in Section 2. Section 2 also presents a

general overview of vision-based AI methods for instrument

detection and tracking technology in minimally invasive surgical

instruments in a classified manner from the perspective of

FIGURE 1
Various stages in the surgical skill assessment approach for a training or assistance system (the basis for the categorization of existing work).
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“feature extraction” and “deep learning.” A comprehensive

perspective of surveyed algorithms is discussed in Section 3,

which aids in identifying the future directions for the

development of vision-based AI algorithms to automate MIS

skill assessment.

2 Vision-based AI techniques for
surgical instrument detection and
tracking

The state-of-the-art vision-based methods for detecting and

tracking objects are well-developed. However, it is important to

check if the environment and object (surgical tool in MIS and

robot-assisted surgeries) combination is amenable to the existing

vision-based algorithms. Therefore, this section provides critical

and categorical discussions on relevant existing methods.

2.1 Overview

Vision-based AI surgical instrument detection and tracking

technology in MIS combine machine vision, pattern recognition,

deep learning, and clinical medicine (Wang et al., 2021). The

overview graph describing the methods in this review is shown in

Figure 2. Surgical instrument detection and tracking algorithms

can be hardware-based or vision-based techniques. Surgical

operation becomes cumbersome since hardware-based

algorithms, despite their apparent simplicity, demand

expensive hardware equipment and physical changes to the

surgical setup (Choi et al., 2009; Schulze et al., 2010).

Methods involve placing markers and trackers in order to

track surgical instrument location (Krieg, 1993; Trejos et al.,

2008; Yamaguchi et al., 2011). However, these existing devices are

expensive; therefore, they are popular only in a limited number of

medical centers and research institutes. The studies are

concentrated on vision-based exploration, classified as feature-

based methods and deep learning algorithms for surgical tool

recognition and tracking as a result of the advancement of

machine vision technology. These algorithms can be

generative, discriminative, or ad hoc methods (Bouget et al.,

2017; Wang et al., 2021). The generative method is typically

based on estimating probabilities, modeling data points, and

distinguishing between classes based on these probabilities.

Discriminative methods, on the other hand, refer to a class of

methods used in statistical classification, especially in supervised

machine learning. They are also known as conditional models.

Generative modeling learns the boundary between classes or

labels in a dataset. It models the joint probability of data points

and can create new instances using probability estimates and

maximum likelihood. Discriminative models have the advantage

of being more robust to outliers than generative models. Some

examples of discriminative models are logistic regression,

support vector machine (SVM), decision tree, and random

forest. Ad hoc methods use low-level image processing

techniques, such as thresholding. In the generative model,

some methods of the discriminant model, such as SVM and

random forest, require manual feature extraction, thus restricting

the construction of high-level semantic information, and are not

suitable for surgical instrument detection and tracking in

complex environments (Rieke et al., 2016). Deep learning can

express more advanced and finer details and semantic

information without extracting the feature information

explicitly (Twinanda et al., 2016; Alshirbaji et al., 2020).

FIGURE 2
Categorization of methods for surgical instrument detection and tracking.
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Therefore, deep-learning-based approaches are widely used and

have become the mainstream research direction (Sahu et al.,

2016; Garcia-Peraza-Herrera et al., 2017).

2.2 Feature-based methods

Most of the feature extraction methods focus on tracking the

surgical instrument tip. Tip tracking is based on features like

color, gradient, and shape.

2.2.1 Color-based feature extraction
The color feature is most common for performing any

operation in image processing. In 1994, Lee et al. (1994) used

RGB color space in the detection of surgical instruments. Later

on, HSV color space was developed (Doignon et al., 2004) for the

surgical instrument tip based on its color and brightness from the

surrounding environment. This method proved to be more

robust to the lighting changes by decoupling the luminosity

from other components. For tracking the surgical instruments,

Wei et al. (1997) developed a stereoscopic laparoscopic vision

tracking method where color marking is tracked using the

thresholding method of segmentation. This method was used

to locate the instrument accurately and control the movement.

However, for complete detection and tracking tasks, color space

analysis was used (Allan et al., 2012). Later, in 2006, Tonet et al.

