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Background: Studies aiming to objectively quantify movement disorders during

upper limb tasks using wearable sensors have recently increased, but there is a

wide variety in described measurement and analyzing methods, hampering

standardization of methods in research and clinics. Therefore, the primary

objective of this review was to provide an overview of sensor set-up and

type, included tasks, sensor features and methods used to quantify

movement disorders during upper limb tasks in multiple pathological

populations. The secondary objective was to identify the most sensitive

sensor features for the detection and quantification of movement disorders

on the one hand and to describe the clinical application of the proposed

methods on the other hand.

Methods: A literature search using Scopus, Web of Science, and PubMed was

performed. Articles needed to meet following criteria: 1) participants were

adults/children with a neurological disease, 2) (at least) one sensor was

placed on the upper limb for evaluation of movement disorders during

upper limb tasks, 3) comparisons between: groups with/without movement

disorders, sensor features before/after intervention, or sensor features with a

clinical scale for assessment of the movement disorder. 4) Outcome measures

included sensor features from acceleration/angular velocity signals.

Results: A total of 101 articles were included, of which 56 researched

Parkinson’s Disease. Wrist(s), hand(s) and index finger(s) were the most

popular sensor locations. Most frequent tasks were: finger tapping, wrist

pro/supination, keeping the arms extended in front of the body and finger-

to-nose. Most frequently calculated sensor features were mean, standard

deviation, root-mean-square, ranges, skewness, kurtosis/entropy of

acceleration and/or angular velocity, in combination with dominant

frequencies/power of acceleration signals. Examples of clinical applications
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were automatization of a clinical scale or discrimination between a patient/

control group or different patient groups.

Conclusion: Current overview can support clinicians and researchers in

selecting the most sensitive pathology-dependent sensor features and

methodologies for detection and quantification of upper limb movement

disorders and objective evaluations of treatment effects. Insights from

Parkinson’s Disease studies can accelerate the development of wearable

sensors protocols in the remaining pathologies, provided that there is

sufficient attention for the standardisation of protocols, tasks, feasibility and

data analysis methods.

KEYWORDS

inertial measurement unit (IMU), upper extremity, Parkinson’s disease, tremor, stroke,
dystonia, ataxia, huntington’s disease

Introduction

The execution of upper limb tasks requires fine-tuned

coordination of multiple upper limb joints, which is often

disturbed in individuals with movement disorders (Levin,

1996; Beer et al., 2000; Kukke et al., 2016). Movement

disorders can be defined as “a neurological syndrome in

which there is either an excess of movement or a paucity of

voluntary and automatic movements” and are the consequence

of lesions in the basal ganglia, cerebellum or thalamus brain

regions. They are present in a variety of neurological diseases and

can occur in every phase of the life cycle (Jankovic and Jankovic,

2021). Prevalence of movement disorders increases with age, up

to 28% in a general population over 50 years old and 50% for

individuals over 80 years old (Wenning et al., 2005). In several

neurologic diseases, movement disorders belong to the main

symptom of the disease. In childhood, neurologic movement

disorders are most often associated with a diagnosis of dyskinetic

cerebral palsy (CP) or with primary dystonias (i.e., inherited or

idiopathic dystonias) with a prevalence of 25–50/100,000 and

15–30/100,000, respectively (Nutt et al., 1988; Phukan et al., 2011;

Monbaliu et al., 2017). In individuals over the age of 50 years, the

prevalence of primary dystonia increases to 732/100,000 (Müller

et al., 2002). In the elderly, the most prevalent condition causing

movement disorders is Parkinson’s disease (PD), reporting a

prevalence of one to two per 1,000 adults (Tysnes and Storstein,

2017).

Movement disorders lead to slower movement execution,

increased movement variability and a decrease in functionality

(van den Noort et al., 2017; Newman et al., 2017; Sanger, 2006;

Lee et al., 2015a; Zhang et al., 2012). Both in early-onset and late-

onset movement disorders, accurate evaluation is indispensable

for the follow-up of the disease course–especially in progressive

movement disorders–and to evaluate and optimize the effect of

treatment strategies. Currently, the effect of an intervention

program on upper limb function or the presence and/or

severity of movement disorders is mostly evaluated using

clinical assessment scales such as functional scales and

movement disorder severity scales (Jackman et al., 2016;

Umar et al., 2018; Cohen et al., 2021). The Unified

Parkinson’s Disease Rating Scale (UPDRS), the Movement

Disorders Society revised version of this scale (MDS-UPDRS)

and the Hoehn and Yahr scales are currently the most often used

assessment scales in PD, whereas the Essential Tremor Rating

Assessment Scale is used to rate the severity of essential tremor

during nine functional tasks (Movement Disorder Society Task

Force on Rating Scales for Parkinson’s Disease, 2003; Goetz et al.,

2008; Hoehn and Yahr, 1967; Elble et al., 2012). To evaluate the

severity of ataxia, the Scale for the Assessment and Rating of

Ataxia (SARA) is most often applied (Schmitz-Hübschdu

Montcel et al., 2006). In stroke, the Wolf Motor Function

Test (WMFT) and Fugl-Meyer Assessment (FMA) are mainly

used to evaluate motor function post-stroke (Movement

Disorder Society Task Force on Rating Scales for Parkinson’s

Disease, 2003; Hoehn and Yahr, 1967; Fugl-Meyer et al., 1975;

Wolf et al., 2001; Gladstone et al., 2002). The Action Research

Arm Test (ARAT), Box and Block test, Nine Hole Peg Test and

Jebsen-Taylor Test evaluate hand function in multiple

pathologies, amongst other multiple sclerosis (MS) and stroke,

whereas the Monkey Box test was recently developed to evaluate

bilateral motor function in Huntington’s Disease (HD) (Platz

et al., 2005; Bennasar et al., 2018; Repnik et al., 2018). For

children with CP, the Melbourne Assessment is a validated

measure for upper limb activity (Gilmore et al., 2010; Spirtos

et al., 2011). Apart from upper limb activity evaluation scales, the

severity of movement disorders such as dystonia can be evaluated

with the Burke–Fahn–Marsden Dystonia Rating Scale

(BFMDRS) or the Dyskinesia Impairment Scale (DIS) in

children and adolescents with dyskinetic CP (Burke et al.,

1985; Monbaliu et al., 2012).

A common drawback of all abovementioned activity and

movement disorder severity assessment scales is that they have to

be evaluated by clinicians through the use of standardized

guidelines or definitions with respect to task execution or
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presence/severity of the movement disorder. This clinical

judgement induces subjectivity, as not all clinicians may

interpret a definition or guideline in exactly the same manner.

Moreover, the attribution of scores by a clinician based on video

recordings is time-consuming, especially if frequent monitoring

is required to evaluate disease progression or the effect of an

intervention.

In an effort to reduce the subjective aspect in the evaluation

of movement disorders, motion analysis has been widely

introduced as an alternative to objectify movement disorders,

as well as to evaluate the effect of treatment interventions in PD

(Agostino et al., 2003; Pang et al., 2020), CP (Kreulen et al., 2006;

Butler and Rose, 2012; Simon-Martinez et al., 2020) and stroke

(Lang et al., 2009; Alt Murphy et al., 2018; Cuesta-

GómezCarratala-Tejada et al., 2019). While three-dimensional

motion analysis is the gold standard in movement analysis, it

requires a specially equipped expensive laboratory whereby

patients need to visit the hospital or study center for study

participation or assessment of rehabilitation.

With both the time-consuming aspect of clinical scoring and

the location-restricted aspect of three-dimensional motion

analysis as main drivers, multiple studies have recently

attempted to automate clinical scales with the use of wearable

sensors or inertial measurement units (IMUs). These devices are

attractive because of their ease-of-use and portability, omitting

the necessity for a standardized laboratory which is in particular

relevant for long-time follow-up or home-based measures for less

mobile patients. IMUs measure linear acceleration and angular

velocity of the segment they are placed on, whereas

accelerometers measure only acceleration and gyroscopes

measure only angular velocity. Specific features derived from

acceleration and angular velocity measures can be used to

characterize (pathological) movement patterns during multiple

tasks or daily life activities. The use of wearable sensors for

objective assessment has been previously discussed in PD

(Maetzler et al., 2013), but this overview focused on all

symptoms of PD, consequently providing very little

information on specific upper limb tasks. Similarly, Tortelli

and others discussed the use of portable digital sensors in HD,

whereby the focus was mostly on the assessment of activity and

gait (Tortelli et al., 2021). In dyskinetic CP, a recent review

discussed instrumented measures for the assessment of

dyskinetic CP symptoms, but this scope was not limited to

IMUs and therefore less detailed on the topic (Haberfehlner

et al., 2020). While these previous reviews provide much needed

insights in the domain of each pathology, an overarching view of

sensor protocols and features for the assessment of movement

disorders during upper limb tasks could enhance standardisation

of data collection. Such standardisation facilitates multi-centre

studies and international collaborations and comparison

between characteristics of movement disorders between

diseases. Therefore, the primary objective of this review was to

provide an overview of sensor set-up and type, included tasks,

sensor features and methods that are used to evaluate movement

disorders during upper limb tasks in multiple pathological

populations. The secondary objective was to identify the most

sensitive sensor features for the detection and quantification of

movement disorders on the one hand and to describe the clinical

application of the proposed methods on the other hand.

Methods

Search strategy

The full literature search was conducted following the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines (Page et al., 2021). A literature

search using three different databases was performed: Scopus,

Web of Science, and PubMed until July 2022. Following terms

were used in “all fields”:

#1: sensor OR inertial measurement unit; #2: arm OR upper

limb; #3: movement disorder.

Subsequently, all three databases were searched for #1 AND

#2 AND #3.

Article screening

Articles (n = 990) retrieved from the literature search were

extracted. An overview of the articles retained at each stage of the

screening process can be found in the PRISMA flow diagram

presented in Figure 1 (Page et al., 2021). Any duplicated articles,

retrieved by more than one database, were removed by de-

duplication based on congruity in authors, title, and year of

publication.

Unique articles (n = 903) were screened for inclusion by a

researcher with experience in the field of upper extremity sensor

measurements according to the criteria below in two consecutive

stages: 1) title-abstract; and 2) full-text screening.

Articles were screened for inclusion along a set of pre-defined

eligibility criteria for 1) the title-abstract and 2) the full-text

screening stages. These criteria were designed in line with the

PICO/PECO framework (Morgan et al., 2018), which clarifies the

review objectives and inclusion criteria across four domains: (P)

it was required that the participants were adults or children with

a neurological disease subsequently leading to a movement

disorder in (but not limited to) the upper limb. (I/E) a

minimum of one wearable sensor was placed on the upper

limb for the evaluation of movement disorders during the

execution of an upper limb task. (C) Multiple comparisons

were possible: 1) a group with movement disorders compared

with a healthy group, 2) comparison of sensor features before and

after an intervention or 3) comparison of sensor features with

scores of a clinical scale. (O) Outcome measures needed to

include sensor features derived from acceleration or angular
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velocity signals. Studies from the same authors who mentioned

the exact same features in the same population as a study that was

already included were excluded. Additionally, to meet the

inclusion criteria, articles were required to be original research

containing empirical data. Finally, only articles published after

the year 2000 were included.

Data extraction

Relevant information from each included article was

extracted in a custom-made Excel based (Microsoft Office,

Microsoft, Redmond, WA, United States) data extraction

form. Information regarding goal population, sensor type,

number of sensors, location of sensor(s), included tasks,

sensor features and statistical method was obtained to address

objective 1. To address objective 2, the sensitivity and/or

responsiveness of the sensor features were extracted for the

articles that provided the contribution of individual sensor

features. Finally, the clinical application of the proposed

method was extracted.

Results

General information

From the 166 full-text articles screened for eligibility, 62 were

finally included. Additionally, 39 articles were included from

citations of screened articles. The full-text articles that were

screened but excluded and the reasons for exclusion can be

found in Supplementary Table S1.

Of the included studies, 56 included adults with PD, of

which 46 assessed one or multiple symptoms of PD and

10 studies specifically focused on Parkinsonian tremor

(Makabe and Sakamoto, 2000; Rahimi et al., 2015;

FIGURE 1
Flowchart of article selection.
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Thanawattano et al., 2015; Rigas et al., 2016; Bravo, 2017;

Delrobaei et al., 2018; Lukšys et al., 2018; Zhu and Miller,

2020; Schaefer et al., 2021; Chan et al., 2022). Twelve studies

included patients with essential tremor (Heldman et al.,

2011b; Šprdlík et al., 2011; Gallego et al., 2012; Budini

et al., 2014; Heo et al., 2015; Samotus et al., 2016; Chan

et al., 2018; López-Blanco et al., 2018; Benito-LeónSerrano

et al., 2019; Kwon et al., 2020; McGurrin et al., 2021; Ali et al.,

2022) and 11 included adults post-stroke (Kamper et al.,

2002; Knorr, 2005; Hester, 2006; Thies et al., 2009; Parnandi

et al., 2010; Patel et al., 2010; Del Din et al., 2011; Zhang et al.,

2012; Otten et al., 2015; van Meulen et al., 2015; Repnik et al.,

2018), whereas six included adults with MS (Ketteringham,

2011; Carpinella et al., 2014; Carpinella et al., 2015; Teufl

et al., 2017; Western et al., 2019; Teufl et al., 2021). One study

included adults with HD and eight studies included children

or adults with ataxia (Bennasar et al., 2018; Martinez-

Manzanera et al., 2018; Krishna et al., 2019; Kashyap

et al., 2020; Nguyen et al., 2020; Tran et al., 2020;

Dominguez-Vega et al., 2021; Oubre et al., 2021; Gupta,

2022). Five studies included children with CP while two

studies included children with dystonia and spasticity,

respectively (Newman et al., 2017; Sanger, 2006;

Strohrmann et al., 2013; Kim et al., 2018; den Hartogvan

der Krogt et al., 2022; Legros et al., 2004; Bai et al., 2021)

(Figure 2).

