
TYPE Original Research
PUBLISHED 26 January 2023
DOI 10.3389/frobt.2022.1053115

OPEN ACCESS

EDITED BY

Mariel Alfaro-Ponce,
Monterrey Institute of Technology and
Higher Education (ITESM), Mexico

REVIEWED BY

Alejandro Flores Benitez,
Monterrey Institute of Technology and
Higher Education (ITESM), Mexico
Sergio Reyes Sanchez,
Autonomous Control Systems Laboratory
(ACSL), Japan

*CORRESPONDENCE

Ruben Fuentes-Alvarez,
joru.fua@gmail.com

†These authors have contributed equally to

this work and share first authorship

SPECIALTY SECTION

This article was submitted to Biomedical
Robotics, a section of the journal Frontiers
in Robotics and AI

RECEIVED 25 September 2022
ACCEPTED 30 December 2022
PUBLISHED 26 January 2023

CITATION

Fuentes-Alvarez R, Morfin-Santana A,

Ibañez K, Chairez I and Salazar S (2023),

Energetic optimization of an autonomous

mobile socially assistive robot for autism

spectrum disorder.

Front. Robot. AI 9:1053115.

doi: 10.3389/frobt.2022.1053115

COPYRIGHT

© 2023 Fuentes-Alvarez, Morfin-Santana,
Ibañez, Chairez and Salazar. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Energetic optimization of an
autonomous mobile socially
assistive robot for autism
spectrum disorder

Ruben Fuentes-Alvarez1†*, Alejandro Morfin-Santana2†,
Karlo Ibañez1, Isaac Chairez3,4 and Sergio Salazar2

1Tecnologico de Monterrey—School of Engineering and Science, Mexico, Mexico, 2Laboratorio Franco
Mexicano de Informática y Automática UMI LAFMIA 3175 CINVESTAV-CNRS, Mexico, Mexico,
3Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico,
Mexico, 4Bioprocesses Department, UPIBI, Instituto Politecnico Nacional, Mexico, Mexico

The usage of socially assistive robots for autism therapies has increased in recent
years. This novel therapeutic tool allows the specialist to keep track of the
improvement in socially assistive tasks for autistic children, who hypothetically
prefer object-based over human interactions. These kinds of tools also allow the
collection of new information to early diagnose neurodevelopment disabilities.
This work presents the integration of an output feedback adaptive controller for
trajectory tracking and energetic autonomy of a mobile socially assistive robot for
autism spectrum disorder under an event-driven control scheme. The proposed
implementation integrates facial expression and emotion recognition algorithms to
detect the emotions and identities of users (providing robustness to the algorithm
since it automatically generates the missing input parameters, which allows it
to complete the recognition) to detonate a set of adequate trajectories. The
algorithmic implementation for the proposed socially assistive robot is presented
and implemented in the Linux-based Robot Operating System. It is considered that
the optimization of energetic consumption of the proposal is themain contribution
of this work, as it will allow therapists to extend and adapt sessions with autistic
children. The experiment that validates the energetic optimization of the proposed
integration of an event-driven control scheme is presented.

KEYWORDS

socially assistive robotics, autism spectrum disorder, adaptive control, skid-steered
autonomous robotic platform, facial emotion recognition

