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We propose a neural learning approach for a humanoid exercise robot that can

automatically analyze and correct physical exercises. Such an exercise robot

should be able to train many different human partners over time and thus

requires the ability for lifelong learning. To this end, we develop a modified

Grow-When-Required (GWR) network with recurrent connections, episodic

memory and a novel subnode mechanism for learning spatiotemporal

relationships of body movements and poses. Once an exercise is

successfully demonstrated, the information of pose and movement per

frame is stored in the Subnode-GWR network. For every frame, the current

pose and motion pair is compared against a predicted output of the GWR,

allowing for feedback not only on the pose but also on the velocity of the

motion. Since both the pose and motion depend on a user’s body morphology,

the exercise demonstration by one individual cannot easily be used as a

reference for further users. We allow the GWR to grow online with each

further demonstration. The subnode mechanism ensures that exercise

information for individual humans is stored and retrieved correctly and is not

forgotten over time. In the application scenario, a physical exercise is performed

in the presence of an expert like a physiotherapist and then used as a reference

for a humanoid robot like Pepper to give feedback on further executions of the

same exercise. For evaluation, we developed a new synthetic exercise dataset

with virtual avatars. We also test our method on real-world data recorded in an

office scenario. Overall, we claim that our novel GWR-based architecture can

use a learned exercise reference for different body variations through

incremental online learning while preventing catastrophic forgetting,

enabling an engaging long-term human-robot experience with a humanoid

robot.
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1 Introduction

A lack of physical exercise is directly linked to many health

issues including obesity, cardiovascular diseases as well as

depression and anxiety (Booth et al., 2011). Physical activities

are quintessential for a healthy lifestyle (Fen and Hong, 2009).

Performing physical exercises without proper technique, however,

can lead to injuries (Gray and Finch, 2015). As a consequence,

supervision by a personal trainer or physiotherapist is of

importance for people who are unfamiliar with performing

physical exercises. Fitness professionals not only prevent

injuries by preventing incorrect technique, but also increase

the effects of the exercise by pushing clients closer to their

limits and thereby increasing the overall exercise intensity (De

Lyon et al., 2017). Despite the benefits, for some people booking a

personal trainer is not a possibility, or a physiotherapist is not

available. Therefore, the question arises whether a humanoid

robot can act in a supportive manner for fitness professionals

to encourage clients to exercise. In order to provide a basic service,

the humanoid robot is required to be able to engage with its user,

and correct any mistakes they make while performing the

exercises. Thus, the humanoid robot must be able to detect the

pose and movement of a user, compare it to a learned exercise

recalled from memory, and provide feedback on it if necessary.

This is the primary focus of this article and comes with multiple

challenges. First of all, the humanoid robot should be able to learn

an exercise and its corresponding pose and movement pattern.

Therefore, the memory cannot be fixed beforehand and has to be

expandable. Secondly, the learned sequence of poses and

movements of an exercise provided by the initial training

might mismatch with the current user’s body shape. As a

consequence, the memory has to be updated continuously for

every new user while maintaining all previous information,

i.e., while avoiding forgetting. Finally, the humanoid robot has

to be able to provide feedback that is valuable and intuitive to

understand for the user, i.e., related to the holistic body pose, not

just for instance, which joints are a certain distance off.

To tackle these challenges, for one, OpenPose (Cao et al., 2021)

is utilized as the pose estimation framework. Secondly, for memory

and learning, a Grow-When-RequiredNetwork (GWR) (Marsland

et al., 2002) with recurrent connections is used. Finally, due to its

humanoid form and its tablet as an easy tool for visual feedback,

Pepper is selected as the robot. The resulting novelty of this work is

twofold. For one, the recurrent variant of the GWR, calledGamma-

GWR (Parisi et al., 2017), is extended in order to counteract

catastrophic forgetting and to store many different variations of

body shapes for a pose. We call this network Subnode-GWR. For

evaluation, we created a novel exercise dataset based on virtual

avatars with differing body shapes on which we are able to achieve

an average accuracy of 88% with robustness against rotation and

translation. Finally, we use the architecture together with a

humanoid robot in order to lay the foundations for an

interactive physical exercise experience.

In summary, the contributions of this paper center around

the extension of previous self-organized approaches to obtain the

Subnode-GWR architecture and the evaluation thereof on novel

synthetic and real-world exercise datasets. The architecture

detects and classifies common exercise errors and is put to

use in a test human-robot trainer scenario. In comparison to

the other analyzed GWR approaches, the Subnode-GWR

approach effectively overcomes the issue of catastrophic

forgetting, allowing it to be used in a trainer robot scenario

with a dynamic set of users.