FIGURE 2
Number of studies included per goal population.

FIGURE 3
Infographic of sensor types and set-up. (A): Studies including a unilateral sensor-set-up. Studies are randomly split in left and right side of the
body to improve interpretation. (B): Studies including a bilateral sensor set-up. Arrows have not been drawn to the contralateral side of the body to
improve interpretation. (C): Sensor placement on the hand and wrist. Hands are randomly split to improve interpretation. Sensor placements on the
lower limb are not presented, but can be found in Supplementary Table S1. IMU = inertial measurement unit; GYR = gyroscope; ACC =
accelerometer.
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Type, number and location of sensors

Figure 3 and Supplementary Table S2 yield an overview of

type and number of sensors used, and their respective location

for all included studies. From the 101 identified studies,

24 studies used an accelerometer (Makabe and Sakamoto,

2000; Hoff et al., 2001; Keijsers et al., 2003; Bonato et al.,

2004; Legros et al., 2004; Knorr, 2005; Hester, 2006; Okuno

et al., 2006; Patel et al., 2009; Yokoe et al., 2009; Cole et al., 2010;

Patel et al., 2010; Del Din et al., 2011; Griffiths et al., 2012; Budini

et al., 2014; Rahimi et al., 2015; Samotus et al., 2016; Bravo, 2017;

Teufl et al., 2017; Bennasar et al., 2018; Kim et al., 2018; Habets

et al., 2021; Schaefer et al., 2021; Gupta, 2022), 13 studies

measured motion with a gyroscope or angular sensor (Koop

et al., 2006; Salarian et al., 2007; Espay et al., 2011; Hoffman and

McNames, 2011; Jun et al., 2011; Kim et al., 2011; Lee et al.,

2015b; Heo et al., 2015; Summa et al., 2017; Kwon et al., 2018;

López-Blanco et al., 2018; Kwon et al., 2020), four studies

collected motion data using an orientation sensor, motion

sensor or magnetic motion tracker (Sanger, 2006; Chelaru

et al., 2010; di Biase et al., 2018; Kamper et al., 2002),

58 studies used IMUs including an accelerometer and

gyroscope and three studies included IMUs but only used the

acceleration signal for further analysis (Chan et al., 2018; Benito-

LeónSerrano et al., 2019; Ali et al., 2022), while one study used

IMUs but only processed angular velocity signals (Thanawattano

et al., 2015).

The number of sensors ranged from one to 17. Thirty-seven

studies used only one sensor, either on the finger, hand, wrist or

forearm (Makabe and Sakamoto, 2000; Kamper et al., 2002;

Legros et al., 2004; Koop et al., 2006; Okuno et al., 2006; Salarian

et al., 2007; Thies et al., 2009; Parnandi et al., 2010; Heldman

et al., 2011b; Hoffman and McNames, 2011; Kim et al., 2011;

Šprdlík et al., 2011; Gallego et al., 2012; Griffiths et al., 2012;

Zhang et al., 2012; Budini et al., 2014; Carpinella et al., 2014;

Carpinella et al., 2015; Otten et al., 2015; Thanawattano et al.,

2015; Bravo, 2016; Rigas et al., 2016; Tamás et al., 2016; Bravo,

2017; Rabelo et al., 2017; Spasojević et al., 2017; Teufl et al., 2017;

Kwon et al., 2018; López-Blanco et al., 2018; Bermeo, 2019;

Nguyen et al., 2020; Zhu and Miller, 2020; Habets et al., 2021;

McGurrin et al., 2021; Schaefer et al., 2021; Teufl et al., 2021;

Gupta, 2022), while seven studies used two sensors bilaterally

placed on the hand or wrist (Jun et al., 2011; Strohrmann et al.,

2013; Ghassemi et al., 2016; Garza-RodríguezSanchez-

Fernandez et al., 2018; Thomas et al., 2018; Garza-

RodríguezSanchez-Fernandez et al., 2020; Oubre et al., 2021).

Nine studies used two sensors of which the majority placed one

on the thumb and one the index finger (Yokoe et al., 2009;

Heldman et al., 2011a; Espay et al., 2011; Lee et al., 2015b;

Djurić-JovičićPetrovic et al., 2016; Liu et al., 2016; Summa et al.,

2017; Li et al., 2020; Park et al., 2021), while Martinez-Manzara

et al. used one sensor on the hand and one on the finger

(Martinez-Manzanera et al., 2016), Samotus et al. and Rahimi

et al. put one on the wrist and one on the index finger (Rahimi

et al., 2015; Samotus et al., 2016) and Shawen et al. put one on

the hand and one on the wrist (Shawen et al., 2020). In the

studies where three sensors were used, the most frequent

locations for PD and tremor were hand, forearm and upper

arm (Knorr, 2005; Angeles et al., 2017; Ali et al., 2022; Chan

et al., 2022), index finger, hand, forearm (Heo et al., 2015; Kwon

et al., 2020) or index finger, forearm and upper arm (Martinez-

Manzanera et al., 2018; Dominguez-Vega et al., 2021). In

children with CP, Newman et al. attached one sensor on the

sternum and two on both upper arms (Newman et al., 2017) and

in HD, Bennasar et al. placed one sensor on the sternum and two

on the wrists (Bennasar et al., 2018). In stroke, Van Meulen et al.

fixed one sensor on the wrist, sternum and sacrum (van Meulen

et al., 2015). When four sensor were used, sensor placements

were: three fingers and the wrist in PD (Cavallo et al., 2019),

thumb, index finger, wrist and upper arm in stroke (Del Din

et al., 2011), hand, forearm, upper arm and shoulder in spasticity

(Bai et al., 2021), hands and forearms (Benito-LeónSerrano et al.,

2019; Romano et al., 2021) and wrists, trunk and head in PD

(Lonini et al., 2018). Four more studies also included lower limb

sensors, where three placed sensors on both wrists and ankles

and Zwartjes et al. included wrist, foot, thigh and sternum

(Zwartjes et al., 2010; Pulliam et al., 2018; Hssayeni et al.,

2021; den Hartogvan der Krogt et al., 2022). Four studies

used five sensors on the upper limbs, with sensor placement

on hand, wrist, upper arm, shoulder and sternum in MS

(Ketteringham, 2011; Western et al., 2019), thumb, index

finger, hand, forearm, upper arm and sternum for Di Biase

et al. and hand forearm, upper arm, head and back for Sanger

et al. (note that both studies are based on magnetic or

orientation sensors) (Sanger, 2006; di Biase et al., 2018).

Seven studies used six sensors, where the sensor placement

was thumb, index finger, hand, forearm, upper arm and

sternum (Hester, 2006; Patel et al., 2010). Two studies placed

the sensors on hands, forearms and upper arms (Chan et al.,

2018; Lukšys et al., 2018), while Krishna et al. used one sensor

but subsequently fixed it on both hands, wrists and ankles, thus

including six sensor signals in the analysis (Krishna et al., 2019).

Cheralu et al. placed sensors on the hand, scapula, thorax,

sacrum, head and shank, while Tsipouras et al. attached

sensors bilaterally on ankles and wrists and one the waist and

chest (Chelaru et al., 2010; Tsipouras et al., 2012). Repnik et al.

used seven sensors on the hands, wrists, upper arms and

sternum and Hof et al. and Keijsers et al. placed the sensors

on the wrists, upper arms, trunk and upper legs (Hoff et al., 2001;

Keijsers et al., 2003; Repnik et al., 2018). Five studies used eight

sensors. Delrobaei et al. placed the sensors on the hands, wrists,

upper arms, and shoulders and Bonato et al. on the forearms,

upper arms, thighs, right shin and sternum (Bonato et al., 2004;

Delrobaei et al., 2016). Patel et al. and Cole and others attached

the sensors on the forearms, upper arms, shins and upper legs

(Patel et al., 2009; Cole et al., 2010), whereas in ataxia, Kashyap
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and others placed sensors on the index finger, hand, wrist, foot,

sternum, back and ankles (Kashyap et al., 2020). Finally, Van

den Noort et al. used 11 sensors, all located on the hand and

fingers (van den Noort et al., 2017) and Delrobaei and others

used 17 sensors placed on the hands, wrists, upper arms,

clavicle’s, sternum, head, pelvis, upper and lower legs and

feet (Delrobaei et al., 2018). In one study, the number of

sensors was not specified (Kim et al., 2018).

TABLE 1 Tasks included in more than one study, the number of studies and the goal population with associated references.

Task # Of studies Goal population

Wrist pro/supination 25 PD van den Noort et al. (2017); Koop et al. (2006); Salarian et al. (2007); Patel et al. (2009); Espay et al. (2011); Jun
et al. (2011); Delrobaei et al. (2016); Tamás et al. (2016); Spasojević et al. (2017); Summa et al. (2017); Angeles et al.
(2017); Lonini et al. (2018); Thomas et al. (2018); Kwon et al. (2018); di Biase et al. (2018);
Garza-RodríguezSanchez-Fernandez et al. (2018); Garza-RodríguezSanchez-Fernandez et al. (2020); Cavallo et al.
(2019); Shawen et al. (2020); Park et al. (2021); Heldman et al. (2011a); Tremor McGurrin et al. (2021); Ataxia
Krishna et al. (2019); Tran et al. (2020); Dominguez-Vega et al. (2021)

Finger tapping 23 PD van den Noort et al. (2017); Okuno et al. (2006); Patel et al. (2009); Yokoe et al. (2009); Espay et al. (2011); Kim
et al. (2011); Hoffman and McNames, (2011); Lee et al. (2015b); Martinez-Manzanera et al. (2016); Tamás et al.
(2016); Liu et al. (2016); Djurić-JovičićPetrovic et al. (2016); Spasojević et al. (2017); Summa et al. (2017); Kwon et al.
(2018); di Biase et al. (2018); Cavallo et al. (2019); Li et al. (2020); Park et al. (2021); Heldman et al. (2011a); Ataxia
Kashyap et al. (2020); Nguyen et al. (2020); Tran et al. (2020)

Keeping arms in front of the
body

23 PD Salarian et al. (2007); Budini et al. (2014); Heo et al. (2015); Rahimi et al. (2015); Thanawattano et al. (2015);
Ghassemi et al. (2016); Rigas et al. (2016); Bravo, (2017); Delrobaei et al. (2018); Lukšys et al. (2018);
Benito-LeónSerrano et al. (2019); Zhu and Miller, (2020); Tremor Heldman et al. (2011b); Šprdlík et al. (2011);
Gallego et al. (2012); Samotus et al. (2016); Chan et al. (2018); López-Blanco et al. (2018); Kwon et al, (2020); MS
Ketteringham, (2011); Teufl et al. (2017); Western et al. (2019); Teufl et al. (2021)

Finger to nose 23 CP Sanger, (2006); PD Patel et al. (2009); Thanawattano et al. (2015); Bravo, (2017); Lonini et al. (2018); Lukšys et al.
(2018); Shawen et al. (2020); Zhu andMiller (2020); Tremor Heldman et al. (2011b); Gallego et al. (2012); Budini et al.
(2014); López-Blanco et al. (2018); MS Ketteringham, (2011); Carpinella et al. (2015); Teufl et al. (2017); Krishna et al.
(2019); Western et al. (2019); Tran et al. (2020); Teufl et al. (2021); Ataxia Martinez-Manzanera et al. (2018); Kashyap
et al. (2020); Dominguez-Vega et al. (2021); Oubre et al. (2021)

Drinking from a can/cup 13 PDHoff et al. (2001); Keijsers et al. (2003); Salarian et al. (2007); Zwartjes et al. (2010); Tsipouras et al. (2012); Lonini
et al. (2018); Shawen et al. (2020); Hssayeni et al. (2021); Tremor Heldman et al. (2011b); Chan et al. (2018); Stroke
Thies et al. (2009); Patel et al. (2010); Spasticity Bai et al. (2021)

Opening/closing hand 7 PD van den Noort et al. (2017); Espay et al. (2011); Tamás et al. (2016); Djurić-JovičićPetrovic et al. (2016); Cavallo
et al. (2019); Park et al. (2021); Heldman et al. (2011a)