1 Introduction

Autism spectrum disorder (ASD) is a lifelong, non-progressive neurological condition
related to brain development Volkmar et al. (2005). The classic form of autism involves a triad
of impairments: social interaction, verbal communication, and non-verbal communication.
These three conditions impact the perception of the environment and the way autistic
persons socialize with other human beings. The World Health Organization (WHO) (2019)
established that ASDs are a diverse group of conditions that are characterized by
some degree of difficulty in communication, social interaction, restrictive behaviors, and
sensory sensitivities that impact how they interact with and perceive society, especially
in cultures where contact and social interaction are primordial as in Latin culture. Other
symptoms often present in people with ASD are epilepsy, depression, anxiety, and attention-
deficit hyperactivity disorder Mayo Foundation for Medical Education and Research (2017).
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It is estimated that one in 160 children around the world are
on the autism spectrum (Elsabbagh et al., 2012; WHO, 2019). A
survey carried out by the Center for Disease Control and Prevention
reports that the prevalence of ASD in 2014 was estimated to be
close to one in 59 children at the age of 8 years in the United
States Baio et al. (2018); CDC (2019). Prevalence among the Hispanic
population of the United States ranges from 2.7 to 7.9 per 1,000
Pedersen et al. (2012). Unfortunately, the real incidence of ASD in
countries such as Mexico is largely unknown; official estimates range
from 1 to 4 per 1,000 inhabitants. Those estimates also show a
prevalence of 40,000 affected children. The only registry available
from the Mexican Health Department includes about 250 cases
starting in 1980. It also recognizes that the incidence has been
growing about 10–17% per year Oro et al. (2014); Tuman et al. (2008).
It has been noticed that several factors such as gender tend to
camouflage symptoms, generating a misdiagnosis and in some cases,
a late diagnosis Schuck et al. (2019). To this day, there is no cure
for autism. However, an early diagnosis and treatment can make an
essential difference in the lives of many children, where three kinds
of “traditional” therapies stand out: behavior and communication
therapies Mcgee et al. (2000), educational therapies Bartak and Rutter
(1973), and family therapies Lovaas (1987), where the patients are
trained to respond to environmental changes and understand feelings
and conversations, helping them react appropriately to social stimulus.

Other therapeutic methods such as animal-assisted therapies
Rodríguez-Martínez et al. (2021) and socially assistive robotics (SAR)
Puglisi et al. (2022) interaction have come to the scene recently
as reliable therapeutic options. In particular, research on SAR has
increased over the last few years. One of the main reasons for
this research progress in SAR is its aim of interacting with people
through social or physical assistance to deliver therapy or service
Martinez-Martin et al. (2020). The exciting improvement in the user
(especially in children) is because their attention is drawn through
visual and mobility-based interactions which guarantee their social
skill improvement Feil-Seifer and Matarić (2009). Moreover, SAR
focuses on creating close and effective human–robot interaction
(HRI) to quantify the progress made in a certain activity (e.g.,
learning, rehabilitation, and companionship) Fong et al. (2003).
For effective interaction processes, SARs must have components
to enable the promotion and accomplishment of embodiment,
emotion, dialogue, personality, human-oriented perception, user
modeling, socially simulated learning, and intention properties. The
incorporation of machine learning algorithms such as HRI solutions
to SAR has provided feasible interaction models during the therapies
Martinez-Martin et al. (2020). On the other hand, some studies have
demonstrated that autistic individuals tend to feel more comfortable
when interacting with robots because they are more predictable than
specialists and the environment of therapies Costa et al. (2017). Also,
autistic people typically show better response to feedback provided
by non-humanoid elements than humans. In addition, the non-
humanoid SAR may present hypothetical advantages over humanoid
robots, since they prefer objects over social environments. Therefore,
the usage of SARs as therapeutic tools is considered to improve
and enhance efficiency during therapy, providing more consistent
outcomes.

The SAR is used as a therapeutic tool for autistic persons, which
requires the accomplishment of different requirements to be effective.
First , the robotic system needs to be capable of adapting its spatial

position when the emotional state of the interacting user changes.
Consequently, the SAR requires an intelligent method based on facial
recognition techniques to identify when emotional changes occur
during a therapy session. Both requirements need to be integrated
through an algorithmic method, capable of broadcasting recognized
emotions and mapping them into trajectories that will be realized
by the SAR to modify certain emotional stages of the user. The
aforementioned requirements also need to consider the energetic
consumption of SARs when implementing both artificial intelligence
and control algorithms for an HRI method. The optimization
of its energetic autonomy will allow longer therapeutic sessions
while conducting and adapting the treatment depending on the
environment and the patient’s responses.