The rest of the paper is organized as follows. In section 2, an

overview of pose trainers and continual learning is given. In

sections 3 and 4, the human-robot trainer scenario and Subnode-

GWR architecture are described in detail, and evaluated in

section 5. A discussion and conclusion follow, where possible

future work is also considered.

2 Related work

According to Davis et al. (2018) and Mageau and Vallerand

(2003) performance improvement and stress reduction are

coupled with a positive relationship between an athlete and

his coach. Consequently, a negative encounter with a coach

decreases motivation (Newsom et al., 2005; Bartholomew

et al., 2009). This also holds for pose trainers that can be

categorized as ‘Smart Coaches’, which Gámez Díaz et al.

(2020) defines as a “set of smart devices to work

independently with the objective of helping people to improve

in a specific field”. Past studies have found from a human-robot

interaction perspective that social-physical exercise with a robot

is more engaging and enjoyable than similar interactions without

a physical interaction component (Fasola and Mataric, 2012;

Fitter et al., 2020). Specifically, in the context of rehabilitation

exercises, it was also, for example, observed by Céspedes et al.

(2020) that patient improvement can occur faster if a Socially

Assistive Robot (SAR) is integrated into the program. This

provides a promising foundation for the development of a

robotic trainer.

2.1 Pose trainer

One can separate pose trainers into two categories: camera-

based and sensor-based. Camera-based approaches can either use

RGB-D data as input, i.e. color image with depth information, or

solely RGB image data. Sensor-based approaches can also be

subdivided into those that just use motion sensors and those that

use medical systems like electroencephalograms (EEG) and/or

electromyography (EMG). Together with support-vector

machines (SVM) proposed by Cortes and Vapnik (1995) as a

classifier, EEG has been used by Zhang et al. (2014) for a

rehabilitation training system which has been improved by
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Ukita et al. (2015). Using an EMG and an SVM, Lee (2018)

classifies between healthy and sick persons for upper body

rehabilitation. In order to detect and analyze protective

behavior of patients with chronic pain, Wang et al. (2019) use

a long short-term memory (LSTM) network, a recurrent neural

network originally proposed by Hochreiter and Schmidhuber

(1997), that was fed with surface electromyography (sEMG) data

in a stand-to-sit-to-stand scenario.

For camera-based methods, many approaches in the health

domain make use of the infrared Microsoft Kinect camera. One

of its main advantages is its integrated pose estimation. Ukita

et al. (2014) binarily classify the pose of 3D skeletons acquired

from a Kinect with an SVM as correct or wrong. Pullen and

Seffens (2018) and Trejo and Yuan (2018) similarly classify

postures in yoga obtained by Kinects. For weight-lifting, Parisi

et al. (2015) predict motion patterns with a self-organizing

network and compare them with the real-time poses

estimated by a Kinect. While the Kinect is easy to use and has

built-in pose estimation based on depth information, its

estimation is not very accurate in comparison to current

deep-learning human pose estimation approaches.

