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Road infrastructure is one of the most vital assets of any country. Keeping the

road infrastructure clean and unpolluted is important for ensuring road safety

and reducing environmental risk. However, roadside litter picking is an

extremely laborious, expensive, monotonous and hazardous task.

Automating the process would save taxpayers money and reduce the risk for

road users and the maintenance crew. This work presents LitterBot, an

autonomous robotic system capable of detecting, localizing and classifying

common roadside litter. We use a learning-based object detection and

segmentation algorithm trained on the TACO dataset for identifying and

classifying garbage. We develop a robust modular manipulation framework

by using soft robotic grippers and a real-time visual-servoing strategy. This

enables the manipulator to pick up objects of variable sizes and shapes even in

dynamic environments. The robot achieves greater than 80% classified picking

and binning success rates for all experiments; which was validated on a wide

variety of test litter objects in static single and cluttered configurations and with

dynamically moving test objects. Our results showcase how a deep model

trained on an online dataset can be deployed in real-world applications with

high accuracy by the appropriate design of a control framework around it.
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1 Introduction

Roadside litter poses a severe safety and environmental risk for road users, wildlife

and the maintenance crews who clean it up (National Highways, 2022) (see Figure 1).

According to National Highways, which is responsible for maintaining and cleaning the

United Kingdom’s strategic road network, taxpayers in the United Kingdom are paying

£4.8 million per year for cleaning up roadside litter (Be Wiser, 2016).

Litter generally refers to any misplaced or solid waste. It appears in different

formats including but not limited to sweet wrappers, drinking containers, fast food

packaging, cigarette ends, small bags etc. Many countries around the world have seen

an increase in roadside litter (Kaza et al., 2018; Karimi and Faghri, 2021; Smith, 2022).

Several sources of litter on the roads were identified, including pedestrians, motorists,
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household trash, and others as reported (Karimi and Faghri,

2021). Overtime build-up of litter alongside the road has

increased due to population growth, and an increase in the

road network and users. The problem has been accelerated

with the global pandemic COVID-19 with personal protective

equipment (KAB, 2020). The US spend nearly 11.5 billion

dollars each year for removing all sorts of litter (Karimi and

Faghri, 2021). Depending on the amount of litter, it can pose

safety hazards and can cause operational issues for road users

(National Highways, 2022). These items can interrupt the

traffic flow and cause delays. More importantly, such a

situation can directly or indirectly lead to a collision. In the

US, road debris-related crashes contributed to approximately

50,658 of the police-reported cases (Tefft, 2016). The

environmental impact of roadside litter goes far beyond the

boundaries of the roadway network. The toxic materials

contained in such garbage can be washed away with rain

and contaminate the soil and groundwater (Kurmus and

Mohajerani, 2020). Furthermore, some of the litter end up

in streams, rivers, drains and ocean. A study has shown that

plastics decompose into microplastics over time in the ocean

and can end up in the food chain (Thiele et al., 2021). A

number of approaches have been proposed to reduce or

prevent litter. From a societal perspective, there are three

major approaches to litter prevention; education and public

awareness, receptacles’ design, and consequence control

(Prata et al., 2019).

There are two key challenges with garbage disposal. First, the

item has to be collected from the disposed location and then

sorted for its appropriate recycling process. Traditional garbage

cleaning is performed by paid workers, organisations, volunteers

and charities sent on-site to pick up items alongside the road.

Manual picking is a tedious, boring and repetitive task (Deery

et al., 2019). Workers spend most of their time alongside roads

with motorists, posing a safety risk. Furthermore, hazardous

material associated with litter exposure can lead to diseases and

infections. A review on roadside litter paper estimates that

8.3 billion tons of plastic have been created over the past

50 years, and only 9% have been recycled, indicating a large

scope for improvement in the sorting process (Karimi and

Faghri, 2021).

To automate the cleaning process and improve the safety of

workers, litter detection algorithms and robotic systems have

been developed over the past few years. Some of the first few

works use novel sensing technologies for waste identification. For

example, an automatic trash detection algorithm using an

ultrasonic sensor was proposed in (Kulkarni and Junghare,

2013). A sorting solution for mixed recycled aggregates using

near-infrared technology was proposed in (Vegas et al., 2015). A

multi-material classification technique based on the utilisation of

thermal imaging for sorting dry recyclables from municipal solid

waste was proposed in (Gundupalli et al., 2017). A laboratory test

was conducted on four broad categories of dry recyclables and

obtained a classification success rate in the range of 85–96%. Due

to recent advancements in deep learning algorithms, object

detection using visual data has become more popular. For

example, a deep learning-based pavement inspection

framework for detecting and localising pavement defects

simultaneously with garbage detection has been reported in

(Ramalingam et al., 2021).