(2007) applied the image processing method to endoscopic

images. A colored strip with auxiliary markers is added to the

surgical instrument to facilitate segmentation. This helps the

automatic tracking of surgical instruments without interfering

with the actual surgical settings and without any pre-operative

procedures. This method works well in scenarios where low

precision is required, such as surgical assistance tasks at initial

levels (Wang et al., 2021).

2.2.2 Gradient-based feature extraction
Instrument detection and tracking based on the color feature

are affected by the illuminating light reflected from the metal

surface. Thus, to solve this problem, Pezzementi et al. (2009) used

the gradient feature, which depends on the intensity values and

specific color space component of images. However, it requires

large marker data to visualize the appearance change of the

surgical instrument. In 2013, depth maps were developed as an

effective way for gradient calculation with different types of

images as inputs (Haase et al., 2013). The Sobel operator is

used along with the histogram of oriented gradients (HOGs) to

estimate the edge information probability to detect the edge of a

surgical instrument. In 2015, Rieke et al. (2015) used the HOG to

perform surgical tool detection. They performed detection and

tracking for three sets of instrument joints in a metallic clasper.

Their method gives correct position estimates of the surgical

instrument in challenging backgrounds cluttered with lighting

and noise.

2.2.3 Shape-based feature extraction
Shape-based feature extraction was also introduced for

surgical instrument detection that expressed as a set of

generated numbers. Otsu’s based method was used by Voros

et al. (2007) to identify the tip position of the instrument. For

this, the cumulative moments are calculated to determine the

optimal distance between the surgical tool and the backdrop

pixels. This approach is limited to the presence of noise,

occlusion, or non-rigid deformation, but is scale-invariant

under complex transformations, including translation, scaling,

and rotation. Bayesian filters proved to be the most robust and

effective feature extraction method for surgical instrument

tracking in retinal microsurgery (Sznitman et al., 2012). These

filters are trained to sum the pixel intensities within the boundary

and respond strongly to the sharp directional intensity edge.

2.2.4 ML methods
Before the advent of deep learning, ordinary learning

algorithms were used in the visual detection and tracking of

surgical instruments. These methods use the characteristic

features of surgical instruments under different conditions to

train a model. Traditional methods require extracting features

from an image manually to detect and track surgical instruments

from raw surgical images. These methods involve classical

appearance-based machine learning methods and other

discriminative machine learning methods. Models such as

random forests (Bouget et al., 2015) and maximum likelihood

Gaussian mixture models (Pezzementi et al., 2009) trained on

color-based features have been applied. An approach based on

appearance learning (Reiter et al., 2014) has been developed to

detect shaft and specific points on the robotic surgical instrument

tip using laparoscopic sequences. The algorithm can work in a

highly dynamic environment and remain unchanged in light and

posture changes.

2.3 Deep learning-based methods

With the increasing advancement of deep learning in various

areas, such as image segmentation, natural language processing,

image registration, and object tracking, deep learning has also

become the main research direction in the visual detection and

tracking of surgical instruments.

One of the most popular deep learning networks is

convolutional neural networks having the ability to handle

large amounts of data (Alzubaidi et al., 2021). The use of

hidden layers has surpassed traditional techniques. Over the

years, CNNs have become a crucial part of computer vision

applications, especially pattern recognition. CNNs are a class of

deep neural networks that use a special technique called

convolution (a mathematical operation that specializes in

processing data that have a grid-like topology, such as an

image frame). For surgical instrument detection and tracking,
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CNNs play a vital role. A CNN typically has three layers: a

convolutional layer, a pooling layer, and a fully connected layer

(FC). This layer performs a dot product between the restricted

portion of the receptive field of an image and a kernel matrix with

a set of learnable parameters. The pooling layer replaces the

output of the network at certain locations by deriving a summary

statistic of the nearby outputs and thus reduces the amount of

computation and weights. The FC layer helps map the

representation between the input and the output. Since

convolution is a linear operation and images are far from

linear, non-linearity layers are often placed directly after the

convolutional layer to introduce non-linearity to the activation

map. There are several variants of CNNs utilized for various

applications of MIS (Jaafari et al., 2021). A few that are used for

surgical instrument detection and tracking are described in the

following sections.