According to Zheng et al. (2020), in general, human pose

estimation is split up into 2D and 3D pose estimation. In 2D

human pose estimation, key points that correspond to the two-

dimensional spatial location of each joint in an image are

extracted, whereas in 3D estimation also depth information is

retrieved. In a next step, one can distinguish between single-person

and multi-person detection in the 2D domain. The two mainly

used deep learning methods for single person detection are

regression and body part detection (Zheng et al., 2020). In

regression approaches, the pipeline takes an image as an input

and outputs key points in an end-to-end manner. Therefore, a

directmapping from the input image to the 2D pose is learned. For

body part detection, the pipeline consists of two steps. First, for

each body part, a heatmap that indicates the probability for a key

point to match the individual joint location is created. In a second

step, the key points and the corresponding body parts are put in

relation to each other, and the overall pose is generated. The shift

from traditional approaches in human pose estimation towards

deep learning was pushed by Toshev and Szegedy (2014) and their

multi-stage convolutional neural network (CNN) regressor

DeepPose. Since then, human pose estimation frameworks have

improved steadily, and most of today’s best-performing

architectures are based on the body part detection approach. In

contrast to single person estimation, multi-person pose estimation

faces the challenge of having multiple key points for one joint type

that have to be matched to the correct person. Therefore, the idea

quickly arose to use a person or object detector like YOLO by

Redmon et al. (2016) first in order to receive cropped images

where just one person is visible and apply one of the single-person

methods. However, this comes with a major drawback, since the

accuracy of the human pose estimation depends heavily on the

performance of the involved person or object detector. As a

solution, bottom-up methods have been developed. One of

them is called OpenPose by Cao et al. (2021). As an

architecture, it consists of two multi-stage CNNs. For

preprocessing, a VGG convolutional network, originally

developed by Simonyan and Zisserman (2015) extracts the

features of the input image. From these feature maps, the first

CNN in anOpenPose architecture computes so-called part affinity

field maps (PAFs), that indicate the connection between the joints

to form the body part. These PAFs, together with the original

image features from VGG19, are used in a second CNN to

compute the joint locations for each body part. Finally, these

heatmaps are used tomatch the body parts to the correct person in

the scene by applying bipartite matching.

In general, convolutional neural networks are a powerful tool

for pose estimation, as, e.g. Kamel et al. (2019) show, who

designed a convolutional neural network to provide real-time

feedback on Tai Chi poses. Liao et al. (2020) propose a

framework that gives a metric for quantifying movement

performance. They also introduce scoring functions which

map the metric into numerical scores of movement quality.

To achieve this, a deep neural network is developed, which

generates quality scores for input movements. The neural

network receives the joint coordinates as its input that is split

into multiple individual body parts and their joint coordinates.

The input data for each body part is arranged into temporal

pyramids, where multiple scaled versions of the movement

repetitions are processed with 1D convolutions and

concatenated. Then, the concatenated output is fed into a

series of LSTM layers in order to model temporal correlations

in learned representations. Finally, a linear layer outputs a

movement quality score. Another smart coach proposed by

Zou et al. (2018) uses the regional multi-person pose

estimation (RMPE) framework developed by Fang et al.

(2017) to extract poses from video to generate feedback on

the physical exercise performance of users. Recently, Ota et al.

(2020) verified OpenPose’s reliability and accuracy on motion

analysis for bilateral squats. Therefore, we select OpenPose as our

framework to use, since we also analyze a variation of squats as

described in section 5. Furthermore, it allows the usage of the

humanoid robot Pepper with its built-in RGB camera without

requiring an additional depth camera, which increases the

usability of our approach. However, as previously mentioned

in section 1, the problem still arises how to adapt to different

body sizes and variations that significantly mismatch with the

trained key points. As a solution, we develop an online learning

scheme for our architecture, as a form of incremental learning,

that allows for adaption to unknown body shapes.

2.2 Continual learning

Continual learning, also referred to as lifelong learning, is

deeply integrated into the learning of humans, such that they
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develop their cognitive and sensorimotoric skills based on novel

experiences, as well as repetition and transfer of already acquired

knowledge over their lifespan (see Parisi et al., 2019 for a review).

Herein also lies the main challenge of continual learning:

catastrophic forgetting. Catastrophic forgetting describes the

process where previously learned tasks or information are

overwritten by novel knowledge (McClelland et al., 1995).

This issue finds itself also in the human brain, where it is

expressed as a stability-plasticity dilemma (Mermillod et al.,

2013). The neural structures in brain areas have to be able to

change in order to integrate new information while keeping

already acquired knowledge intact. This neurosynaptic plasticity

is essential for human learning and is at its highest during early

development, where the input is dominated by novel

sensorimotor experiences (Parisi et al., 2019). While the brain

stays plastic over a lifetime, it becomes less prominent over time

when stable neural connections have been established (Hensch

et al., 1998). The underlying mechanisms for controlling the

plasticity and stability are based on the presynaptic and

postsynaptic strength, which was discovered by Hebb (1949).

As soon as one neuron is excited by an external stimulus, it

activates neurons connected to it. The degree of activation

depends on the connection’s strength that is updated based

on the presynaptic and post-synaptic activity. While Hebbian

plasticity is the basis for neurosynaptic adaptation, the

complementary learning system (CLS) theory articulated by

McClelland et al. (1995) is the scheme that drives the learning

and memorization process. The hippocampus acts as an episodic

memory that is highly plastic and therefore learns fast. On the

other hand, the neocortex learns slowly and, as a consequence,

acts as long-term storage for information. In order to store

knowledge and counteract catastrophic forgetting, the

structure of the neocortex only changes after receiving similar

input over a longer time span. Therefore, the hippocampus

replays episodic events to the neocortex, which incorporates

the knowledge, given repeated activation of similar structures.