One of the first implementations of a robotic device for litter

picking, the ZenRobotics recycler robotic system, uses machine

learning and a robotic manipulator to pick recyclable objects

from a conveyor belt (Lukka et al., 2014). A 3D high-resolution

sensor is used to get an isometric 2D map of the conveyor, then a

learning-based method is used for object recognition and

manipulation. A similar approach using a fast parallel

manipulator with a suction gripper, for sorting items on a

conveyor was investigated in (Raptopoulos et al., 2020).

However, these works have not been tested in real-world

scenarios. Bai et al. (2018) presented a novel garbage pickup

robot tested on grass using a learning-based object segmentation

algorithm. Liu et al. (2021) developed a comprehensive system

that uses deep learning for object segmentation and classification

FIGURE 1
The left image shows the roadside pollution typically observed in the UK [taken from Daily Mail Online (2021)]. Right image is an example of
maintenance crews undertaking the laborious and dangerous litter picking task [taken from BBC News (2018)].
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of different classes. Incorporated with a mobile robot, a grasp

localization method to identify a suitable grasp pose to pick the

garbage from the ground was also developed.

This paper proposes a cost-effective strategy for litter picking

using a robotic manipulator. Our contributions are as follows:

• A modular approach to robotic development to minimise

costs and development time. The robot is comprised of

inexpensive or off-the-shelf components which are

improvable over time.

• Distinct from other works, we simplify and improve the

robustness of our manipulation system by using soft

robotic grippers and a real-time visual-servoing

controller, requiring only a 2D colour camera for

picking and binning objects of variable sizes and shapes

even in dynamic environments.

• We use a learning-based object detection and segmentation

algorithm trained on the online TACO dataset for

identifying and classifying garbage, making our

framework easily transferable to additional objects and

classes by simply retraining the object detection network.

Our results indicate a high grasp success rate and good

recycling accuracy.

The rest of the paper is organized as follows. Section 2

presents an overview of the proposed robot system, including

hardware configuration and control architecture. The

approaches our methodology employ to realize the litter-

picking including perception, object tracking and experimental

results, which demonstrates the proposed litter-picking robot’s

effectiveness, are given in Section 3. Finally, the discussion and

conclusions are in Section 4.

2 Methodology

2.1 Roadside litter picking robotic system

The roadside litter-picking robot (LitterBot) is shown in

Figure 2. To minimise the development time and cost of the

prototype robot, inexpensive components were deliberately

chosen and integrated in a modular manner. The robot

comprises a UR10 6 Degree-of-Freedom (DoF) robotic

manipulator with a Fin Ray type soft end-effector. The end-

effector mounts a RealSense D415 colour and depth camera for

the machine vision with a 1920 × 1080 resolution. The depth

information, however, is not used. The UR10 manipulator is

mounted on a wheeled platform that is 2 m wide, 55 cm high and

140 cm long. Note that the wheeled platform is kept stationary,

however, it can easily be towed by a vehicle for movement. The

robot has a semi-circle working area with a radius of 1.3m. The

Robotics Operating System (ROS) is employed for the software

architecture running on a control laptop. Control of the

manipulator is done through the built-in motion and

kinematic controllers.

2.2 Soft gripper

The soft gripper employs two Fin Ray fingers driven by a

single servo motor. These structures have several advantages

compared to other soft grippers such as ease of use, minimal

actuation and the capability to grasp a wide variety of objects

(Crooks et al., 2016). The “V” shape structure with layers of

crossbeams at the centre allows for the mechanically passive

adaption to the geometry of the object applying the force.

Unlike, other typically used soft grippers like PneuNets

(Mosadegh et al., 2014) or Universal Grippers (Brown

et al., 2010; Sakuma et al., 2018), Fin Rays also do not have

the risk of failure when punctured. The gripper is given in

Figure 3.

The material used for the Fin Ray fingers is the Dragon Skin

30 silicone. Themould for casting was 3D printed. The fingers are

attached to the 3D-printed PLA gripper base (see Figure 3) which

is mounted to the UR10 robot. A tendon attached to the bottom

of the fingers is tethered to the pulley of a servomotor for

actuation. Control of the gripper is achieved using an Arduino

microcontroller.