This work proposes the integration of an output feedback adaptive
controller (OFAC) based on sequential super-twisting differentiators
capable of optimizing the energy consumption during the trajectory
tracking problemwhenused on an event-driven control schemewhose
states will be chosen through a facial emotion recognition (FER)
algorithm.The complete intelligent system is allocated to a 4-wheeled
drive (4WD) as a skid-steered autonomous robotic platform (SSARP)
capable of interacting with autistic children.

2 Materials and methods

2.1 Conceptualization

An experimental report generated by the Adaptive Systems
Research Group from the University of Hertfordshire in the UK
Dautenhahn et al. (2003) concluded that the adaptability of the
interaction needs to be centered on the individual characteristics
of toddlers. This statement opens the possibility of proposing the
implementation of event-driven control schemes in non-humanoid
robotic platforms specializing in the treatment of people on the
autism spectrum. Furthermore, the integration of a facial emotion
recognition system that tracks the most effective trajectories for
the interaction between the robotic agent and the user can be
implemented by an event-driven control strategy.

Generally, event-driven control models are driven by externally
generated events. These events are usually signals taking a range of
values.The distinction between an event and a simple input detonating
the control is that the event is outside the control of the process
that handles that event. In this way, it is well known that neural
networks (NNs) are ruled by their own event production systems.
More specifically, a condition becoming true causes an action to be
triggered and active objects where changing the value of an object’s
attribute triggers some actions.

The event-driven broadcastmodel’s purpose is to transmit an event
to all the components that are integrated with the system. The main
limitation of this scheme is that each of the components needs to be
prepared to handle that event so that the system can respond to it.
The advantage of the broadcast method is that classes of events can be
integrated by registering their events with the event handler. Also, it is
considered that broadcast models are more effective when integrating
components distributed across different elements from a network.
Finally, a broadcast model capable of registering events such as facial
recognition and FER to prompt a set of trajectories to be carried by
the SAR when these events occur can be proposed. The broadcast
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FIGURE 1
Scheme of the proposed broadcast event-driven control strategy.

FIGURE 2
Conceptualization of the proposed SAR system. Notice that to avoid the transmission of trash data from the motion-capture system, a minimum of 12
different-sized markers need to be allocated over the surface of both the subject and the SAR by following an asymmetric pattern. This will allow solving
three problems: (A) identifying the SAR rear, front, right, and left positions; (B) losing sight of the SAR; and (C) keeping track of the HRI.

event-driven control model implemented in this work is described in
Figure 1, which also depicts the whole algorithmic integration of the
robotic system.

The scheme presented in Figure 1 proposes a human-in-the-loop
concept, where the system depends on both the user’s identity and
emotion to trigger a specific event. A one-shot facial recognition

algorithm (OSFRA) and an FER algorithm handle the outputs that
will serve as the events used to select a specific trajectory ζ* from a
specific set of trajectories. This trajectory will define the adaptive gain
selection for an OFAC, so the trajectory can be accomplished when
the control signals are transmitted to the SARmotors, consuming less
energy when compared to a state feedback controller (SFC). Also, it is
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FIGURE 3
Graphic representation of the components integrating the proposed robotic platform and the connections between them.

FIGURE 4
SSARP trajectory tracking of different trajectories in the X–Y plane.

expected that each of the trajectories affects the emotion of the autistic
user, closing the loop every time the trajectory is accomplished by the
SAR.

It must be considered that the implementation proposal requires
an onboard element capable of acquiring facial images from the users
and a motion-capture video acquisition system to determine the x− y
coordinate of the SAR (Figure 2). The robot position will feed the
control algorithm through a local area network Wi-Fi connection.
The network allocates the motion-capture monitoring system and the
SAR connected through the Robot Operating System (ROS) running
on a low-level controlling board that will manage to calculate the
adaptive gains of the OFAC to transmit them to the motors and

broadcast the activation states that provide the OFAC with desired
trajectories ζ*.