It comes with no surprise that these brain mechanisms have

been implemented in lifelong machine learning approaches. One

basic approach stems from Kohonen (1990) and is called a self-

organizing map (SOM). It has fixed structures consisting of

nodes that represent neurons in the brain. To each node, a

weight is assigned that defines its place in the input space and

therefore also in the lattice of the self-organizing map. This lattice

is trained by finding the best-matching node with the least

distance to an input sample. The weight is updated according

to the difference between the input sample and the node’s

distance. Also, neighboring node weights that are connected

to the best-matching node are updated. As a consequence, the

lattice of the self-organizing map deforms until the average

distance to all input samples is minimized. However, since

self-organizing maps are fixed in their number of nodes and

thus in their dimensions, they are not suitable for multitask

challenges in the lifelong learning context. Therefore, self-

organizing maps have been extended by, e.g., Growing Neural

Gases (Fritzke, 1995). They allow for nodes to be deleted and

added. The addition of nodes though occurs after a fixed amount

of iterations, which forbids a dynamic growth based on the need

for new nodes to represent the input space.

Grow-When-Required (GWR) networks by Marsland et al.

(2002) overcome this issue by allowing nodes to be added

dynamically whenever the best-matching node’s activity is

lower than a predefined threshold. While Grow-When-

Required networks are able to learn static input, they lack the

possibility to store temporal information between the input

samples. Therefore, recurrences are introduced in the

Gamma-GWR from Parisi et al. (2017) as context vectors that

are additionally stored for every node. They are based on the

ideas of the Merge SOM architecture proposed by Strickert and

Hammer (2005), where context descriptors capture the activity of

the self-organizing map for a given time step. As a consequence,

the distance function of the Gamma-GWR not only depends on

the weights of a node but also on its context, which is based on

the activations experienced in previous time steps. Thus, time

sequences can be incorporated in the structure of the Gamma-

GWR allowing it to learn, e.g. spatiotemporal sequences. There is

a caveat, however, that the input sample in every time step has to

be unique, since otherwise, nodes link to themselves, which

results in a loop for the time sequence. This is not an issue

with the Episodic-GWR (Parisi et al., 2018), which directly stores

the predecessor of a node and does not allow for a node to be its

own predecessor. This leads to possible loss of information for a

time sequence, e.g., a physical exercise where a pose has to be held

for a longer period of time, which is why we extend this approach

with our Subnode-GWR. Parisi et al. (2016) applied an early form

of recursive GWRs to a human motion assessment task. While

able to perform well with a fixed feedback threshold parameter

on single-subject data, it did not extend well to the multi-subject

case, as is addressed in this work.

3 Human-robot trainer scenario

In our design, the humanoid robot Pepper from Softbank

Robotics acts as a motivator and trainer for the user performing a

physical exercise. Pepper has been designed for human-robot

interaction especially, featuring built-in speech and face

recognition through their NAOqi-API. In its head,

microphones, speakers and cameras are installed, and it can

move on wheels that are integrated into its triangular base with

multiple environment sensors for navigation. Pepper is equipped

with tactile sensors in its hands and head. Overall, 17 joints can

be manipulated for expressive gestures, and visual feedback can

be given on its tablet that is mounted on its chest. While Pepper,

in its core, is designed as a humanoid robot, it has no explicit

gender, which is also expressed in Pepper’s androgynous voice.

When using it for different clients, this is advantageous as studies
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show that persons are biased towards robots expressing a gender

(Siegel et al., 2009; Tay et al., 2014).

We use Pepper’s tablet to mirror the real-time video feed

from Pepper’s front head camera. To do so, the video feed from

the camera is streamed to a computer, where it is processed by

OpenPose in real-time. The extracted key points are drawn as a

skeleton figure on the frame. We also embed the visual feedback

into this skeleton figure. Therefore, we compare for each video

frame the difference in the joints’ keypoints between the

estimation from OpenPose and the target that is inferred from

our Subnode-GWR network. If the error is larger than a

predefined threshold, we render the corresponding joint in the

skeleton as red, indicating that the current joint’s position is

wrong. Otherwise, the joint is drawn in green, reflecting the

correct positioning of the joint. We stream the frame with the

user and the superimposed skeleton figure to a local web server,

that can be accessed by Pepper, which is then displayed on its

tablet, giving real-time, intuitive and supportive feedback to the

user in front of the Pepper robot. The scenario is shown in

Figure 1.