2.3 Visuo-motor control architecture

2.3.1 Detectron 2 for object segmentation and
classification

The vision system uses the Detectron 2 version of Mask

Region Convolutional Neural Network (Mask R-CNN) for the

FIGURE 2
The LitterBot and its components.
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litter instance segmentation and classification. This outputs

both masks and bounding boxes. To minimise the

developmental cost of the modular integration, we deploy

the Resnet50 backbone due to its trade-off between high

average precision performance and inference time on the

COCO dataset compared to other pre-trained network

weights available (Facebook Research, 2021). The network

was implemented in Python 3 using PyTorch.

Principal component analysis (PCA) is used on the masks to

determine the angular orientation of the objects. The principal

axis corresponds to the long-ways orientation of the target mask.

The variance matrix A of the segmented grey-scale mask data is

used to find the first eigenvalue λ. This is used to solve for the

eigenvector v. The angle of the target object is obtained using

inverse tan on the eigenvector. The angle is constrained between

− 90 and 90°.

A − λI( ) � v (1)

θ � tan−1 v2
v1

( ) (2)

The Trash Annotations in Context (TACO) dataset was used

to train the network (Proença and Simões, 2020). It consists of

1500 images, with 60 classes. TACO was divided into a 90% and

10% train and validation set respectively. The network was

trained on Google Colab using a batch size of 512 for

1000 iterations (approximately 350 epochs). The training and

validation loss is given in Figure 4. The images were

automatically resized to the default size of 800 × 800.

Overfitting occurs at around 300 to 500 iterations, hence the

ultimate network weights were taken at 500 iterations. The

network achieves a 94% accuracy on the validation set.

Deployment inference and evaluation were done using the

control laptop’s graphical processing unit (RTX 2060m).

2.3.2 Visual servoing-based litter picking
The robot employs a velocity-based eye-in-hand visual-

servoing scheme for litter picking (see Figure 5). Given a

target object present in the camera view located at pixel

coordinates xt = (xp, yp), the pixel error e = [ex, ey] to the

reference pixel coordinates xr = (xr, yr), corresponding to the

centre of the gripper, is multiplied by a proportional gainKp. This

forms the end-effector Cartesian velocity control input to the

robot, given in Eq. 3.

U t( ) � Kpe t( ) (3)

A value of 0.0005 was used for Kp. Both Kp and the reference

pixel coordinates were found empirically. Pixel target coordinates

(xp, yp) are taken as the centre of the target’s Detectron2 bounding

box. The robot picks the target based on the detected object with the

largest mask. Detectron2 has a frequency of 7Hz, hence a low

proportional gain is implemented to retain control stability. The

control input U(t) is given to the UR10 in-built function speedl to

achieve the closed-loop control. Once the error is sufficiently small,

the visual-servoing process is terminated. e < 2 was empirically

found to give reasonable grasping accuracy. The robot then proceeds

to grab the object. Formoving to the object, the final currentX andY

Cartesian end-effector positions are taken, however, the Z position is

assumed to be fixed and estimated beforehand. The angle estimated

by PCA is then used to re-orient the gripper as it drops such that the

thinnest width of the object corresponds to the mouth of the fin ray

gripper.

FIGURE 4
Training and validation loss (left) and accuracy (right) for the TACO dataset.

FIGURE 3
The soft Fin Ray type gripper with the depth camera.
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3 Litter picking experiments and
results

3.1 Experimental protocol

Three litter-picking experiments were conducted. For all

three, the test objects are laid on the ground. The aim of the

experiments was to validate the holistic performance of the robot

when picking and binning litter. This process is broken down into

three distinct steps (see the flowchart in Figure 6); litter

identification (orange blocks), grasping (blue blocks), and

classified binning (green blocks).

The robot first goes into a home viewing position, with a

camera view that is parallel to the ground. The current litter

target is chosen as the identified object with the largest

segmentation mask. The robot then grasps the target object

based on the eye-in-hand visual servoing method. The robot

then drops the grasped litter into either the “Waste” or

“Recycling” bin depending on the predicted class of the target.

The 60 classes in the TACO dataset were manually divided into

“Waste” or “Recycling” categories depending on the materials

they are comprised of. This was implemented in the software

using a rule-based approach, for example, objects identified as

“drink can” are classified as recycling, and objects identified as

“other plastic wrapper” which contain non-recyclable materials

are classified as “waste”. Although the dataset has 60 possible

classes, only four object types were used in the experiments. The

classes considered as “Recycling” are “Clear plastic bottle” and

“Drink can”. The classes considered as “Waste” are “Other plastic

wrapper” and “Plastic film”. We believe these are the most

prominent types of pollution found in urban areas. More

importantly, these objects have not been seen in the training data.

FIGURE 5
Visual servo control block.

FIGURE 6
Picking and binning process.
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3.2 Static individual object litter picking

In this first experiment, the four objects were picked and

binned individually. For each object, ten trials were undertaken.