2.2 Instrumentation of a skid-steered
autonomous robotic platform

The proposal was implemented on an SSARP following the
proposal from Fuentes-Alvarez et al. (2022) and instrumented onto
a 4WD Dagu Electronics chassis to be used as the SAR structural
base. In particular, this robotic structure is designed to accomplish all-
terrain tasks; its complex outdoor capabilities may allow this SSARP
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FIGURE 5
Evolution of the time-dependent terms for the observer based on the nested super-twisting algorithm.

FIGURE 6
Distribution of the learned features under the joint supervision of the center-loss algorithm. Each color represents a total of nine different features from
particular classes associated with a different identity. (A) shows the learning process after 200 epochs, while (B) depicts the learning process after 12,000
epochs. Notably, distances are normalized and each color represents a different identity.

to be a potentially accurate chassis for a wheeled mobile SAR. It is
worth mentioning that Dagu’s chassis complies with the amending
Directive 2015/863/EU known as (RoHS 3) European Parliament and
Council of the European Union (2015) and the 2011/65/EU directive
European Parliament Council of the European Union (2011) on the
restriction of the usage of certain hazardous substances in electrical
and electronic equipment. This ensures an electrical security level
when thinking of an interactive robot. Also, the actuators selected
to enable the 4WD SSARP movement were Pololu metal gearmotors
with an integrated 48 counts per revolution quadrature encoder, whose
gear ratio is 34:1. These motors work at 6 V, providing 170 rpm over
the output shaft at no load speed, and a stall current of 2.4 A when
the stall torque is 3.5 kg-cm. At the end of each actuator, 120-mm
spiked tires and a flexible suspension system are allocated to ensure
each wheel maintains contact with the ground. A Husarion CORE2
low-level controlling board will serve as a bridge for transferring

the pulse-width-modulated (PWM) signals to the motors. These
signals are generated from the control algorithm, which is hosted
on Raspberry Pi 3 B+ running Ubuntu and ROS. Both electronic
boards are interconnected to calculate the adaptive gains through the
methods established by Fuentes-Alvarez et al. (2022), which will then
control the velocity of the SSARP wheels. Additionally, the Husarion
CORE2 allows the connection of a tablet allocated in the frontal part
of the SSARP, enabling the integration of an interactive sequence
through ROS. Also, taking advantage of the tablet’s frontal camera as
the OSFRA inputs, these algorithms will allow the system to deploy
an event-driven control scheme described in the previous section.
The aforementioned elements are put all together and connected as
depicted in Figure 3. It is worth mentioning that the system does not
countwith aHall effect sensor. In addition, the quantification of energy
is based on the control signal and thewell-knownmathematicalmodel
of a DC motor.
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2.3 Control strategy for a skid-steered
autonomous robotic platform

The design of the interaction between the robotic platform and
children with ASD presents a complex task. It is essential to determine
how movements will ensure positive stimuli for the users while
reducing the energy consumption of the SSARP-based SAR. Since
there is no evidence of an adequate set of trajectories or trends
for this task to be accomplished, the implemented control strategy
requires the capability of reproducing a wide range of trajectories.
The implemented OFAC aims to provide robustness to the SSARP
trajectory tracking; these dynamic models can be described as
presented in Eq. 1 when following the linearization proposed by
Caracciolo et al. (1999):

⃛ζ = α (q,η)v+ β (q,η) + ̃fr, (1)

where α is a well-defined non-singular decoupling matrix considering
the pseudo-velocities η ≠ 0, β contains the non-holonomic restrictions
presented by the model, and v is a virtual control extension. Notably,
the input control signal follows a certain relationship between the
original state vector q⊤ = [X,Y,ω] obtained as:

v = α−1 (q,η) [r− β (ζ,η)] . (2)

The term r refers to the jerk effect, the dynamic form of which
corresponds to:

⃛ζ = r. (3)

After integrating the jerk reference from Eq. (3), the new dynamic
system of the SSARP can be rewritten as:

Ż = AZ+Br

Z = [ζ⊤, ̇ζ⊤, ̈ζ⊤]⊤,

(4)

where matrices A and B are the controllable companion pair
of adequate dimensions for a multiple-input and multiple-output
dynamic systems. The complete mathematical process and the
sequential super-twisting differentiator design to estimate ⃛ζ can be
consulted in the study by Martínez-Fonseca et al. (2014).