2.3.1 CNN as the backbone network
Algorithms for surgical instrument detection and tracking in

minimally invasive surgery were developed by García-Peraza-

Herrera et al. (2016) in 2016. They created a fully convolutional

network (FCN) incorporating optical flow for tracking. The

technique is better suited for the sluggish video data set of

minimally invasive surgery and achieves an absolute accuracy

of 88.3%. A CNN is also combined with an SVM and hidden

Markov model (HMM) to improve AlexNet (i.e., EndoNet) to

solve the surgical instrument detection and tracking problem in

minimally invasive surgery (Twinanda et al., 2016). They

developed a three-stage methodology for surgical instrument

presence detection and phase recognition. EndoNet extracts

visual features from the training images and transmits them

to the SVM and hierarchical HMM to perform tracking of

surgical instruments. This method gives an accuracy of 81%

for a plethora of complex datasets. For the continuous detection

of surgical instruments, Alshirbaji et al. (2020) combined CNNs

with two long- and short-term memory (LSTM) models. The

experimental findings demonstrate the advantages of integrating

spatial and temporal data to create a robust and efficient

technique to detect surgical instruments in raw laparoscopic

videos. With a mean average precision of 91%, this technique

outperforms EndoNet. Trump’s TernausNet-16, a deep

convolutional neural network-based instrument tracking, was

implemented in 2021 by Cheng et al. (2021). It is an extension of

U-Net (Ronneberger et al., 2015) and constructed on VGG-16

(Simonyan and Zisserman, 2014). It combines deep neural

network detectors and motion controllers and is based on a

visual servo control framework. The network gathers visual data

and determines the object’s location. Utilizing a kinematic

controller, the visual content information extracted is used to

calculate the joint velocities of the surgical robot. The cycle then

continues with the revised image being sent to the network again.

As a result, the system automatically tracks the target instrument

to the center of the field of view. The TernausNet-16 network has

demonstrated real-time surgical instrument detection in

experiments, and magnetic endoscopes achieve accurate

tracking.

Kurmann et al. (2017) presented a novel method for 2D

vision-based recognition and pose estimation of surgical

instruments that generalizes to different surgical applications.

Their CNN model simultaneously recognizes the multiple

instruments and their parts in the surgical scene. The network

produces probabilistic outputs for both the presence of different

instruments and the position of their joints. The parameters are

optimized using cross-entropy loss. It is worth noting that their

approach is parameter-free during test time and achieves good

performance for instrument detection and tracking. They tested

their approach on in vivo retinal microsurgery image data and ex

vivo laparoscopic sequences. Hasan et al. (2021) improved upon

the previous network by integrating CNN and algebraic

geometry for surgical tool detection, segmentation, and

estimating 3D pose. They developed Augmented Reality Tool

Network (ART- Net), which uses deep separable convolution and

global average pooling. The architecture is a single

input–multiple output architecture which is more feasible

than the general lightweight model. The average precision and

accuracy of ART-Net reached 100%. Algorithms of two-stage

CNNs based on region proposals are developed for surgical

instrument tracking (Jin et al., 2018; Zhang et al., 2020).

Compared with a separate CNN network, integrating multiple

tasks into a single network can improve the accuracy of detection.

2.3.2 Two-stage CNN: Region proposal-based
algorithms

A region proposal network (RPN) and a multi-modal two-

stream convolutional network for surgical instrument detection

were developed by Sarikaya et al. (2017). A combination of image

and temporal motion cues jointly performs object detection and

localization task. The work introduced a new dataset performing

six different surgical tasks on the da Vinci Surgical System with

annotations of robotic tools per frame. A new modular anchor

network based on faster R-CNN (Zhang et al., 2020) is developed

to detect laparoscopic surgical instruments, which consists of

using a relationship module and an anchor generation

mechanism. The proposed two-stage method generated

adaptive shape anchors to detect instruments using semantic

information. The range of deformable convolution is expanded

based on a modulation feature module. On the new private data

set (AJU-Set) and the public data set (m2cai16-tool-locations),

their method yields detection accuracies of 69.6% and 76.5%,

respectively. A CNN cascade for real-time surgical instrument

detection (Zhao et al., 2019) has been developed to use in robot-

assisted surgery. The frame-by-frame instrument detection is

carried out by cascading two different CNN networks. An

hourglass network that outputs detection heatmaps for tool-

tip area representation and a modified visual geometry group

(VGG) network for creating a bounding box around the detected

Frontiers in Robotics and AI frontiersin.org05

Nema and Vachhani 10.3389/frobt.2022.1030846

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030846


part are developed. These two networks jointly predict the

localization. The method is evaluated on the publicly available

EndoVis Challenge dataset, and the ATLAS Dione dataset and

achieves good accuracy in terms of speed and performance.