At each trial, the object was placed in a random pose on the floor

in front of the LitterBot (see Figure 7). A single pick and bin

process is considered a success if the robot could detect, grasp

and dump the object in the correct bin. An example of the visual-

servoing is given in Figure 8.

From Table 1, it can be seen that the robot is able to correctly

pick and bin a wide variety of objects with success rates of at least

80%. None of the failures was from object misclassification

suggesting a relatively robust vision network when detecting a

single object even with such a small dataset. One reason for

unsuccessful attempts was due to the object being dropped by the

gripper as a result of non-robust grasps. A mechanically stiffer

gripper, however, should circumvent this issue. Another reason

for unsuccessful attempts were objects being placed outside of the

robot’s workspace. This can be easily addressed by placing the

manipulator on a mobile platform. The time it takes to pick the

objects is highly dependent on where the object is placed relative

to the robot. This was the reason for the relatively high standard

deviations. The robot, however, is able to successfully pick up the

objects it has previously dropped upon further attempts.

FIGURE 7
Example initial views for the four object types before the pick and bin process is executed.

TABLE 1 Success rates and average times for the ten individual picking
and binning tests for the four objects.

Test object Success rate (%) Mean time (s)

Recyclable

Clear Plastic Bottle 80 22.3 ± 5.8

Drink Can 80 19.8 ± 6.9

Waste

Other Plastic Wrapper 90 22.1 ± 11.1

Plastic Film 90 25.5 ± 10.9

FIGURE 8
An example of the Visual Servo graph for dynamic obstacles.
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3.3 Dynamic object litter picking

There are many factors which can contribute to a dynamic

roadside environment. These factors include moving litter and

garbage as a result of wind or inclined surfaces, the robot itself

moving within the environment, environmental and weather

conditions, and cars and pedestrians. However, to test the efficacy

of our framework, specifically the performance of the visual

servoing approach combined with the gripper and the vision

network, we have chosen to address only the dynamically moving

garbage and litter. Here, a clear plastic bottle was dynamically

moved around the workspace to simulate low-speed wind. A

string was tied around the neck of the bottle, which was used to

manually pull the bottle in random directions for a random time

period, after which the movement is stopped. This assumption

holds for litter that has settled down on the side roads, typically

seen in roadside pollution. Note that this experiment is likely

untrue for other litter such as lightweight shopping plastic bags.

Five trials were undertaken.

An example of dynamic visual-servo tracking is given in

Figure 9. In this example, the bottle was moved between three

different positions. The yellow region of the tip position graph

shows the ability of the robot to follow the dynamic object.

From Table 2, it can be seen that the visual-servoing

approach achieves reasonable performance in tracking moving

litter for picking and binning in all five trials. The time it takes for

the robot to pick and bin the object is also dependent on how long

the object has moved until it has settled to a fixed location.

3.4 Cluttered objects litter picking

Finally, this experiment tests the performance of the

robot’s pick and bin process when there are numerous

cluttered objects. This simulates the cluttered conditions

the LitterBot will likely encounter in a real-world

deployment. Here, six test objects that fit the four classes

are placed in random poses within the LitterBot’s working

space (see Figure 10). Three of the objects were in categories

that can be recycled, and the remaining three were waste.

Nine trials were conducted. An additional plastic wrapper

(of a chocolate bar) and a plastic water bottle were added.

The objects used vary widely in size, geometry and material

which is representative of typical roadside pollution (see

Figure 1). The robot picks the current target depending on

the object with the largest detected mask. Here, the soft

gripper’s grasping success rate and litter binning

classification were tested. The latter implicitly test the

performance of the trained network when there are

multiple objects within the scene.

From Table 3 (and Table 1 from the single static object

experiment in Section 3.2), it can be seen that the gripper’s

compliance and adaptability performs well for grasping the

various objects. Only one object was dropped in all nine trials.

Overall, the LitterBot achieves relatively high binning

TABLE 2 Pick and Bin success and process execution time for the five
trials with the dynamic object.

Clear plastic bottle Pick and bin success Time (s)

Trial 1 Success 67.4

Trial 2 Success 20.3

Trial 3 Success 28.8

Trial 4 Success 75.3

Trial 5 Success 30.9

Mean 44.6 ± 24.9

FIGURE 9
The left image shows the roadside pollution typically observed in the UK [taken from Daily Mail Online (2021)]. Right image is an example of
maintenance crews undertaking the laborious and dangerous litter picking task [taken from BBC News (2018)].
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classification success rates for either waste or recycle binning.

Relative to the first experiment, however, the vision network was

more likely to misclassify litter objects (such as putting recyclable

objects in the waste bin and vice versa) when the view is cluttered.