After recovering the required states of Z, it is possible to describe
the OFAC. Considering the reference path is differentiable at least
twice, then there is a state variable representation given byZ*inℝ6 such
that:

Ż* (t) = AZ* +Bh(Z* (t) , t) . (5)

Therefore, the definition of the tracking error function Δ = Z−Z*
leads to the dynamics associated with Δ:

Δ̇ (t) = AΔ (t) +B(r (t) − h(Z* (t) , t)) , (6)

and the new control input r corresponds to the following definition:

r (t) = h(Z* (t) , t) +K⊤ (t)Δ (t) , (7)

where K satisfies

K̇ (t) = −αQPΔ⊤ (t)Δ (t) − K̃ (t) , (8)

where αQ = {λminP
−1/2QP−1/2} is a positive scalar and P ∈ ℝ6×6 and q ∈

ℝ6×6 are positive definite matrices which regulate the time variation of
the controller gain.Here, K̃ = K−K*;K* represents any possiblematrix
such that AK = A−BK* is a Hurwitz matrix.

It is worth mentioning that the stability proof presented by
Fuentes-Alvarez et al. (2022) ensures the trajectory tracking error
convergence to a small region. Consequently, the control input signal
can be reduced, allowing the optimization of the energy consumption
Carabin et al. (2017) of the OFAC. Finally, the OFAC algorithm
presented in this section is implemented onto the SAR throughout the
ROS frame in the node named ctrl_node.

2.4 Face recognition and convolutional
neural network for emotion recognition

Creating a link between the robot and the human being is
essential for the designs of social assistance robots. The robot has
to interact with humans and understand both verbal and non-
verbal behaviors. Nowadays, cameras make it possible to capture
the user’s movements and gestures on video so that the robot
can interact with certain behavior and adapt to the changes that
may occur during human–robot interaction Shen et al. (2021). This
section presents an algorithmic implementation to determine the
facial emotion and identity of autistic children interacting with
the SAR. This implementation relevance relies on the consideration
that ASD is a psychological disorder that alters the processing of
emotions and, consequently, lowers the ability for social interaction
and communication.

2.4.1 Face tracking
The technique known as the Viola–Jones technique was used for

face tracking and detection Viola and Jones (2001). The algorithm
detects edge or line features and extracts them from a series of positive
images that contain faces. Here, the integral image at location x, y
encompasses the sum of the pixels under and to the left of x, y, as
follows:

ii (x,y) = ∑
x′≤x,y≤y′

i(x′,y′) , (9)

where ii (x,y) is the mathematical representation of the integral
image, and i (x,y) is the original image.

Afterward, Ockham’s razor principle is followed to implement
a weak learning algorithm (AdaBoost) which picks out the single
rectangle feature that best isolates the positive from the negative
examples. Despite several NN algorithms that can achieve this task
in a better way, this face-tracking algorithm is used because it
implicitly provides a feature space subset from themain image dataset,
but also requires a minimum quantity of computational resources
to be deployed. Therefore, the implementation of the Viola–Jones
technique, a face recognition algorithm, must be integrated after
resolving the face tracking and face feature extraction.

2.5 Facial recognition

An OSFRA based on the generative one-shot face recognition
model from Ding et al. (2018) is proposed. It is possible to implement
an OSFRA algorithm once data are allocated on the feature space.
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FIGURE 7
Comparison of different classification algorithms for the FER task running over the FER-2013 dataset.