Writing/drawing 7 PD Salarian et al. (2007); Lonini et al. (2018); Pulliam et al. (2018); Shawen et al. (2020); Tremor Heldman et al.
(2011b); McGurrin et al. (2021); Ali et al. (2022)

Eating 6 PD Keijsers et al. (2003); Salarian et al. (2007); Bravo, (2016); Pulliam et al. (2018); Bermeo, (2019); Hssayeni et al.
(2021)

Pouring water 6 PD Lonini et al. (2018); Shawen et al. (2020); Tremor Heldman et al. (2011b); López-Blanco et al. (2018); MS Teufl
et al. (2017); Teufl et al. (2021)

Reaching/grasping objects 5 Stroke Thies et al. (2009); van Meulen et al. (2015); Ataxia Teufl et al. (2017); Teufl et al. (2021); CP Strohrmann et al.
(2013)

Teeth brushing 4 PD Salarian et al. (2007); Bravo, (2016); Pulliam et al. (2018); Bermeo, (2019)

Putting clothes on/off 4 PD Hoff et al. (2001); Keijsers et al. (2003); Pulliam et al. (2018); Hssayeni et al. (2021)

Wolf Motor Function test 4 Stroke Hester, (2006); Parnandi et al. (2010); Patel et al. (2010); Del Din et al. (2011)

Unrestricted home activities 3 PD Griffiths et al. (2012); Romano et al. (2021); Ataxia Gupta, (2022); CP den Hartogvan der Krogt et al. (2022)

Combing hair 3 PD Salarian et al. (2007); Pulliam et al. (2018); Hssayeni et al. (2021)

Typing 3 PD Lonini et al. (2018); Pulliam et al. (2018); Shawen et al. (2020)

Folding laundry 3 PD Lonini et al. (2018); Pulliam et al. (2018); Shawen et al. (2020)

Forwards and sideways reaching 3 CP Newman et al. (2017); Stroke Kamper et al. (2002); Knorr (2005)

ARAT 2 PD Romano et al. (2021); CP Kim et al. (2018)

Box and block test 2 Stroke Repnik et al. (2018); MS Carpinella et al. (2014)
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TABLE 2 Calculated sensor features in time and frequency-domain. STD = standard deviation; max =maximal; RMS = root-mean-square; VAR = variance; IQR =
inter-quartile range. PSD = power spectral density.

Time-domain Formula/Feature description Goal population

Execution time Tmi � Tti − T0i Repnik et al. (2018); Inter-tap-interval (ITI) Tran et al.
(2020); mean, standard deviation, minimum, maximum, range,
interquartile range, median, and 10th and 90th percentiles of time
Oubre et al. (2021); duration of sub movements Gupta, (2022)

Stroke Thies et al. (2009); Zhang et al. (2012); Repnik et al.
(2018), PD van den Noort et al. (2017); Bonato et al.
(2004); Yokoe et al. (2009); Djurić-JovičićPetrovic et al.
(2016); Rabelo et al. (2017); di Biase et al. (2018), CP
Strohrmann et al. (2013); Newman et al. (2017), tremor
Tran et al. (2020); Ali et al. (2022), MS (Carpinella et al.
(2014); Carpinella et al. (2015), ataxia Dominguez-Vega

et al. (2021); Gupta, (2022)

Movement Frequency Number of rotations/movements Lee et al. (2015b) PD Lee et al. (2015b); Cavallo et al. (2019)

Mean acceleration and angular
velocity

mi(k) � 1
2sf+1 ∑w(k)+sf

n�w(k)−sf xi(n) Tsipouras et al. (2012); Mean absolute

value; Absolute and harmonic mean den Hartogvan der Krogt et al.
(2022)

PD Tsipouras et al. (2012); Thomas et al. (2018); Shawen
et al. (2020); Romano et al. (2021), stroke Parnandi et al.
(2010), dyskinetic CP den Hartogvan der Krogt et al.

(2022), ataxia Krishna et al. (2019)

STD acceleration and angular
velocity

si(k) �
�������������������������

1
2sf+1 ∑w(k)+sf

n�w(k)−sf(x
f
i (n) − �xfi )2

√
Tsipouras et al. (2012);

σ(W) �
�����������������
1
N∑N

i�1(xi − μ(W))2
√

, μ(W) � mean Hssayeni et al. (2021)

PD Tsipouras et al. (2012); Thomas et al. (2018); Hssayeni
et al. (2021)

MAX acceleration and angular
velocity

Absolute max Rabelo et al. (2017) PD Rabelo et al. (2017); Habets et al. (2021), dyskinetic CP
den Hartogvan der Krogt et al. (2022)

Timing of MAX acceleration and
angular velocity

Absolute max Rabelo et al. (2017) PD Rabelo et al. (2017)

RMS acceleration and angular
velocity

PD van den Noort et al. (2017); Shawen et al. (2020),
dyskinetic CP den Hartogvan der Krogt et al. (2022), ataxia

Krishna et al. (2019)

VAR acceleration and angular
velocity

Stroke Parnandi et al. (2010); PD Shawen et al. (2020);
Habets et al. (2021), ataxia Krishna et al. (2019)

Mean acceleration Mean acceleration in 2min epoch Griffiths et al. (2012) Stroke Hester, (2006); Patel et al. (2010); Del Din et al.
(2011), PD Zwartjes et al. (2010); Griffiths et al. (2012);
Ghassemi et al. (2016); Schaefer et al. (2021), HD Bennasar
et al. (2018), CP Strohrmann et al. (2013), tremor Samotus

et al. (2016), ataxia Gupta, (2022)

STD acceleration PD Yokoe et al. (2009); Ghassemi et al. (2016); Habets et al.
(2021) HD Bennasar et al. (2018), CP Strohrmann et al.
(2013), tremor Budini et al. (2014), ataxia Gupta, (2022)

MAX acceleration Max acceleration in 2min epoch Griffiths et al. (2012); Moments of jerk
magnitude Habets et al. (2021)

PD Griffiths et al. (2012); Habets et al. (2021), CP Kim
et al. (2018), ataxia Oubre et al. (2021)

Mean angular velocity Hand mobility Salarian et al. (2007) PD Salarian et al. (2007); Lee et al. (2015b); Djurić-
JovičićPetrovic et al. (2016); Angeles et al. (2017);

Garza-RodríguezSanchez-Fernandez et al. (2018); Cavallo
et al. (2019); Li et al. (2020), ataxia Dominguez-Vega et al.

(2021); Oubre et al. (2021)

STD angular velocity PD Angeles et al. (2017), ataxia Oubre et al. (2021)

Median angular velocity PD Garza-RodríguezSanchez-Fernandez et al. (2020)

Median acceleration PD Habets et al. (2021)

MAX linear velocity Average of maximum velocities Okuno et al. (2006) PD Okuno et al. (2006); Yokoe et al. (2009), stroke Hester,
(2006)

RMS acceleration PD Patel et al. (2009); Ghassemi et al. (2016); Habets et al.
(2021); stroke Knorr, (2005); Hester, (2006)

RMS angular velocity Speed Tamás et al. (2016); Mean Intensity (MI) = RMS angular velocity
López-Blanco et al. (2018)

PD Koop et al. (2006); Heldman et al. (2011a); Espay et al.
(2011); Jun et al. (2011); Kim et al. (2011); Tamás et al.
(2016); Kwon et al. (2018); Lukšys et al. (2018); Zhu and

(Continued on following page)
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TABLE 2 (Continued) Calculated sensor features in time and frequency-domain. STD = standard deviation; max = maximal; RMS = root-mean-square; VAR =
variance; IQR = inter-quartile range. PSD = power spectral density.

Time-domain Formula/Feature description Goal population

Miller, (2020); Park et al. (2021), tremor Heo et al. (2015);
López-Blanco et al. (2018); Kwon et al. (2020)

Mean angular displacement MS Western et al. (2019)

RMS angular displacement/
movement amplitude

Amplitude Tamás et al. (2016) PD Heldman et al. (2011a); Espay et al. (2011); Jun et al.
(2011); Kim et al. (2011); Tamás et al. (2016); Delrobaei
et al. (2018); Kwon et al. (2018); Cavallo et al. (2019); Chan
et al. (2022), tremor Chan et al. (2018); Kwon et al. (2020)

Range angular displacement Hand activity Salarian et al. (2007) PD van den Noort et al. (2017); Salarian et al. (2007);
Djurić-JovičićPetrovic et al. (2016);

Garza-RodríguezSanchez-Fernandez et al. (2020); Cavallo
et al. (2019); Romano et al. (2021)

IQR angular displacement PD Garza-RodríguezSanchez-Fernandez et al. (2020)

Range acceleration PD Patel et al. (2009); Yokoe et al. (2009); Habets et al.
(2021), stroke Otten et al. (2015)

Range acceleration and angular
velocity

PD (Rabelo et al. (2017); Lonini et al. (2018); Shawen et al.
(2020)

Mean amplitude Average amplitude Okuno et al. (2006) PD Okuno et al. (2006); Lee et al. (2015b)

Range angular velocity RAV = 1
3 ∑
f rontal,vertical,lateral

range(ω) PD Rabelo et al. (2017); di Biase et al. (2018), CP
Strohrmann et al. (2013); Newman et al. (2017), ataxia

Oubre et al. (2021)

IQR acceleration and angular
velocity

Angular velocity Garza-RodríguezSanchez-Fernandez et al. (2020);
angular acceleration Habets et al. (2021)

PD Garza-RodríguezSanchez-Fernandez et al. (2020);
Habets et al. (2021)

Range of jerk and angular
acceleration

(Acc/Gyr)ran � max( _x(t)) −min( _x(t)) t ∈ 1,Wn{ } Spasojević et al.
(2017)

PD Spasojević et al. (2017)

Peak-to-peak angular velocity Difference between the mean of the highest and lowest 10 samples in W
Hssayeni et al. (2021)

PD Summa et al. (2017); di Biase et al. (2018); Hssayeni
et al. (2021))

Magnitude angular velocity PD Pulliam et al. (2018)

Max, STD, RMS and min/max
peak height

HD Bennasar et al. (2018)

Rotational jerk index
ղroti � log

�������������������
(Tti−T0i )5

2θp ∫
T0i

Tti ‖ d2ω(t)
dt2

‖2dt
√

Repnik et al. (2018)
Stroke Repnik et al. (2018)

Segment velocity Square root of sum of squares of jerk signals in three directions Keijsers
et al. (2003)

PD Keijsers et al. (2003)

Kurtosis
S(W) �

1 /

N∑N

i�1(xi−μ(W))4
σ(W)4 Hssayeni et al. (2021)

PD Parnandi et al. (2010) Ghassemi et al. (2016); Lonini
et al. (2018); Shawen et al. (2020); Hssayeni et al. (2021),

ataxia Gupta, (2022)

Skewness
S(W) �

1 /

N∑N

i�1(xi−μ(W))3
σ(W)3 Hssayeni et al. (2021

PD Parnandi et al. (2010); Ghassemi et al. (2016); Lonini
et al. (2018); Thomas et al. (2018); Shawen et al. (2020);

Hssayeni et al. (2021)

Sample entropy Hi(k) � − 1
2sf+1 ∑n�w(k)+sf

n�w(k)−sf p(x
f
i (n))logp(xfi (n)) Tsipouras et al. (2012) PD Patel et al. (2009); Chelaru et al. (2010); Tsipouras et al.

(2012); Ghassemi et al. (2016); Liu et al. (2016); Lonini
et al. (2018); Shawen et al. (2020), HD Bennasar et al.
(2018), stroke Patel et al. (2010), ataxia (Kashyap et al.

(2020)

Approximate entropy H(W) = −∑p(Bi) p log p(Bi) Hester, (2006); Window length (m) =
2 and % STD (r) = 20% Thomas et al. (2018)

PD Bonato et al. (2004); Parnandi et al. (2010); Liu et al.
(2016); Lukšys et al. (2018); Thomas et al. (2018), stroke

Knorr, (2005); Hester, (2006)

Shannon entropy Randomness in time domain:H(W) � −∑200

i�1 p(Bi)*log p(Bi)Hssayeni
et al. (2021)

PD Hssayeni et al. (2021), dyskinetic CP den Hartogvan
der Krogt et al. (2022)

(Continued on following page)
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TABLE 2 (Continued) Calculated sensor features in time and frequency-domain. STD = standard deviation; max = maximal; RMS = root-mean-square; VAR =
variance; IQR = inter-quartile range. PSD = power spectral density.