This suggests a larger dataset might be required for real-world

deployment.

4 Discussion and conclusion

In this paper, we introduce the LitterBot, a roadside litter-picking

robot prototype that is economically and computationally cost-

effective. The robot uses the off-the-shelf Mask R-CNN

(Detectron2) network for litter instance segmentation trained on

the relatively small TACO dataset. Instance segmentation not only

allows for the localisation of the detected objects within the image

scene but also the inexpensive pose estimation using PCA. When

augmented with 2D pixel real-time visual-servoing using the localised

information and a soft-robotic gripper, the robot is highly successful in

picking up and correctly binning a wide variety of objects which have

drastically different weights, geometry, materials and recyclability. The

robot’s success rate in picking and binning is consistently above or at

least 80% for the various experiments. The use of an underactuated

compliant and adaptable gripper allows for the robust grasping of

arbitrarily shaped objects requiring minimal control. Pixel-based

visual-servoing also has several advantages over open-loop control

such as being less sensitive to frame transformation noise, and the

ability to track dynamic objects even allowing for the re-picking of

previously dropped objects.

The LitterBot also only requires 2D images for picking and

binning, unlike prior works which require 3D point cloud images

(Lukka et al., 2014; Raptopoulos et al., 2020; Liu et al., 2021) for

planning appropriate grasp movements. Our method circumvents

this through the use of a soft gripper which greatly simplifies the

control complexity without sacrificing performance. This reduces

economical costs as our soft gripper, although bespoke, is easy to

fabricate and exponentially cheaper than off-the-shelf grippers. Point-

cloud-based grasp planning also needs expensive depth cameras and

additional grasp pose-detecting algorithms to tolerate noisy image

depth data which would be prevalent in a real deployment. Our robot

on the other hand only requires mask data and can easily be deployed

on cheaper 2D cameras, making it more economically and

computationally inexpensive. The robot is also easily scalable to

additional objects by simply retraining the vision network on new

2D data which is far easier to obtain than point cloud-based data.

The deliberate use of modular components has the advantage of

being improvable over time, which is easily extendable to more

complex mechanisms and algorithms. The robot, however, is still a

prototype and has scope for improvements before it is viable for real-

world deployment. Although the gripper is adaptable, it is limited to

objects that can fit within its grasp. One solution would be to

incorporate an additional suction cup gripper such that larger

objects such as pizza boxes can also be grasped. Future versions

of the Fin Ray gripper will also include stiffer materials to increase

themaximumgraspable weight. A slight underperformancewas also

observed when multiple objects are present in the camera view. A

larger dataset in the future will be beneficial for increasing the

robustness of the vision system. Environmental factors such as

variation in weather and lighting conditions as well as

background and scenery will also be addressed in future work

FIGURE 10
Example initial views for a clutter of objects before the pick and bin process is executed.

TABLE 3 Pick and Bin grasping and litter classification success rates
for the clutter of objects.

Success rates %

Trial Grasping Waste binning Recycle binning

Trial 1 100 100 0

Trial 2 100 100 100

Trial 3 100 100 100

Trial 4 100 66.7 66.7

Trial 5 100 66.7 100

Trial 6 83.3 33.3 100

Trial 7 100 100 66.7

Trial 8 100 100 100

Trial 9 100 100 100

Mean 98.1 ± 5.2 85.2 ± 22.8 81.5 ± 31.9
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through more advanced and complex computer vision algorithms.

Other networks such as YOLACT which was used in (Liu et al.,

2021) will also be tested to increase the control frequency of the

visual-servoing approach such that faster-moving objects can be

tracked and objects can be grasped faster.

Further future work includes mounting the robot on a mobile

robotic platform such that it can be autonomously deployed in the

field. Two control schemes will also be considered, compared and

evaluated in the future. The first is the “stop and bin” approach,

which is already implemented in this work. The second, is where the

robot can dynamically move whilst picking and binning. Algorithms

for obstacle avoidance and picking order will also be developed in the

future such that safety and energy efficiency can be additionally

improved, as well as account for moving cars and pedestrians. Depth

distance information will also be included in the servoing approach

such that the robot can also grasp objects on inclines and non-planar

surfaces. The improved robot will then be field-tested to fully test the

efficacy of the LitterBot.

Overall, the simple yet robust and inexpensive control

framework for the LitterBot performs well in cluttered and

dynamic environments, thus showing promise for deploying

autonomous systems for roadside litter-picking. This can

greatly reduce roadside pollution as well as reduce costs, risks

and hazards faced by users and maintenance crews.
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