Furthermore, this allows the processing unit to reduce computational
time since the amount of data is decreased. Since the face-tracking
strategy will obtain a one-time face sample from the first interaction
with the child, the integration of a data set before the interaction
with the robot is not necessary. Usually, recognition models are
trained to label training data with two sets without identity overlap,
where the base set {Xb,Yb} contains cb classes and the one-shot
set {Xn,Yn} contains cn classes. The goal is to build a general c-
class recognizer c = cb + cn. The proposed algorithm includes two
phases. The first phase comprehends a representation learning stage.
The representation learning stage, where the face representation is
modeled using training images from a base set, was presented in the
previous section.The second phase is one-shot learning.The following
stage is trained as a multi-class classifier to recognize the person in
both the base set and the one-shot set based on the representation
model learned in the previous stage. Hence, it is essential to balance
these two sets to achieve a more effective feature representation;
results obtained byDing et al. (2018)were followed. Features extracted
from the last pooling layer are used as the face representation.
Certainly, the aforementioned implementation presented an over-
fitting phenomenon over the new c recognizer, which is associated
with the ck distance between classes, reducing the norms of both
parameters contained in the cn set. To solve this problem, a center-
loss method for the parameter update is proposed as in Algorithm 1
by following the results fromWen et al. (2016).

Algorithm 1. Discriminant feature learning algorithm based on center-loss

functions.

2.5.1 Facial emotion recognition
The FER algorithm is based on a CNN which proposes a

structure that comprises nine fully connected layers, containing four
residual depth-separable convolutions. This is followed by a batch
normalization operation and the implementation of the rectifier
linear unit activation function. Finally, a batch normalization layer is
presented to reduce covariance during the training process. The input
of the CNN are the features obtained from the Viola–Jones algorithm
described at the beginning of this section. For the trainingand
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FIGURE 8
Integrated system presented as an ROS graph. This structure shows graphically how the SAR system is integrated. The main nodes ara_node and ctrl_node
represent the principal energetic consumption elements of the system.

validation processes of the FER algorithm, the FER-2013 dataset
Zahara et al. (2020) was used. These datasets contain 460,723 and
28,709 RGB images. Also, the classes contained in the datasets are
Neutral,Happy, Surprised,Angry, Sad, Fear, andDisgust.The output of
CNN “emotion recognition” determines the movements of the mobile
robot, which has predetermined control trajectories associated with
each emotion.

3 Results

3.1 Trajectory tracking of a squared
trajectory

Once the OFAC design is defined, it is necessary to define
an adequate trajectory presenting a non-linearity effect and whose
accomplishment requires a considerable amount of energy. For this
example, ζ* is proposed as a 2m× 2m squared trajectory. The results
obtained from the implementation of the trajectory tracking are
presented in Figure 4.

It can be observed in Figure 4 that the skidding effect is present
when tracking ζ*. Also, the SSARP smothers the sharp angles of the
squared trajectory when turning. The accumulated error of the OFAC
is reported to be .2146, while the reported SFC is .6326.This shows that
the SFC can be ̃3 times less accurate than the OFAC when following
this type of trajectory. Other trajectories such as lemniscate, circular,
and triangular trajectories were also tested. Results for each trajectory
are presented in the following sections of this paper.

3.2 Absolute power consumption

The energy consumption of the OFAC proved to be less than
that consumed by the SFC. The accumulated energy of the OFAC
was 6.7255× 104 J, while the SFC accumulated consumption was
1.8351× 105 J. These results present the optimization of the absolute

power consumption. Notably, the maximum amount of power
required by the OFAC to track a squared trajectory is ̃4.5 W.
When traduced to the total current consumed by the DC motors
at the highest energy peak, the consumption is equivalent to 0.3 A;
considering the instrumentation, energy input is 14.2 VDC at 3 A,
and the total load of the SAR is 5 kg. Also, the evolution of the
ϕi,k gains implemented in the super-twisting gains through time is
presented in Figure 5, showing that the amount of power consumed
by the sequential super-twisting differentiator is nearly negligible.
The evolution of these functions and their convergence to a zone
around the origin confirms that the reconstruction of the time
derivative for variable ζ is completed successfully in finite time.
Energetic consumption results from the SSARP when following
different trajectories are presented in Table 1.