Time-domain Formula/Feature description Goal population

Permutation entropy Assesses the complexity of the time series signal Bennasar et al. (2018) HD Bennasar et al. (2018)

Fuzzy entropy Ataxia Nguyen et al. (2020); Tran et al. (2020)

Gini index Movement complexity in the time domain: G(W) � 1 −∑200

i�1 p(Bi)2
Hssayeni et al. (2021)

PD Hssayeni et al. (2021), ataxia Nguyen et al. (2020)

Lyapunov exponent Measures the level of chaos in a signal Bennasar et al. (2018) HD Bennasar et al. (2018)

Recurrence rate (RR);
Determinism

RR: Probability that any state will recur again; Determinism: Ratio of
recurrence points

HD Bennasar et al. (2018)

Average Diagonal line Average time that signal segments remain the same Bennasar et al.
(2018)

HD Bennasar et al. (2018)

RMS of jerk PD Parnandi et al. (2010), stroke Knorr (2005); Hester
(2006)

Jerk metric RM jerk normalized by peak velocity Hester (2006); Moments of jerk
magnitude Lonini et al. (2018); Habets et al. (2021); Logarithm of mean
jerk amplitude, normalized to mean absolute acceleration movement
duration Carpinella et al. (2014); Normalised Jerk Index:
NJI = 1

vpeak(t1−t2 )∫t2
t1
|d2v
dt2

|dt Newman et al. (2017); Bai et al. (2021);
Dimensionless Jerk Index (DLJ) Romano et al. (2021); Mean jerk Zhang
et al. (2012)

Stroke Hester (2006); Zhang et al. (2012), PD (Lonini et al.
(2018); Habets et al. (2021); Romano et al. (2021), MS
Carpinella et al. (2014), CP Newman et al. (2017),

dyskinetic CP Sanger (2006), spasticity Bai et al. (2021)

Smoothness Difference between movement accelerometer readings and smoothed
readings Otten et al. (2015); Number of movement units [BAI]; number
of speed peaks (NSP) Kamper et al. (2002)

Stroke Otten et al. (2015), spasticity Bai et al. (2021)

Coefficient of variation Coefficient of variation of amplitude, speed and frequency (Lee et al.
(2015b); Djurić-JovičićPetrovic et al. (2016); STD of a 1-s sliding
window of the RMS excursion angle divided by the mean and Coefficient
of variation of acceleration and angular velocity Espay et al. (2011);
Coefficient of variation of excursion angle (Heldman et al. (2011a);
Espay et al. (2011); Tamás et al. (2016); Kwon et al., 2018); Coefficient of
variation of angular velocity Kwon et al. (2018); Coefficient of variation
of inter-tap -interval Tran et al. (2020)

PD Heldman et al. (2011a); Espay et al. (2011); Lee et al.
(2015b); Djurić-JovičićPetrovic et al. (2016); Tamás et al.
(2016); Kwon et al. (2018); Cavallo et al. (2019), tremor

Tran et al. (2020)

Rhythm STD of intervals a single finger tap movement in 60 s Okuno et al.
(2006); Any sequence of regularly recurring events
(Martinez-Manzanera et al. (2016)

PD Okuno et al. (2006); Martinez-Manzanera et al. (2016)

Variability RMS error between the References trial and the warped trial Thies et al.
(2009)

Stroke Thies et al. (2009)

Higuchu’s fractal
dimension (HFD)

Geometrical structure of non-linear time series Newman et al. (2017) CP Newman et al. (2017)

Correlation between axes Mean, STD, skewness and kurtosis of signal derivative Shawen et al.
(2020); Correlation between each two axes of accelerometer Bennasar
et al. (2018)

PD Lonini et al. (2018); Shawen et al. (2020); Zhu and
Miller, (2020); Habets et al. (2021), HD Bennasar et al.

(2018), stroke Hester, (2006)

Peak of normalized cross-
correlation from pairs of
acceleration time series

PD Patel et al. (2009)

Lag of first peak in autocorrelation
acceleration

PD Cole et al. (2010)

Path length Path-length-ratio (PLR) = distance travelled by hand/straight-line
distance Kamper et al. (2002); Length of 3D trajectories vanMeulen et al.
(2015); Index of curvature Sanger (2006); Mean and Standard deviation
of Euclidian distance from the mean trajectory Dominguez-Vega et al.
(2021); curved line similarity analysis, straight line similarity analysis
Martinez-Manzanera et al. (2018)

Stroke Kamper et al. (2002); van Meulen et al. (2015),
dyskinetic CP Sanger (2006), spasticity (Bai et al. (2021),

ataxia (Dominguez-Vega et al. (2021)

Similarity of hand trajectories Stroke Repnik et al. (2018)

(Continued on following page)
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TABLE 2 (Continued) Calculated sensor features in time and frequency-domain. STD = standard deviation; max = maximal; RMS = root-mean-square; VAR =
variance; IQR = inter-quartile range. PSD = power spectral density.

Time-domain Formula/Feature description Goal population

Di �
���������������������

1
�sti−�s0i ∫�s0i

�sti ‖p(�s) − pr(�s)‖2d�s
√

, v̂i � 1
π

�������������
1

�sti−�s0i ∫�s0i

�sti v2(ŝ)dŝ
√

,

Xi � αDi + βv̂i (Repnik et al. (2018)

Elevation angle θ � max(cos−1(averticalg )) Newman et al. (2017) CP Newman et al. (2017)

Bradykinesia Index (BKI) BKI �
����������

STD*VEL
Timevar *Ampvar

√
, var = STD of distances between signal peaks for

time and amp Delrobaei et al. (2016)

PD Delrobaei et al. (2016)

Movement decrement Slope of change in amplitude Djurić-JovičićPetrovic et al. (2016);
Amplitude in 2nd half time interval
Amplitude in 1st half time interval Tamás et al. (2016); Fatigability index: slope

of linear equation fitted with peak-to-peak angular velocities di Biase
et al. (2018)

PD Tamás et al. (2016); Djurić-JovičićPetrovic et al.
(2016); di Biase et al. (2018)

Velocity decrement Compare velocities between 1st, 2nd, 3rd and 4th part of the data
Garza-RodríguezSanchez-Fernandez et al. (2020);
Speed in 2nd half time interval
Speed in 1st half time interval Tamás et al. (2016)

PD Tamás et al. (2016);
Garza-RodríguezSanchez-Fernandez et al. (2020)

Amplitude of modulation
acceleration

PD Bonato et al. (2004)

Normalized mean squared error
between a target signal and its

forward linear prediction

PD Hoffman and McNames, (2011)

Frequency-domain Formula/Feature description Goal population

Dominant frequency component Frequency associated with maximum power Hester (2006); Hssayeni
et al. (2021); Frequency in 1–4Hz and 4–8 Hz bands Hoff et al. (2001)

PD Makabe and Sakamoto (2000); Hoff et al. (2001); Patel
et al. (2009); Gallego et al. (2012); Budini et al. (2014);
Thanawattano et al. (2015); Bravo (2017); Teufl et al.

(2017); Lukšys et al. (2018); Bermeo (2019); Krishna et al.
(2019); Zhu andMiller (2020); Hssayeni et al. (2021); Teufl

et al. (2021)), stroke (Hester (2006))

Second dominant frequency Frequency associated with the second highest peak Hssayeni et al. (2021) PD Hssayeni et al. (2021)

Dominant frequency of jerk Stroke Hester (2006), ataxia Kashyap et al. (2020)

Resonant Frequency (FR) Peaks of FFT waveforms of angles and angular velocity Krishna et al.
(2019)

Ataxia Krishna et al. (2019); Tran et al. (2020)

Energy acceleration Energy in 0.2 Hz bin around dominant frequency Hester, (2006); Patel
et al. (2010); Del Din et al. (2011); Zhang et al. (2012)

Stroke Hester, (2006); Patel et al. (2010); Del Din et al.
(2011), PD (Bonato et al. (2004); Patel et al. (2009); Cole
et al. (2010); Ghassemi et al. (2016), HD Bennasar et al.

(2018)

Energy angular velocity PD Rigas et al. (2016)

Energy acceleration and angular
velocity

2–5 Hz: pli(k) � ∑w(k)+sf
n�w(k)−sf (xli(n));

5–10 Hz: phi (k) � ∑w(k)+sf
n�w(k)−sf (xhi (n)); Tsipouras et al. (2012)

Stroke Zhang et al. (2012), PD Tsipouras et al. (2012),
ataxia Krishna et al. (2019)

Amplitude and dominant
frequency of modulation

associated with acceleration

PD Bonato et al. (2004)

Average magnitude of 1st five
STFT components

HD Bennasar et al. (2018)

Fractal dimension acceleration PD Bonato et al. (2004)

Spectral power Frequency band 1.5–3 Hz and 5–8 Hz Parnandi et al. (2010); Frequency
band dyskinesia: 0.3–3 Hz Pulliam et al. (2018); Frequency band
0.5–15 Hz and 1–4 Hz Hssayeni et al. (2021); Frequency band
0.6–16 Hz Legros et al. (2004; Welch PSD of displacement; Power
Spectral Density plots Bravo, (2016); Bermeo, (2019); PSD ratio
0.5–4 Hz and 4–12 Hz Ali et al. (2022); logarithm of the peak in the
power spectrum in the tremor frequency band Heldman et al. (2011b)

Stroke Parnandi et al. (2010), PD Bravo, (2016); Pulliam
et al. (2018); Bermeo, (2019); Hssayeni et al. (2021),
dystonia Legros et al. (2004), tremor Heldman et al.

(2011b); Ali et al. (2022)

(Continued on following page)
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Upper limb tasks

The upper limb tasks occurring in more than one study

are listed in Table 1. Wrist pro/supination was included in

25 studies whereas finger tapping was included in 23 studies,

with the majority being studies in PD patients. Keeping

arms in front of the body was included in 23 studies in PD,

tremor and MS, as well as finger-to-nose which was

additionally included in one ataxia study. Drinking from

a can/cup was included in 13 studies in PD, tremor, stroke

and spasticity. Opening/closing of the hand was included in

seven PD studies as well as writing/drawing which was used

for PD and tremor patients. Eating was included in six PD

studies as well as pouring water, which was used in PD,

tremor and MS. Reaching/grasping to objects was included

in five studies in stroke, ataxia and CP and teeth brushing

and putting clothes on/off were both used four times in PD

studies. In stroke, the Wolf Motor Function test or parts of

this clinical scale were included four times and two PD, one

ataxia and one CP study measured activities in an

unrestricted home environment. Combing hair, typing

and folding laundry were included in three PD studies

and forwards and sideways reaching in one CP and two

stroke studies. The box and block test was included in one

PD and one CP study and tasks from the ARAT were

additionally included in PD and one CP study. Finally,

following tasks were included once: reaching sideways

(Newman et al., 2017), the monkey box test (Bennasar

et al., 2018), holding a weight with the wrist (Schaefer

et al., 2021), wrist extension (Rabelo et al., 2017), wrist

ab/adduction, flexion/extension, elbow flexion/extension

and pro/supination (Chan et al., 2022), and following a

bent wire shape with a wand loop (Budini et al., 2014). One

study included wrist supination/flexion, hand behind back

and wrist flexion/pronation (Zhang et al., 2012). In CP, one

study included outwards reaching (Sanger, 2006), one

included the drinking test, the bean bag test and the nine

hole peg test (Bai et al., 2021) while Strohrmann et al.

TABLE 2 (Continued) Calculated sensor features in time and frequency-domain. STD = standard deviation; max = maximal; RMS = root-mean-square; VAR =
variance; IQR = inter-quartile range. PSD = power spectral density.

Frequency-domain Formula/Feature description Goal population

Peak power Gyroscope; 0–4 Hz frequency band Summa et al. (2017); Power of
dominant frequency Hssayeni et al. (2021); Position and amplitude of
dominant peaks in power spectra of acceleration signals Budini et al.
(2014)

PD Jun et al. (2011); Kim et al. (2011); Summa et al. (2017);
Zhu and Miller, (2020); Hssayeni et al. (2021), tremor
Budini et al. (2014); Heo et al. (2015); Kwon et al. (2020);
Ali et al. (2022), ataxia Gupta, (2022), MS Ketteringham,

(2011)

Second peak power Power of second dominant frequency Hssayeni et al. (2021) PD Hssayeni et al. (2021)

Total power Power spectrum of angular velocity Kim et al. (2011); Gyroscope;
0–4 Hz frequency band Summa et al. (2017); power ratio ACC = (Power
in 3–7 Hz range)/(Power in 3–7 Hz + Power in 7–12 Hz) Schaefer et al.
(2021)

PDKim et al. (2011); Jun et al. (2011); Summa et al. (2017);
di Biase et al. (2018); Schaefer et al. (2021)

Mean power 0.2–4 Hz frequency band Griffiths et al. (2012) PD Griffiths et al. (2012)

Band power Dyskinetic CP den Hartogvan der Krogt et al. (2022)

Spectral entropy PD Tsipouras et al. (2012); Hssayeni et al. (2021), Ataxia
Nguyen et al. (2020)

Component entropy HD Bennasar et al. (2018)

Smoothness (Spectral Arc
Length)

SAL ≜ � −∫Ωc

0

�������������
( 1
Ωc
)2 + (dV(Ω)dΩ )2

√
dω, where V(Ω) ≜ V(Ω)

V(0) Newman et al.
(2017)

CP Newman et al. (2017), PD Summa et al. (2017); di Biase
et al. (2018)

Specific tremor index Tremor Index (TI) = 100*(rms [TR])/(rms [A]) with TR = tremor and
A = norm of angular velocity Carpinella et al. (2015); Average Tremor
amplitude (ATA) = 4*LTs∑f2

f�f1

�����
X(f)√

with L = # of frequency bins,
Ts = sampling period, X = signal’s PSD Western et al. (2019); Mean
logarithmic tremor power Benito-LeónSerrano et al. (2019); Tremor
rotational amplitude and tremor amplitude based on identified peaks in
power spectrum McGurrin et al. (2021)

MS Carpinella et al. (2015); Western et al. (2019), tremor
(Benito-LeónSerrano et al. (2019); McGurrin et al. (2021)

Tremor Frequency (TF) and
Tremor Amplitude (TA)

TF = frequency distribution for highest maxima between 1 and 15Hz;
TA = square root of integral of PSD ± 1 Hz of detected frequency
Šprdlík et al. (2011)

Tremor Šprdlík et al. (2011)
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included turn around cards, pick up small objects, stack

dominos, open and close and bottle, use a key, and the nine-

hole peg test (Strohrmann et al., 2013). Kim et al. included

the Jebsen Taylor Hand Function Test, the Quality of Upper

Extremity Skills Test and the abovementioned Box and

Blocks Test (Kim et al., 2018).