2.3.3 One-stage CNN: Regression-based
algorithms

Although algorithms of two-stage CNNs based on region

proposal have a higher accuracy, the real-time performance of

most algorithms is still slightly inferior to that of the one-stage

algorithm. In 2017, a one-stage CNN algorithm based on

regression (Choi et al., 2017) was developed to achieve

minimally invasive surgical instrument detection and tracking

task. The algorithm has been introduced as a simple regression

problem. The CNN model developed could detect and track

surgical instruments in real time with a reduced number of

parameters through down-sampling. In 2020, Wang and

Wang (2020) proposed a one-stage instrument detection

framework controlled by reinforcement learning. The

proportion of positive training samples for the reinforcement

learning framework is achieved by optimizing the negative

sample candidate frame and thus improves the instrument

detection model’s accuracy. The one-stage instrument

detection method has an advantage over the two-stage

detection method in terms of high-speed framework and

accuracy. Compared with previous methods, this framework

detects surgical tools with complex backgrounds with small

training sample sizes. In 2021, Shi et al. (2020) developed a

convolutional neural network enhanced with real-time attention

guidance for frame-by-frame detection of surgical instruments in

MIS videos. The method was verified on varied datasets with

backgrounds having blur, occlusions, and deformations.

2.4 Toward surgical skill assessment

Researchers use the detection and tracking outcomes for

surgical skill assessment. Funke et al. (2019) developed a deep

learning-based video classification method for surgical skill

assessment. They use an inflated 3D ConvNet to classify

snippets extracted from a surgical video. During training, a

temporal segment network is added to the network. They

tested their methodology on the openly accessible JHU-ISI

Gesture and Skill Assessment Working Set (JIGSAWS) dataset

(a surgical activity dataset for human motion modeling). The

data set consists of recordings of routine robotic surgical

procedures carried out on a dry laboratory bench-top model.

High skill categorization accuracy of between 95.1 and

100.0 percent is achieved by their method. Lavanchy et al.

(2021) introduced a three-stage machine learning method to

automate surgical skill assessment in laparoscopic

cholecystectomy videos. This method trains a CNN to localize

and detect the surgical instruments. The motion feature

localization throughout time has been extracted in order to

further train a linear regression model. This helps in

predicting the surgical skills of a practitioner. The technique

represents an important advance toward the automation of

surgical skill assessment. However, it cannot reliably quantify

the degree of surgical skill.

3 Discussion and conclusion

Robot-assisted minimally invasive surgery and surgical

robotics applications now include the task of surgical

instrument detection and tracking as standard procedures. In

recent years, simulation has become an important tool for

educating surgeons and maintaining patient safety. Simulation

provides an immersive and realistic opportunity to learn

technical skills (Agha and Fowler, 2015). Simulation is a

standardized and safe method for surgeon training and

evaluation. AI methods allow observed demonstrations to be

tracked in the MIS, thus generating a standardized range of

actions. In addition to the development of laparoscopic and

minimally invasive surgical techniques, the use of simulation for

training has received increasing attention, and there is evidence

that skills acquired in simulation can be applied to real clinical

scenarios. Simulations allow trainees to make mistakes in order

to ask “what if” questions without compromising patient safety.

Virtual reality simulators are being used to help professionals

plan complex surgeries and assess postoperative risks (Gaba et al.,

2001). Using simulation in isolation from traditional teaching

methods will furnish the surgeon in training with skills, but the

best time and place to use such skills come only with experience

used by AI models.

This study reviewed the latest technologies in surgical

instrument detection and tracking that can automate labeling

in raw surgical video datasets. Real-time automated surgical

video analysis by faithful identification of labels and action

space can facilitate feedback on surgical skill performance and

help design automatic surgical interventions. Specific labels or

information about surgical instruments, such as their position,

orientation, and type, used at any time of intervention, can be

retrieved by generating time information showing the use of

instruments during the surgery. The existing algorithms and

technologies still need to be improved in terms of accuracy and

real-time visual detection and tracking of surgical instruments.