3.3 Face and emotion detection

The implemented OSFRA serves as an information access layer
that ensures data acquisition during each patient’s therapy. The
algorithm’s most remarkable strength lies in its generative capability,
whichmeans that evenwith a limited quantity of input parameters, it is
capable of completing the recognition task by auto-generating its own
feature space. Its implementation aims to give personalized follow-up
to patients. Figure 6 shows the results of the OSFRA implementation
running on a Linux Ubuntu distribution mounted on Raspberry Pi 3
B+.

The FER was implemented using the video references obtained
from the onboard tablet camera. Since there is a close similarity
in how children with Asperger’s syndrome and autism express
their emotions and their facial expressions, tests were carried out
with the help of a 16-year-old man diagnosed with Asperger’s
syndrome. It is important to mention that the results obtained
from the implementation of the FER algorithm provide the system
with the capability of recognizing six different facial emotions:
Neutral, Happy, Surprise, Angry, Sad, and Fear. Also, Figure 7 shows
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FIGURE 9
Final aspect of the proposed SAR platform. A bi-tone soft fabric cover was used to invite ASD users to establish physical contact with the SAR. Red and blue
colors were selected for the cover. Also, an eye animation is projected on the onboard tablet screen, which serves as an indicator that all systems are
running correctly. After its assembly process, the prototype of the SAR proposed in this work received the name of Autonomous Robot for Autism (AR4A).

the true performances of the proposed classification through the
comparison of the confusion matrices during the validation process
against algorithms such as artificial neural networks (ANNs), k-
nearest neighbors (k-NN), linear quadratic discriminator (LQD), tree
classifier, and support vector machine (SVM). It must be clarified that
each of the aforementioned algorithms were tested using MATLAB
toolboxes, tuning the hyperparameters to obtain the best possible
performance. The results obtained from k-NN, tree classifier, and
SVM methods resulted in the observation of several classes being
misclassified, i.e., Sad emotion being classified as Fear 20%of the times
for k-NN or Surprise as Happiness 32% of the times when running
SVM. After running these tests, it was decided that the Disgusting
emotion needed to be removed from the image-set, since this class
presented a highermisclassification accumulative rate when compared
to others. Furthermore, the Disgusting expression is not considered a
“valid” emotion by therapists attending to ASD children. In addition,
this comparison serves as evidence of the accuracy of the implemented
algorithm compared to other classification methods.

3.4 Prototype integration

The reason for proposing an event-driven control strategy, which
uses externally generated events such as emotions to trigger certain
control states, is centered on the contactless HRI required to avoid
harmful events during therapies. This triggering role will be played
by the output of both FER and the OSFRA. The connection between
the OFAC, FER, and the OSFRA is carried out through the ROS
vrpn_client_node. Infrared cameras will feed the designed ROS OFAC
node (ctrl_node) with the pose of the SAR and the subject in the room’s
free space through a closed local area network Wi-Fi connection. It is
worth mentioning that both OSFRA and FER run in the ara_node,

broadcasting the activation states that provide the OFAC with desired
trajectories ζ*. Figure 8 demonstrates the algorithmic interaction
during the ROS implementation, showing the involved nodes and
topics for the event-driven control scheme. Finally, the proposed
robotic platform AR4A (Autonomous Robot for Autism) is presented
in Figure 9. A selection of red and blue plush fabric was used to cover
the external structure in compliance with the autism color theory to
positively stimulate the sensorial perception of children with ASD.
The total height of AR4A from the ground to the top is 275.2 mm,
the width from the left wheel to the right wheel is 373.5 mm, the
length from front to rear is 368.68 mm, and AR4As’ total weight
is ̃5 kg.

The AR4A node implementing FER, OSFRA, and OFAC
algorithms on a 4WD SSARP can be consulted on https://github.com/
jorufua/AR4A.