Sensor features

Table 2 provides an overview of the calculated sensor features

in the time-and frequency domain, as well as a formula or feature

description when given in the original study. Supplementary

Table S3 presents the sensor features grouped per pathology. As

an easy and straightforward feature, execution time was often

calculated for the upper limb tasks for stroke (Thies et al., 2009;

Zhang et al., 2012; Repnik et al., 2018), MS (Carpinella et al.,

2014), PD (van den Noort et al., 2017; Bonato et al., 2004; Yokoe

et al., 2009; Djurić-JovičićPetrovic et al., 2016; Rabelo et al., 2017;

di Biase et al., 2018), tremor (Tran et al., 2020; Ali et al., 2022), CP

(Strohrmann et al., 2013) and ataxia (Dominguez-Vega et al.,

2021; Gupta, 2022). The frequency of movements was popular in

multiple studies in PD, mostly in repetitive tasks such as finger

tapping and pro/supination (Lee et al., 2015b; Cavallo et al.,

2019).

For the studies where both acceleration and angular velocity

signals were collected, both mean and standard deviation (STD)

were often calculated (Tsipouras et al., 2012; Thomas et al., 2018;

Shawen et al., 2020; Hssayeni et al., 2021; Romano et al., 2021;

Parnandi et al., 2010; Krishna et al., 2019; den Hartogvan der

Krogt et al., 2022), as well as root-mean-square (RMS) values

(van den Noort et al., 2017; Shawen et al., 2020; Habets et al.,

2021; Krishna et al., 2019; den Hartogvan der Krogt et al., 2022).

Additionally, mean and RMS or STD of acceleration and angular

velocity separately were used in studies were one of the signals

was available (Hester, 2006; Koop et al., 2006; Salarian et al., 2007;

Yokoe et al., 2009; Patel et al., 2010; Zwartjes et al., 2010; Del Din

et al., 2011; Griffiths et al., 2012; Strohrmann et al., 2013; Budini

et al., 2014; Lee et al., 2015b; Heo et al., 2015; Djurić-

JovičićPetrovic et al., 2016; Ghassemi et al., 2016; Samotus

et al., 2016; Angeles et al., 2017; Bennasar et al., 2018; López-

Blanco et al., 2018; Cavallo et al., 2019; Garza-RodríguezSanchez-

Fernandez et al., 2020; Kwon et al., 2020; Li et al., 2020;

Dominguez-Vega et al., 2021; Habets et al., 2021; Oubre et al.,

2021; Schaefer et al., 2021; Gupta, 2022), as well as median

angular velocity in one study (Garza-RodríguezSanchez-

Fernandez et al., 2020). Maximal linear velocity was

additionally often used as key feature, mostly by integration of

the acceleration signal (Hester, 2006; Okuno et al., 2006; Yokoe

et al., 2009). The range of angular displacement or range of

motion was only used in studies in PD (Espay et al., 2011; Jun

et al., 2011; Kim et al., 2011; Tamás et al., 2016; Kwon et al., 2018;

Cavallo et al., 2019), mainly to assess hypokinesia. The range of

acceleration and angular velocity was included in PD (Patel et al.,

2009; Yokoe et al., 2009; Rabelo et al., 2017; di Biase et al., 2018;

Shawen et al., 2020; Habets et al., 2021; Otten et al., 2015), tremor

(Oubre et al., 2021) and CP (Strohrmann et al., 2013; Newman

et al., 2017), as well as the inter-quartile range for PD (Garza-

RodríguezSanchez-Fernandez et al., 2020; Habets et al., 2021).

The range of jerk and angular acceleration was used in one study

in PD (Spasojević et al., 2017).

Peak-to-peak and magnitude of angular velocity were

additionally used in PD (Summa et al., 2017; Pulliam et al.,

2018; di Biase et al., 2018; Hssayeni et al., 2021), whereas Repnik

and others calculated a rotational jerk index for angular velocity

values to evaluate hand rotation in stroke (Repnik et al., 2018).

Finally, a study in PD used the square root of the sum of squares

of jerk signals and named this feature ‘segment velocity’ (Keijsers

et al., 2003).

As basis statistical features, kurtosis and skewness were

popular in PD (Parnandi et al., 2010; Ghassemi et al., 2016;

Lonini et al., 2018; Thomas et al., 2018; Shawen et al., 2020;

Hssayeni et al., 2021), but not in other populations apart from

one ataxia study (Gupta, 2022). With respect to signal dynamics,

multiple forms of entropy were used, most commonly sample

entropy and approximate entropy in PD (Patel et al., 2009;

Chelaru et al., 2010; Tsipouras et al., 2012; Ghassemi et al.,

2016; Liu et al., 2016; Lonini et al., 2018; Shawen et al., 2020),

stroke (Patel et al., 2010) and ataxia (Kashyap et al., 2020) and

Shannon entropy and permutation entropy in PD (Hssayeni

et al., 2021), dyskinetic CP (den Hartogvan der Krogt et al., 2022)

and HD (Bennasar et al., 2018). Fuzzy entropy was additionally

calculated in two ataxia studies (Nguyen et al., 2020; Tran et al.,

2020). Apart from entropy, the Gini index and Lyapunov

exponent were additionally used as a measure of signal

complexity in PD (Hssayeni et al., 2021), ataxia (Nguyen

et al., 2020) and HD (Bennasar et al., 2018). The same HD

study additionally used recurrence rate, determinism and average

diagonal line to evaluate signal dynamics (Bennasar et al., 2018).

For signal smoothness, RMS of jerk was often used as a

straightforward measure in PD (Parnandi et al., 2010) and stroke

(Knorr, 2005; Hester, 2006), as well as a jerk metric for which

multiple definitions were given, mostly RMS jerk normalized

over time/peak velocity or mean jerk (Newman et al., 2017;

Zhang et al., 2012; Lonini et al., 2018; Habets et al., 2021; Romano

et al., 2021; Hester, 2006; Carpinella et al., 2014; den Hartogvan

der Krogt et al., 2022; Bai et al., 2021). Additionally, smoothness

measures were also described as the difference between

movement accelerometer readings and smoothed readings,

number of movement units or number of speed peaks

(Kamper et al., 2002; Otten et al., 2015; Bai et al., 2021).

Coefficient of variation was often used as a measure of

variability or rhythm for different signals such as excursion

angle (Heldman et al., 2011a; Espay et al., 2011; Tamás et al.,

2016; Kwon et al., 2018), (angular) velocity (Espay et al., 2011;

Lee et al., 2015b; Kwon et al., 2018), amplitude (Lee et al., 2015b;
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Djurić-JovičićPetrovic et al., 2016) andmovement frequency (Lee

et al., 2015b; Cavallo et al., 2019; Tran et al., 2020), while two

studies in PD defined ‘rhythm’ via the STD of intervals of a finger

tapping movement (Okuno et al., 2006) and any sequence of

regularly occurring events (Martinez-Manzanera et al., 2016).

Finally, a stroke study defined variability as the RMS error

between a reference trial and a warped trial (Thies et al.,

2009). Considering the geometrical structure of a non-linear

time-series, Newman et al. included Higuchu’s fractional

dimension in children with CP (Newman et al., 2017).

With respect to orientation and rotational information,

correlation between the different axes of the accelerometer or

gyroscope was often included as a feature in PD (Lonini et al.,

2018; Shawen et al., 2020; Zhu and Miller, 2020; Habets et al.,

2021), HD (Bennasar et al., 2018) and stroke (Hester, 2006).

Additionally, the peak of the normalized cross-correlation from

pairs of acceleration time series and the lag of first peak in

autocorrelation acceleration were included in two PD studies

(Patel et al., 2009; Cole et al., 2010). Concerning trajectories and

travelled distances, multiple studies used different definitions for

this feature. 3D hand trajectory and length of 3D trajectory (van

Meulen et al., 2015) and path-length ratio were used in stroke

(Kamper et al., 2002), while the index of curvature (deviation

from a straight line) was used in dyskinetic CP (Sanger, 2006).

Elevation angle was included in a CP study, while in stroke, the

similarity of hand trajectories was used (Newman et al., 2017;

Repnik et al., 2018). Two studies in patients with ataxia used

mean and standard deviation of Euclidian distance from the

mean trajectory and curved and straight-line similarity analysis

(Martinez-Manzanera et al., 2018; Dominguez-Vega et al., 2021).

In PD, Heldman et al. used a bradykinesia index, based on

variability in time and amplitude of task execution whereas

Tamas et al. and Garza-Rodriguez and others quantified

hypokinesia using velocity decrement, which is defined as a

decrease in velocity between subsequent data parts (Tamás

et al., 2016; Garza-RodríguezSanchez-Fernandez et al., 2020).

In the frequency-domain, the dominant frequency

component of acceleration/angular velocity or both was most

often used (Makabe and Sakamoto, 2000; Hoff et al., 2001;

Hester, 2006; Patel et al., 2009; Gallego et al., 2012; Budini

et al., 2014; Thanawattano et al., 2015; Bravo, 2017; Teufl

et al., 2017; Lukšys et al., 2018; Bermeo, 2019; Krishna et al.,

2019; Zhu and Miller, 2020; Hssayeni et al., 2021; Teufl et al.,

2021), while only three studies included the second dominant

frequency or dominant frequency of jerk (Hester, 2006; Kashyap

et al., 2020; Hssayeni et al., 2021). Energy in the frequency

spectrum was often included in multiple populations, both for

the acceleration signal (Bonato et al., 2004; Hester, 2006; Patel

et al., 2009; Cole et al., 2010; Patel et al., 2010; Del Din et al., 2011;

Ghassemi et al., 2016), angular velocity signal (Rigas et al., 2016)

or both (Tsipouras et al., 2012; Zhang et al., 2012; Krishna et al.,

2019). One PD study additionally included amplitude and

dominant frequency of modulations associated with the

acceleration signal as well as fractal dimension (Bonato et al.,

2004), while one HD study included the average magnitude of the

first five Short-Term-Fourier-Transfer components (Bennasar

et al., 2018). Apart from the frequency, power in specific

frequency bands was a popular feature in multiple

populations, including spectral power (Legros et al., 2004;

Parnandi et al., 2010; Heldman et al., 2011b; Bravo, 2016;

Pulliam et al., 2018; Bermeo, 2019; Hssayeni et al., 2021; Ali

et al., 2022), peak power (Makabe and Sakamoto, 2000; Jun et al.,

2011; Kim et al., 2011; Summa et al., 2017; Hssayeni et al., 2021),

total power (Kim et al., 2011; Jun et al., 2011; Summa et al., 2017;

di Biase et al., 2018; Zhu and Miller, 2020; Ali et al., 2022; Budini

et al., 2014; Heo et al., 2015; Kwon et al., 2020; Ketteringham,

2011; Gupta, 2022), mean power (Griffiths et al., 2012) and band

power (den Hartogvan der Krogt et al., 2022). Considering

entropy in the frequency domain, spectral entropy was used

in two PD studies (Tsipouras et al., 2012; Hssayeni et al., 2021)

and one ataxia study (Nguyen et al., 2020), as well as component

entropy in HD (Bennasar et al., 2018). Spectral Arc Length was

used as a measure of smoothness in two PD studies and one CP

study (Newman et al., 2017; Summa et al., 2017; di Biase et al.,

2018). For tremor studies, tremor frequency and tremor

amplitude (Šprdlík et al., 2011) were included as well as

multiple specific tremor indices: Carpinella et al. defined the

tremor index as the ratio of tremor (defined by peaks in the

frequency spectrum) and the norm of angular velocity

(Carpinella et al., 2015). Western et al. defined average tremor

amplitude as the product of frequency bins, sampling period and

the signal’s power spectral density (Western et al., 2019), whereas

Benito-Leon et al. andMcGurrin et al. used the mean logarithmic

tremor power and tremor rotational amplitude/amplitude

respectively, based on identified peaks in the power spectrum

(Benito-LeónSerrano et al., 2019; McGurrin et al., 2021).