Recent advances in artificial intelligence have shifted attention to

automated surgical skill assessment, particularly in robotic

interventions. Robotic surgeries have the advantage that

kinematic data of instruments and video recordings are

readily available from the console. Performance metrics are

computed to predict skill levels and focus on robotic

kinematics data. One study combined motion features

extracted from video and some kinematic signals. A deep

convolutional neural network can successfully decode skill
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information from raw motion profiles via end-to-end learning

without the need for engineered features or carefully tuned

gesture segmentation. However, there are still many

outstanding technical challenges to be solved under

environmental conditions such as occlusion, smoke, or blood.

In addition to increasing real-time performance and

accuracy, the technology’s future development should

concentrate on the following development trends:

• Despite the fact that many algorithms based on deep

mastering CNN have been proposed, there are risks that

frequently arise at some stage in the software process, such

as occlusion, blood, and smoke. Consequently, enhancing

robustness to improve the performance of algorithms for

the detection and tracking of surgical instruments is still

the focal point of studies.

• The foundation for developing the algorithm of visual

detection and surgical instrument tracking is the quality

of the surgical image. At the current level, the subsequent

detection and tracking of minimally invasive surgical

instruments are significantly impacted by image quality

and the hassle of the complex environment, and improving

the quality of image acquisition is not negligible.

• For complete supervision of the deep learning model,

manually labeled data by knowledgeable doctors are

crucial. However, many data labeling findings cannot be

used because of insufficient and faulty labeling and the

collection of datasets, leaving many training samples

devoid of valuable markers. When employing automated

visual data labeling to detect and track surgical

instruments, weak or unsupervised deep learning models

can improve the algorithm’s accuracy and real-time

performance.

• Only when complete and publicly available verification

data sets and methods are available, the effectiveness and

progress of surgical instrument detection and tracking

algorithms can be accurately measured.

This study compares the test results and application scope of

various visual detection and tracking algorithms for surgical

instruments. Some future development trends and directions

of this technology for development toward an automated surgical

skill assessment system are given so that researchers in related

fields can have a more systematic understanding of the current

research progress.
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Glossary

AI artificial intelligence: a branch of computer science concerned

with building machines capable of performing tasks as

humans do

ML machine learning: a branch of artificial intelligence (AI) and

computer science which focuses on the use of data and

algorithms to imitate the way that humans learn, gradually

improving its accuracy

MIS minimally invasive surgery: a new standard of care for

surgical procedures

robot-assisted MIS MIS with improved control and dexterity

feature extraction the process of transforming raw data into

numerical features that can be processed while preserving the

information in the original data set

deep learning a type of machine learning and artificial

intelligence (AI) that imitates the way humans gain certain types

of knowledge

segmentation the process of dividing an image into groups of

similar pixel intensity;

SVM a type of deep learning algorithm that performs supervised

learning for classification or regression of data groups

CNN a type of artificial neural network used in image recognition

and processing that is specifically designed to process pixel data

RGB color space an electronic way to represent images

HOG histogram of oriented gradients: a feature descriptor used

in computer vision and image processing for object detection;

supervised and unsupervised learning supervised learning uses

labeled input and output data, while an unsupervised learning

algorithm does not

FCN fully convolutional network: an architecture used mainly for

semantic segmentation made up of convolutional layers. HMM,

hidden Markov model: a statistical Markov model in which the

system being modeled is assumed to be a Markov process

LSTM long short-term memory networks are a type of recurrent

neural network capable of learning order dependence in

sequence prediction problems

EndoNet a type of deep learning architecture for recognition

tasks

U-Neta convolutional neural network that was developed for

biomedical image segmentation at the Computer Science

Department of the University of Freiburg

VGG-16 very deep convolutional networks for large-scale image

recognition, a type of deep learning network developed by K.

Simonyan and A. Zissermen

ART-Net a type of deep learning network

3D-pose articulated 3D joint locations of an object from an

image or video

RNN recurrent neural network, a network that recognizes

sequential characteristics of data and uses patterns to predict the

next likely scenario

regression a technique for investigating the relationship between

independent variables or features and a dependent variable or

outcome
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