4 Discussion

Persons with ASD usually develop movement-planning capacity
after interacting with robotic agents. This process happens after the
observation of congruent moves. Some reports conclude that the
adaptability of the interaction needs to be centered on the individual
characteristics of this type of patient to be more effective over time.
For these reasons, it is essential to provide SARs with energy-effective
control and HRI algorithms. In this work, the integration of FER +
OSFRA algorithms used as HRI was proposed to denote the trajectory
tracking of an SSARP-based SAR through an event-driven control
scheme.

The implemented OFAC reached a mean-square error (MSE) of
.2146 when compared against an SFC during a squared trajectory
tracking, in which the SFC performance was .6326. Also, the OFAC
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TABLE 1 Energy consumed by the SSARPwhen following different trajectories in the x–y plane.

Controller Trajectory Energy consumption (J)

State feedback controller Triangle 124.37

Output feedback adaptive controller Triangle 115.88

State feedback controller Square 141.81

Output feedback adaptive controller Square 132.92

State feedback controller Lemniscate 186.49

Output feedback adaptive controller Lemniscate 183.32

State feedback controller Circular 167.13

Output feedback adaptive controller Circular 152.89

TABLE 2 Comparison of the implemented OFAC against an SFC for various trajectory tracking on an SSARP-based SAR.

Trajectory Controller TMSE Energy consumption (J)

Triangle State feedback controller .693 124.37

Triangle Output feedback adaptive controller .625 115.8

Square State feedback controller .632 141.8

Square Output feedback adaptive controller .214 132.9

Lemniscate State feedback controller .622 186.49

Lemniscate Output feedback adaptive controller .572 183.32

Circular State feedback controller .583 167.13

Circular Output feedback adaptive controller .552 152.82

TABLE 3 Comparison of the implemented FER against other classifiers.

Classification algorithm 5-fold cross-validation

min-Xception Arriaga et al. (2017); 65%–67%

Gogate et al. (2020)

Proposed CNN 63.6%

ANN 45.47%

k-NN 29.28%

LQD 58.33%

Tree classifier 29.04%

SVM 14.28%

presented a skidding effect when the trajectory edges were presented.
These sharp turns represent the highest energy requirements for
the controller. The total energy consumption during the tracking
of the squared trajectory for the OFAC was 39.04 J, while the SFC
consumed 100.6 J. Table 2 presents the energetic performance of both
controllers.

The implemented FER algorithm reached an accuracy of 63.6%
when compared against ANN, k-NN, LQD, tree classifier, and SVM for
the FER classification task. It must be added that all these algorithms
were tested and compared for the FER-2013 database.Table 3 presents
the classification performances shown by each of the implementations
after running a 5-fold cross-validation process.

After analyzing the results obtained from comparing different FER
algorithmic solutions, it can be concluded that the proposed CNN
solution is slightly below the classification performance compared to
the min-Xception algorithm reported in the literature. However, a
deeper comparison must be carried out to determine which solution
results inmore efficient running on an onboard device. As a claim over
this specific point, it must be said that the proposed CNN has already
been implemented on the onboard Raspberry Pi device, resulting in
a delay of the FER of nearly .85 s when running all the detection
modules proposed in this work. When carrying out an analysis of
the computational complexity of the proposed algorithms under an
event-driven scheme, it is shown that the complete implementation
runs on O(knd2), whereO(k ⋅ d) represents the total k dot products
in the weight matrix W of the CNN and finally, at the layer
level, the filtering application over the input n− k+ 1 times, where
n is the length of the input. In terms of consumption, the total
amount consumed by the implemented system was 34.08 W per
hour.

4.1 Future work

Once the SAR control scheme and the recognition algorithms are
proved to be functional with an acceptable energetic consumption
amount, autonomous navigation based on simultaneous localization
and mapping (SLAM) algorithms must be implemented. This
implementation requires the modification of the instrumentation
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stage by adding a stereoscopic camera and a light detection and
ranging device.This implementation will enable the device to not only
gain navigation autonomy but also to interact in a more efficient way
with patients. It must be considered that interaction times will be
affected and that the implementation of other algorithms to analyze the
biomechanics of the interaction during sessions must be implemented
to maintain some of the advantages provided by the current
system.
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