Statistical method used

Figure 4 gives a representation of the statistical methods

used in the included studies. Forty-five studies included

between- or within-group comparisons using statistical tests,

(Makabe and Sakamoto, 2000; Hoff et al., 2001; Kamper et al.,

2002; Legros et al., 2004; Okuno et al., 2006; Sanger, 2006; Thies

et al., 2009; Chelaru et al., 2010; Espay et al., 2011; Kim et al.,

2011; Jun et al., 2011; Šprdlík et al., 2011; Griffiths et al., 2012;

Tsipouras et al., 2012; Strohrmann et al., 2013; Budini et al.,

2014; Carpinella et al., 2014; Carpinella et al., 2015; Heo et al.,

2015; Lee et al., 2015; Rahimi et al., 2015; Thanawattano et al.,

2015; Delrobaei et al., 2016; Liu et al., 2016; Samotus et al., 2016;

Summa et al., 2016; Tamás et al., 2016; Newman et al., 2017;

Rabelo et al., 2017; Delrobaei et al., 2018; di Biase et al., 2018;

Kwon et al., 2018; Lukšys et al., 2018; Repnik et al., 2018; Li et

al., 2020; Nguyen et al., 2020; Bai et al., 2021; Habets et al., 2021;

Romano et al., 2021; Schaefer et al., 2021; Ali et al., 2022; Chan
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et al., 2022; Gupta et al., 2022), mainly parametric and non-

parametric ANOVA and parametric and non-parametric

t-tests, whereas 43 studies used machine learning (Keijsers et

al., 2003; Bonato et al., 2004; Hester et al., 2006; Patel et al.,

2009; Chelaru et al., 2010; Cole et al., 2010; Parnandi et al., 2010;

Patel et al., 2010; Zwartjes et al., 2010; Del Din et al., 2011;

FIGURE 4
Statistical method used in the included studies. The sum does not add up to 101 because multiple studies used more than one methodology.

TABLE 3 Most prevalent features, the number of articles they appear in, the number of articles reporting sensitivity and the number of articles reporting
significant results.

Feature Articles (n) Articles reporting sensitivity (n) Articles reporting significant results (n)

RMS angular velocity 18 12 11

Mean acceleration 17 3 2

Execution time 17 10 10

Dominant frequency domain 15 1 1

Peak power 12 6 6

Sample entropy 11 2 2

RMS angular displacement/movement amplitude 11 10 9

Energy acceleration in frequency domain 11 0 0

STD acceleration 11 0 0

RMS acceleration 10 1 1

Mean angular velocity 10 6 6

Jerk metric 9 5 4

Coefficient of variation 8 5 5

Spectral power 7 4 3

Range acceleration 7 2 1

Approximate entropy 7 2 2

Range angular displacement 6 4 4

Mean acceleration and angular velocity 6 1 1

Correlation between axes 6 1 0

Skewness 6 0 0

Kurtosis 6 0 0
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Heldman et al., 2011; Gallego et al., 2012; Griffiths et al., 2012;

Tsipouras et al., 2012; Zhang et al., 2012; Otten et al., 2015;

Ghassemi et al., 2016; Martinez-Manzanera et al., 2016; Rigas et

al., 2016; Spasojević et al., 2017; Angeles et al., 2017; Rabelo et

al., 2017; Lonini et al., 2018; Martinez-Manzanera et al., 2018;

Pulliam et al., 2018; Thomas et al., 2018; Garza-Rodríguez et al.,

2018; Bermeo et al., 2019; Cavallo et al., 2019; Krishna et al.,

2019; Kashyap et al., 2020; Shawen et al., 2020; Tran et al., 2020;

Hssayeni et al., 2021; Park et al., 2021; Habets et al., 2021; Teufl

et al., 2021; Dominguez-Vega et al., 2021; Oubre et al., 2021; Ali

et al., 2022; den Hartog et al., 2022). Twenty-five studies

evaluated correlation of sensor features with clinical scales

(Newman et al., 2017; Repnik et al., 2018; Okuno et al.,

2006; Salarian et al., 2007; Yokoe et al., 2009; Kim et al.,

2011; Jun et al., 2011; Delrobaei et al., 2016; Liu et al., 2016;

Djurić-JovičićPetrovic et al., 2016; di Biase et al., 2018;

Delrobaei et al., 2018; Benito-LeónSerrano et al., 2019;

McGurrin et al., 2021; Chan et al., 2018; López-Blanco et al.,

2018; Kwon et al., 2020; Teufl et al., 2017; Western et al., 2019;

Krishna et al., 2019; Tran et al., 2020; Nguyen et al., 2020; Oubre

et al., 2021; Gupta, 2022; Kim et al., 2018), whereas nine studies

used regression analysis for a similar purpose (Knorr, 2005;

Sanger, 2006; Yokoe et al., 2009; Heldman et al., 2011a; Šprdlík

et al., 2011; Strohrmann et al., 2013; van Meulen et al., 2015;

Oubre et al., 2021; Ali et al., 2022). Finally, five studies used only

descriptive statistics or observation without hypothesis testing

(van den Noort et al., 2017; Bravo, 2016; Bravo, 2017; Zhu and

Miller, 2020; Ketteringham, 2011) and two studies evaluated

ROC curves (Hoffman andMcNames, 2011; Oubre et al., 2021).

The sum of these numbers does not add up to 101, because

multiple studies used multiple of the abovementioned methods.

Eleven studies used both statistical tests for comparison

between groups and correlation with a clinical scale

(Newman et al., 2017; Repnik et al., 2018; Kim et al., 2011;

Jun et al., 2011; Delrobaei et al., 2016; Liu et al., 2016; Djurić-

JovičićPetrovic et al., 2016; di Biase et al., 2018; Delrobaei et al.,

2018; Nguyen et al., 2020; Gupta, 2022), whereas five studies

used statistical tests and machine learning (Chelaru et al., 2010;

Griffiths et al., 2012; Tsipouras et al., 2012; Rabelo et al., 2017;

Habets et al., 2021). Yokoe et al. used both logistic regression

and correlation with a clinical scale in PD (Yokoe et al., 2009).

In patients with ataxia, Tran et al. used statistical tests,

correlation with a clinical scale and machine learning (Tran

et al., 2020) and Oubre et al. used statistical tests, regression,

correlation with a clinical scale and machine learning (Oubre

et al., 2021). In participants with essential tremor, Ali et al. used

statistical tests, regression analysis and machine learning (Ali

et al., 2022) and Sprdlik et al. used statistical tests, ROC curves

and regression analysis (Šprdlík et al., 2011). In CP, Sanger et al.

used both regression analysis and ANOVA/t-tests (Sanger,

2006), and Strohrmann et al. used a t-test, to subsequently

continue with a linear regression for the features that were

significantly different between groups (Strohrmann et al., 2013).

Sensitivity and/or responsiveness of most
prevalent sensor features

Table 3 provides an overview of the features included by

more than five articles, the number of articles reporting

sensitivity of the specific feature and the number of articles

that identified a significant difference between groups, severity

levels or pre/post intervention.

RMS of angular velocity was reported in 18 studies, with

sensitivity results for 11 studies. In PD, Van den Noort et al.

found significantly higher RMS values for ON vs. OFF

dopaminergic medication, while Summa et al. did not find a

significant difference between medication states (van den Noort

et al., 2017; Summa et al., 2017). Espay et al. found 25%

improvement in RMS values after dopaminergic medication in

PD patients (Espay et al., 2011). Kwon et al. and Luksys et al.

found significant higher RMS angular velocity values for PD

patients in comparison with controls, whereas two studies found

a correlation of -0.78 between RMS angular velocity and clinical

scores of the UPDRS (Jun et al., 2011; Kim et al., 2011; Kwon

et al., 2018; Lukšys et al., 2018). Additionally, Heldman et al.

found a correlation of -0.78 between RMS angular velocity values

and the modified bradykinesia rating scale (Heldman et al.,

2011a) and Salarian et al. found good correlation between

RMS angular velocity values and the UPDRS bradykinesia

subscore, as well as good correlation between RMS angular

velocity of the roll axis and the tremor subscore of the

UPDRS (Salarian et al., 2007). In patients with tremor,

spearman correlation between RMS angular velocity and

tremor severity scores ranged from 0.19 (finger-to-nose) to

0.73 (keeping arms extended in front of the body) for Lopez-

Bianco et al. (López-Blanco et al., 2018) and between 0.41 and

0.70 for Kwon et al. (Kwon et al., 2020), whereas Heo et al. found

lower RMS angular velocity values after electrical stimulation

(Heo et al., 2015).

Seventeen studies reported mean acceleration as a feature,

but only two PD studies and one ataxia study discussed its

sensitivity. Romano et al. found lower mean acceleration for

PD patients in comparison with the control group, while

Zwartjes et al. did not find significant differences between

ON and OFF stimulation states of deep brain stimulation

(Zwartjes et al., 2010; Romano et al., 2021). In patients with

Ataxia, Samotus et al. found lower mean acceleration after

botulinum-toxin-A injections (Samotus et al., 2016).

Execution time was included in 17 studies, with reported

sensitivity for 11 studies. Execution time significantly

differed between different severity levels (Repnik et al.,

2018) and between healthy controls and patients with

stroke (Thies et al., 2009; Repnik et al., 2018) and MS

(Carpinella et al., 2014; Carpinella et al., 2015) and

between the paretic and non-paretic arm in children with

unilateral CP (Newman et al., 2017). Execution time was

significantly longer for PD patients in comparison with
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healthy controls (Rabelo et al., 2017; di Biase et al., 2018) and

for patients with multiple system atrophy of parkinsonian

type and progressive supranuclear palsy in comparison with

healthy controls (Djurić-JovičićPetrovic et al., 2016). Third,

execution time was significantly different between the ON and

OFF medication state in PD patients (van den Noort et al.,

2017). In CP, execution time was one of the three features to

best estimate upper limb performance in a regression analysis

(Strohrmann et al., 2013).

The dominant frequency domain was included in

15 studies, but only Hoff et al. reported individual

contributions of this feature, reporting that amplitude in

1–4Hz and 4–8 Hz frequency bands correlated with the

modified Abnormal Involuntary Movement Scale (Hoff

et al., 2001). Peak power was included in 12 studies, of

which six discussed its individual sensitivity. Jun et al.

reported a good correlation between peak power and

clinical bradykinesia scores and Kim et al. reported

decreasing peak powers with increasing UPDRS scales steps

(Jun et al., 2011; Kim et al., 2011), while Makabe et al. reported

increasing peak powers with increasing severity stages of the

Hoehn and Yahr scale (Makabe and Sakamoto, 2000).

Similarly, Summa et al. reported increases in peak power in

ON vs. OFF medication state (Summa et al., 2017). In essential

tremor, Heo et al. reported higher peak power after electrical

stimulation (Heo et al., 2015) and Kwon et al. reported high

correlation between peak power and tremor severity scores

(Kwon et al., 2020).

Sample entropy was included in 11 studies, but only two PD

studies reported its sensitivity. Chelaru et al. found significantly

higher entropy for dyskinetic PD patients in comparison with

non-dyskinetic PD patients, as well as Liu et al. who found a

significant difference between PD patients and healthy controls

and good correlation with UPDRS scores (Chelaru et al., 2010;

Liu et al., 2016). RMS of angular displacement was included in

11 studies, of which ten reported sensitivity. Tamas et al. found

significant differences in RMS amplitude before and after

subthalamic stimulation and Espay et al. found significant

differences between ON and OFF medication state in PD

(Espay et al., 2011; Tamás et al., 2016). Kwon et al. found

significantly lower RMS amplitudes for PD patients in

comparison with controls and Jun et al. found decreasing

angular displacement with increasing bradykinesia scores, but

this was based on visual observation (Jun et al., 2011; Kwon et al.,

2018). Chan et al. found higher values for angular displacement

for patients with PD with tremor in comparison with essential

tremor (Chan et al., 2022). Kim et al. additionally found a

significant difference between PD patients and controls (Kim

et al., 2011), whereas Heldman et al. found a correlation

of −0.81 between RMS excursion angle and clinical scores

(Heldman et al., 2011a). Delrobaei et al. found a higher

tremor severity score (which was composed of the RMS values

of angular velocity) for tremor-dominant PD patients in

comparison with non-tremor dominant PD patients and good

correlation between tremor severity score and UPDRS scores

(Delrobaei et al., 2018). In essential tremor, Kwon et al. and Chan

et al. found correlations ranging from 0.29–0.66 and

0.80–0.93 respectively, between RMS angular displacement

and tremor severity scores (Chan et al., 2018; Kwon et al.,

2020). Energy and STD of acceleration were included in

10 studies, but none reported sensitivity.

RMS of acceleration was included in 10 studies, but only van

den Noort et al. discussed its specific contribution in PD patients,

reporting increased RMS acceleration in ON vs. OFF medication

state during a finger tapping and opening/closing of the hand

task (van den Noort et al., 2017). Mean angular velocity was also

included in 10 studies with six of them reporting sensitivity. In

PD, three studies found lower mean angular velocity for PD

patients in comparison with healthy controls (Lee et al., 2015b;

Djurić-JovičićPetrovic et al., 2016; Romano et al., 2021), whereas

one study additionally identified significant differences between

ON/OFF DBS stimulation (Salarian et al., 2007). Garza-

Rodriguez et al. found lower angular velocity values for PD

patients with higher clinical severity (Garza-

RodríguezSanchez-Fernandez et al., 2018). In patients with

ataxia, Oubre et al. found significant differences between

patients and healthy controls (Oubre et al., 2021).

Jerk metrics were calculated in nine studies with five

reporting on its sensitivity. Romano et al. used the

dimensionless jerk index as a jerk metric and found a

significant difference between PD patients and healthy

controls, while Habets et al. did not find a significant

difference between ON and OFF medication state in PD

patients (Habets et al., 2021; Romano et al., 2021). Carpinella

et al. found a significantly higher jerk measure for patients with

MS in comparison with healthy controls and a negative

correlation between the jerk measure and ARAT score

(r = −0.90) (Carpinella et al., 2014). In children with

unilateral CP, Newman and others found a significantly

higher normalised jerk index for the paretic arm in

comparison with the non-paretic arm, but no correlation with

the Melbourne Assessment Scale (Newman et al., 2017). In

children with spasticity, the normalized jerk score improved

significantly after botulinum-toxin A injections (Bai et al., 2021).

Coefficient of variation (CoV) was included in eight studies,

where CoV of time and amplitude was mostly calculated to

evaluate bradykinesia. Djuric-Jovicic and others found

significant differences between PD patients and healthy controls

for both CoV of time and amplitude, whereas Lee et al. found

significant differences for CoV of speed, amplitude and frequency

between PD patients and controls (Lee et al., 2015b; Djurić-

JovičićPetrovic et al., 2016). Kwon et al. additionally found

significant differences between PD patients and controls for the

CoV of angles and velocity (Kwon et al., 2018). Tamas et al. found

that the coefficient of variation—also called ‘rhythm’—improved

significantly after bilateral and contralateral subthalamic
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stimulation, whereas Espay et al. found significant differences

between ON and OFF medication state for CoV in PD patients

(Espay et al., 2011; Tamás et al., 2016).

Spectral power was used in seven studies of which four

reported sensitivity. Bravo et al. compared power spectral

density (PSD) plots between PD patients and healthy controls

and found both higher and lower PSD amplitude for PD patients

in comparison with healthy controls, depending on the

individual (Bravo, 2016). In patients with dystonia, Legros

et al. found a decrease of the area under the spectrum curve

after deep brain stimulation surgery (Legros et al., 2004). Ali et al.

found higher PSD ratios for patients with essential tremor in

comparison with healthy controls (Ali et al., 2022), whereas

Heldman et al. found correlations from 0.77–0.83 between the

logarithm of peak power and the UPDRS scores (Heldman et al.,

2011b). The range of acceleration was additionally calculated in

seven articles, but only two articles reported its sensitivity. Rabelo

et al. found a significantly higher acceleration range for healthy

controls in comparison with PD patients, while Habets et al. did

not find a significant difference between ON andOFFmedication

state in PD patients (Rabelo et al., 2017; Habets et al., 2021).

Approximate entropy was also included in seven studies, but only

two PD studies included its sensitivity, where Liu et al. and

Luksys et al. found significant differences between PD patients

and a control group (Liu et al., 2016; Lukšys et al., 2018).

Range of angular displacement was calculated in six studies,

but only four discussed its sensitivity. Djuric et al. reported a

higher range for healthy controls in comparison with PD

patients, whereas van den Noort et al. reported lower

displacement in the ON vs. OFF medication state and

improved amplitude in the ON compared to OFF state (van

den Noort et al., 2017; Djurić-JovičićPetrovic et al., 2016).

Romano et al. found significant differences between PD

patients and healthy controls for wrist flexion and shoulder

movements and Salarian et al. found significantly lower

angular displacements at the level of the wrist for PD patients

compared to healthy controls (Salarian et al., 2007; Romano et al.,

2021). Energy of acceleration in the frequency domain and STD

of acceleration were included in 11 articles, but all of them

included these features as part of a feature set for machine

learning, without discussing its individual contribution.

Mean acceleration and angular velocity were included in six

studies, but only Romano et al. found significantly lower mean

acceleration and angular velocity in PD patients in comparison

with healthy controls (Romano et al., 2021). Correlation between

axes was included in six studies, but only Zhu et al. reported no

significant differences in correlations when comparing PD

patients in ON and OFF medication state (Zhu and Miller,

2020). Kurtosis and skewness were additionally included in six

studies, but none of them reported the contribution of the

individual features.

Clinical application

Figure 5 presents an overview of the clinical application of the

included studies. Fifty-two studies used sensor features for the

automatization of a clinical scale (Bonato et al., 2004; Knorr,

2005; Hester, 2006; Okuno et al., 2006; Salarian et al., 2007; Patel

et al., 2009; Yokoe et al., 2009; Cole et al., 2010; Parnandi et al.,

2010; Patel et al., 2010; Zwartjes et al., 2010; Del Din et al., 2011;

Heldman et al., 2011a; Jun et al., 2011; Kim et al., 2011; Gallego et

al., 2012; Griffiths et al., 2012; Zhang et al., 2012; Strohrmann et

al., 2013; Carpinella et al., 2014; van Meulen et al., 2015; Otten et

al., 2015; Delrobaei et al., 2016; Martinez-Manzanera et al., 2016;

Rigas et al., 2016; Spasojević et al., 2017; Teufl et al., 2017;

Bennasar et al., 2018; Chan et al., 2018; Delrobaei et al., 2018;

Garza-Rodríguez et al., 2018; Kim et al., 2018; Lonini et al., 2018;

López-Blanco et al., 2018; Pulliam et al., 2018; Thomas et al.,

2018; Benito-Leónet al., 2019; Bermeo, 2019; Cavallo et al., 2019;

Krishna et al., 2019; Western et al., 2019; Garza-Rodríguez et al.,

2020; Kwon et al, 2020; Nguyen et al., 2020; Shawen et al., 2020;

Hssayeni et al., 2021; McGurrin et al., 2021; Oubre et al., 2021;

Park et al., 2021; Teufl et al., 2021; den Hartog et al., 2022).

Sixteen studies used sensor features to evaluate the effect of an

intervention (Hoff et al., 2001; Keijsers et al., 2003; Legros et al.,

FIGURE 5
Clinical application. The sum does not add up to 101 because multiple studies used more than one methodology.
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2004; Koop et al., 2006; Chelaru et al., 2010; Espay et al., 2011;

Budini et al., 2014; Heo et al., 2015; Rahimi et al., 2015; Bravo,

2016; Samotus et al., 2016; Tamás et al., 2016; Angeles et al., 2017;

Zhu and Miller, 2020; Bai et al., 2021; Habets et al., 2021),

whereas 35 studies used the obtained features to discriminate

between patients and controls or between different patient

groups (van den Noort et al., 2017; Newman et al., 2017;

Sanger, 2006; Repnik et al., 2018; Hoffman and McNames,

2011; Tsipouras et al., 2012; Lee et al., 2015b; Delrobaei et al.,

2016; Ghassemi et al., 2016; Liu et al., 2016; Djurić-

JovičićPetrovic et al., 2016; Spasojević et al., 2017; Summa

et al., 2017; Rabelo et al., 2017; Kwon et al., 2018; di Biase

et al., 2018; Li et al., 2020; Romano et al., 2021; Bravo, 2017; Chan

et al., 2022; Delrobaei et al., 2018; Makabe and Sakamoto, 2000;

Schaefer et al., 2021; Thanawattano et al., 2015; Lukšys et al.,

2018; Ali et al., 2022; Šprdlík et al., 2011; Thies et al., 2009;

Carpinella et al., 2015; Ketteringham, 2011; Tran et al., 2020;

Dominguez-Vega et al., 2021; Gupta, 2022; Martinez-Manzanera

et al., 2018; Kashyap et al., 2020). Four studies subsequently

discriminated between different severity levels (Kamper et al.,

2002; Delrobaei et al., 2016; Spasojević et al., 2017; Repnik et al.,

2018). Again, there was some overlap in clinical applications:

Delrobaei et al., Spasojevic et al. and Repnik et al. compared

control and patient groups as well as severity levels within the

patient group, while also correlating sensor features with a

clinical scale (Delrobaei et al., 2016; Spasojević et al., 2017;

Repnik et al., 2018). Kamper et al. compared a patient and

control group but also compared severity levels separately

(Kamper et al., 2002).

Discussion

The primary objective of this scoping review was to provide

an overview of sensor set-up and type, included tasks, sensor

features and statistical methods that are used to evaluate

movement disorders during upper limb tasks in multiple

pathological populations. We identified 101 studies in eight

pathological conditions using wearable sensors placed on the

upper limb during upper limb tasks and including at least one

sensor feature based on linear acceleration or angular velocity. Of

all included studies, 55% were studies in PD, 12% were studies

with essential tremor patients, 11% were studies in stroke

patients, 8% were studies in adults or children with ataxia, 6%

were studies including participants with MS and 5% included

children with CP. Adults with HD and spasticity and dystonia in

children represented only 1% of the included studies. When

comparing these numbers with the prevalence of the

abovementioned conditions, an important imbalance emerges.

Worldwide, approximately 101 million people are living post-

stroke (Feigin et al., 2022), 25 million people live with essential

tremor (Song et al., 2021), 17 million people live with CP

(McIntyre et al., 2011), 10 million people are estimated to live

with PD (Van Den Eeden, 2003; Okubadejo et al., 2006; Marras

et al., 2018), approximately 0.2–3 million people live with ataxia,

depending on the type (Musselman et al., 2014; Ruano et al.,

2014) and 0.2 to 0.5 million people live with HD, depending on

the geographical area (Crowell et al., 2021; Medina et al., 2022).

While stroke is much more prevalent than PD or essential

tremor, this ratio is not reflected in the number of available

studies per condition. More surprisingly, where CP is the most

prevalent neurological childhood condition included, its high

prevalence does not correspond with the number of studies

investigating the associated movement disorders using

wearable sensors. Current findings thus identify a major gap

between prevalence of a condition and insights in the related

movement disorders. Especially for early-onset conditions such

as CP, more insights in the disturbedmovement patterns from an

early age could benefit targeted therapy and long-term treatment

management.

The abundance of included PD studies reflects its more

advanced state-of-the-art assessment in comparison with other

pathological populations. These insights offer opportunities and

learning experiences for clinicians and researchers aiming to

bridge the gap between technology and clinical measures in the

quantitative evaluation of movement disorders. Although wide-

spread in research, the clinical implementation of IMU-based

analysis of movement disorders is lacking in clinical practice in

all populations, mainly due to the lack of validation of algorithms

in real-world conditions (Del Din et al., 2021).

With respect to sensor type, IMUs containing both an

accelerometer and gyroscope were most often used, where a

time-related trend was clearly visible in the included PD studies:

between 2000 and 2010, all PD studies included either an

accelerometer or a gyroscope, whereas after 2010, IMUs were

almost exclusively used. This trend is presumably supported by

technological advancements, allowing more sensors in a smaller

device with longer battery life combined with more affordable

prices for IMUs.

Sensor location, number of included sensors and upper limb

tasks were separately discussed to provide a comprehensive

overview. However, conclusions should be drawn on a

combination of these settings as they are closely inter-related.

E.g., all but one of the nine studies that placed one sensor on the

index finger included the finger tapping (Okuno et al., 2006;

Heldman et al., 2011b; Hoffman and McNames, 2011; Kim et al.,

2011; Tamás et al., 2016) or finger-to-nose task (Thanawattano

et al., 2015; Bravo, 2017; Zhu and Miller, 2020) and of the nine

studies who placed a sensor one the thumb and index finger, all

included finger tapping (Yokoe et al., 2009; Heldman et al.,

2011a; Espay et al., 2011; Lee et al., 2015b; Djurić-

JovičićPetrovic et al., 2016; Liu et al., 2016; Summa et al.,

2017; Li et al., 2020; Park et al., 2021). Finger tapping, finger-

to-nose, wrist pro/supination and opening/closing hand were the

only tasks included in studies with sensors solely on the index

finger and/or thumb and all of those were in PD patients. From

Frontiers in Robotics and AI frontiersin.org19

Vanmechelen et al. 10.3389/frobt.2022.1068413

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1068413


all included studies, 68 placed a sensor on the wrist and/or

forearm and 35 on the dorsal hand but out these 35, 22 placed a

sensor on both the hand and wrist. The more proximal sensor

placement of hand, wrist and forearm was used in all pathologies

and in combination with more functional tasks such as drinking,

writing and eating. Additionally, the four studies that measured

activities in a home environment all placed sensors on the wrist,

mostly likely due to the high comfort and ease of use of wrist-

worn sensors (Griffiths et al., 2012; Habets et al., 2021; Gupta,

2022; den Hartogvan der Krogt et al., 2022). When selecting a

specific sensor set-up, one should thus carefully consider whether

the aim is to only automate a clinical scale, or to evaluate

movement disorders during a range of functional tasks. For

the latter, one sensor on the hand, wrist or forearm could be

sufficient to maximise adherence and wide applicability.

The collection of upper limb tasks included in the selected

studies reflects the insight that the choice of upper limb task is

heavily dependent on the movement disorder. The high

prevalence of finger tapping and wrist pro/supination in the

PD studies follows from their presence in theMotor Examination

part of the (MDS-)UPDRS (Goetz et al., 2008), whereas the

finger-to-nose task and keeping arms extended in front of the

body are part of both the (MDS-)UPDRS and the Essential

Tremor Rating Assessment Scale (Elble et al., 2012). Both

tasks are well-suited to quantify decrease and slowness of

movements, corresponding with the clinical symptoms of

hypokinesia and bradykinesia in PD. Since the (MDS)-UPDRS

and Essential Tremor Assessment Scale are well implemented in

clinical practice, patients are often requested to perform these

tasks in the presence of a neurologist, facilitating combination of

this clinical appointment with research purposes. In stroke, the

Wolf Motor Function Task was most popular, presumably

because this scale is used in daily practice for the evaluation

of upper extremity rehabilitation progress. An important notion

is that the aetiological differences between PD/tremor on the one

hand and CP, stroke and dystonia on the other hand influence

the potential of task execution. In CP and stroke, functional

ability can be impaired to a level where execution of specific

functional tasks is not possible, which requires a very different

approach in comparison with PD or tremor, where most tasks

can be executed but performance may be impaired. When the

level of physical impairment prohibits the execution of specific

tasks, one should focus on monitoring of the movement

disorders during home-based activities such as powered

mobility (e.g. joy-stick steering) or in rest positions in the

case of severe CP or stroke (denHartogvan der Krogt et al., 2022).

In the case of severe functional impairment occurring in

e.g. dystonia or spasticity, there are some extra challenges

with respect to sensor adherence and reliability of data

streams which need to be taken into account. Sensor

fixation should be sufficiently tight in the case of severe

movement disorders, to avoid sensor dislodgement and

subsequent data loss. From the studies involved in current

selection, only one study included participants with such

severe movement disorders that they were only evaluated

during rest or power mobility driving since other tasks were

impossible (den Hartogvan der Krogt et al., 2022). This

specific study did not report any information on data loss

apart from the fact that linear interpolation from adjacent

time stamps was used in case of missing data stamps. There

are multiple reviews discussing the use of wearable sensors

for the detection, of motor symptoms in e.g. HD and PD, but

none of those mention missing data or data loss of the

included studies (Maetzler et al., 2013; Tortelli et al.,

2021). To allow quality control, future studies measuring

in natural environments and for longer duration should

discuss missing data and data loss more thoroughly.

The secondary objective was to identify themost sensitive sensor

features for symptom detection and quantification and describe the

application of the proposed methods in clinical practice. Similar to

the requested tasks, the derived sensor features were dependent of

the movement disorder under investigation. Mean amplitude,

movement/amplitude decrement and RMS, range and IQR of

angular displacement were only used in PD studies and are

hypothesized to correlate with the definition of hypokinesia

(reduction in movement amplitude) in the (MDS-)UPDRS.

Range and RMS of angular displacement can detect differences

between PD and TD groups and quantify the severity of

hypokinesia, implying that these features can be used in clinical

practice as simply interpretable triggers of movement reduction.

Velocity decrement and peak-to-peak, magnitude, IQR andmean of

angular velocity were additionally only used in PD studies and are

hypothesized to relate to the bradykinesia (slowing of movement)

aspect in the (MDS-)UPDRS, emphasizing their clinical usefulness

for early detection of bradykinesia symptoms (Garza-

RodríguezSanchez-Fernandez et al., 2018). Coefficient of variation

of both amplitude and velocity as well as rhythm, were included to

reflect the interruptions as described in the (MDS-)UPDRS. CoV

values are easy to calculate and interpret and showed to be

sufficiently sensitive to discriminate between medication and

stimulation states in PD patients from both finger-and wrist-

worn sensors. This parameter could thus be implemented to

evaluate objective intervention effects in large-scale medication or

stimulation studies. In essential tremor and studies focusing on

tremor in PD patients, occurrence and amplitude of peaks in specific

frequency bands as well as power in these frequency bands were

most often included, owing to the rhythmical aspect of tremor.

However, the selected frequency bands were not always similar. The

4–12 Hz frequency band was most often considered as tremor

(Heldman et al., 2011b; Ali et al., 2022), while Heo et al. and

Kwon et al. used 3–12 Hz (Heo et al., 2015; Kwon et al., 2020), Patel

et al. used a 3–8 Hz band and Schaefer et al. considered 7–12 Hz as

the tremor frequency (Patel et al., 2009; Schaefer et al., 2021).

Makabe et al. used a range of 8–12Hz and 20–25 Hz and Sprdlik

et al. used the frequency distribution for highest maxima between

1 and 15 Hz (Makabe and Sakamoto, 2000; Šprdlík et al., 2011).
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Lopez-Bianco et al. used a high-pass filter with cut-off 4 Hz followed

by low-pass filter with cut-off 8 Hz (López-Blanco et al., 2018).

These differences suggest that a solid definition of tremor frequency

is required in order to standardize instrumented tremor

quantification, to allow comparison of methodologies on a large-

scale cross-sectional level and to facilitate data merging and sharing.

In pathologies not related to PD or tremor, path length or

similarity of hand trajectories were often calculated. This was

the case in stroke, dyskinetic CP and pathologies associated

with spasticity, reflecting the importance of the impact of the

movement disorder on reaching movements. The frequent use

of sensor features such as smoothness and jerk metrics might

reflect the effect of the location of the brain lesions on the

smooth execution of functional tasks and its impact on daily-life

activities in these pathologies. For clinical implications, it is

important to acknowledge the clinical differences between

‘rhythm’ and ‘jerk’. Rhythm is a self-constructed concept and

its meaning is study-dependent, but the focus is on ‘regularly re-

occurring events’ (Okuno et al., 2006; Martinez-Manzanera

et al., 2016). Jerk-measures on the other hand are always

based on the first derivative of the acceleration and/or the

second derivative of the angular velocity signal and focus on

the jerky, unpredictable movements in the signal. Rhythm thus

implies stable and/or recurrent patterns in signals, whereas jerk

measures represent quite the opposite. This is an important

distinction that reflects the clinical difference between rhythmic

movement disorders such as tremor and arrhythmic movement

disorders such as dystonia and choreoathetosis (Sanger et al.,

2010).

The clinical application of the included studies varied from

discrimination of groups to prediction of severity levels and was

closely related to the method used to obtain this specific result.

With respect to the discrimination of groups, the sensor features

sufficiently sensitive to detect differences between a control

group and pathological patients could be used for early

detection of e.g. PD or MS symptoms, allowing for early

intervention and possibly preventing rapid worsening of

symptoms. For the prediction of severity levels, all PD studies

correlated the sensor features to the (MDS-)UPDRS, the AIMS or

the Hoehn and Yahr scale. In CP and stroke, sensor features were

correlated with the Melbourne Assessment Scale and ARAT,

whereas in another CP study, the Jebsen-Taylor Test, the Quality

of Upper Extremity Skills Test (QUEST) and the Box and Blocks

Test were included. When the clinical application was the (side)

effect of intervention, six out of 16 studies used sensor features to

assess dyskinesia in PD patients, as this is a well-known

levodopa-induced motor complication (Jankovic, 2005). The

clinical scales in PD and tremor rate symptom severity, while

the Melbourne Assessment Scale, the ARAT, the Jebsen-Taylor

Test, the Quality of Upper Extremity Skills Test and the Box and

Blocks Test in CP and stroke mainly evaluate upper extremity

function. The severity of themovement disorder in stroke and CP

is often dependent on the location of the brain lesion, which was

not researched in detail in the included studies and has not been

fully elucidated to date in most movement disorders (Bansil,

2012). To this end, wearable sensors provide opportunities for

detailed exploration of the connection between the location of the

brain lesion and the aetiology and severity of movement

disorders.

IMUs have mostly been used to assess upper limb use and for

detection of activity periods in daily life in patients with PD and/

or essential tremor (Nguyen et al., 2017; Pham et al., 2017;

Serrano et al., 2017), CP (Braito et al., 2018; Beani et al.,

2019; Ahmadi et al., 2020) or stroke (Biswas et al., 2015), but

their application to quantify movement disorders in the upper

limb is less extensive. Activity measures mostly focus on the

amount of time that acceleration measures exceed a pre-defined

threshold (e.g., Activity Index), which yields information about

the quantity of movement, but not about the quality. To facilitate

follow-up of intervention or long-term rehabilitation programs, a

combined assessment of both movement quantity and quality

can provide more insights in both the presence and severity of

movement disorders. Ideally, long-term monitoring is executed

in a home-environment (i.e., low patient-burden while collecting

long-term data), while a contact moment to record pathology-

related tasks in a standardized setting could be added to the study

protocol since this allows more specific data analysis, e.g.,

through the presence of video recordings of the performed tasks.

To maximise the use of wearable sensors for the quantification

of upper limb movement disorders in clinical practice, one should

acknowledge the differences in clinical symptoms between PD and

tremor and movement disorders, such as dystonia and

choreoathetosis. In PD, the expression of bradykinesia,

hypokinesia and tremor is standardized and relatively easy

recognisable. The features implemented should thus embody this

pattern such as velocity decrement and mean/IQR of angular

velocity for bradykinesia, movement decrement and range/RMS

of angular displacement for hypokinesia and occurrence and

amplitude of peaks in frequency bands for tremor. For dystonia

and choreoathetosis, movement disorders known as beingmuch less

consistent, research should first focus on the search for sensor

features capable of accurately discriminating between distinct

movement disorders and their ability to quantify their severity.

For this purpose, multi-centre studies are required, considering the

low prevalence of individuals with dystonia and/or choreoathetosis.

For the quantification of spasticity, IMUs on the lower limb have

been used to explore the relationship between maximal angular

velocity and stretch velocity during passive stretches, but few studies

focusing on upper limb measures with IMUs are available (Bar-On

et al., 2014). When using IMUs for the instrumented assessment of

spasticity, one should not only take into account active tasks but also

passive fast and slow stretches to differentiate its neural and non-

Frontiers in Robotics and AI frontiersin.org21

Vanmechelen et al. 10.3389/frobt.2022.1068413

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1068413


neural components as well as its velocity-dependent component. In

the current review, only Bai et al. and Strohrmann et al. used IMUs to

evaluate spasticity, and they included similar sensor features such as

mean and standard deviation of acceleration and movement

trajectory (Strohrmann et al., 2013; Bai et al., 2021). One extra

challenge in spasticity may be range of motion restrictions, which

can be evaluated using IMUs if sufficient passive movement is

possible. If sensor placement on the hand or wrist is not possible

due to severe positional deformities, the upper arm can be used as an

alternative. Overall, IMUs have been scarcely used for the assessment

of spasticity and the current review can serve as a facilitator to explore

the different facets of spasticity using wearable sensors.

The use of these sensor features retrieved from one sensor on the

hand, wrist or arm in combination with a home-based protocol to

assess the effect of an intervention can greatly increase our

understanding into the impact of current treatment management

plans on the severity of upper limbmovement disorders. The insights

obtained for PD can accelerate the development of wearable sensors

protocols in the remaining pathologies, provided that there is

sufficient attention for the standardisation of protocols, tasks,

feasibility and data analysis methods.

Conclusion and future directions

Wearable sensors offer a myriad of opportunities for the

quantification of movement disorders in multiple pathologies, but the

abundance of available information could threaten its usability. Our

findings illustrate that there are a lot of similarities between pathology-

related sensor protocols and tasks, but the agreement is yet not sufficient

to allow data pooling or international multi-centre studies. For this

purpose, higher-level standardisation with respect to task selection and

sensor feature extraction per pathology is strongly recommended.

Although multiple sensors can provide a lot of information,

researchers should think carefully about the balance between

information gain and accessibility. One sensor on the index finger

for PD or on the hand, wrist or forearm for other pathologies could be

attached in a non-obstructive way, allowing for better adherence and less

missing data due to e.g., battery loss. Current overview can support

clinicians and researchers to select the most sensitive pathology-

dependent sensor features and measurement methodologies for

detection and quantification of upper limb movement disorders and

for the objective evaluations of treatment effects.
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