Additionally, Pepper should react accordingly with verbal

and gestural feedback, e.g., praising the user if he/she has

performed well, hinting at possible areas of improvement if

there is a dominant issue, and motivating the user to continue

exercising. For gestural feedback, Pepper’s movement should be

restricted to its arms and hands. This is due to the fact, that we

record the user in front of Pepper through the integrated camera

in its head and need to minimize Pepper’s head movement. In

order to correctly process the poses trained on and embedded in

the Subnode-GWR, the user is asked by the Pepper to position

him-/herself in the camera’s field of view such that no key points

are cut off. The real-time estimation by OpenPose is shown on

Pepper’s tablet, making it clearly visible to the user whether he/

she is positioned accurately. On top of that, we expect that our

Subnode-GWR works within a tolerance of 5° in rotation and

5 cm in translation, which we evaluate in section 5. The overall

data processing pipeline is illustrated in Figure 2.

4 Subnode-GWR

In order to train the Subnode-GWR, a video of a physical

exercise that has been performed correctly is processed by

OpenPose in order to receive poses as key points for each

frame. These key points are normalized according to the

image dimensions of a frame and fed into the architecture as

the training samples x(t). The Subnode-GWR is initialized at first

with two nodes that are randomly selected from the number of

samples. For an input sample, the distance to each node in the

Subnode-GWR is calculated as

dj � α0 x t( ) − wj

���� ����2 +∑K
k�1

αk Ck t( ) − cj,k
���� ����2. (1)

In Eq. 1, x(t) refers to the sample at time step t and wj to the

weight vector of node j. cj,k is the context of the jth node. It

incorporates information of the previous activation in the map

up to k time steps. Ck(t) is the context descriptor that is

computed as

Ck t( ) � β · wt−1
b + 1 − β( ) · ct−1b,k−1, (2)

where β is a constant that modulates the influence of temporal

context, and b denotes the best-matching unit (BMU) with the

smallest distance of all nodes according to

b � argmin
j∈V

dj( ). (3)

The factors α0 and αk are used to balance the influence between

the weight vector and the context on the distance to an input

sample. In the next step, the activity of the network a(t) is

computed based on the BMU as follows:

FIGURE 1
Example scenario, where a user performs physical exercise in
front of Pepper, getting feedback via its tablet.

FIGURE 2
Flowchart that demonstrates the overall scenario with the
Pepper and architectures involved.
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a t( ) � exp −db( ), (4)

which, as a consequence, allows a maximal activity of 1. If the

activation a(t) is lower than a predefined threshold at, one criteria

is met to add a new node to the network. The other criteria is the

node’s habituation counter hj ∈ [0, 1], which allows the nodes to

be trained properly, before expanding the network. Being

initialized with hj = 1, each node’s habituation counter is

decreased towards 0 over time whenever a BMU has fired.

The habituation counter hb for the BMU and hn for the

neighboring nodes is reduced by

Δhi � τ i · κ · 1 − hi( ) − τ i, (5)

where i ∈ {n, b}, and τi and κ regulate the speed of habituation

decrease. According to Parisi et al. (2018), hb should usually

decrease faster than hn, thus τb and τn are selected such that τb >
τn. For the case that hb as well as a(t) are less than ht and at
respectively, a new node r is added to the network by removing

the connection between the best-matching and second-best-

matching node and connect both to the added node. Its

connection age is set to 0. Its weight and context vector are

computed as

wr � 1
2

x t( ) + wb( ),

cr,k � 1
2

Ck t( ) + cb,k( ). (6)

For the case that the activity of the network a(t) and/or the

habituation counter hb are greater than or equal to the thresholds

at and/or ht, the BMU b and its neighboring nodes are updated as

follows

Δwi � ϵi · hi · x t( ) − wi( ),
Δci,k � ϵi · hi · Ck t( ) − ci,k( ), (7)

with i ∈ {n, b} and where ϵi are constant learning rates that are
usually selected as ϵb > ϵn. Also, all connections that end in the

BMU b are aged by one and will be removed if their age is larger

than a predefined threshold μmax. Finally, all nodes that are not

connected to any other node are considered dead and are

removed. In contrast to the Episodic-GWR, the information

about the successor of a node is not encoded in a matrix P,

where each connection between nodes is stored and increased by

one if two nodes are activated consecutively. While this allows to

recall a trajectory of activation by selecting each node’s most

frequent consecutively activated BMU, it forbids to select itself as

its own successor according to

v � argmax
j∈V\i

P(i,j). (8)

Note that up until this point, Eqs. 1–7 are unchanged from

Gamma-GWR, and Eqs. 1–8 are unchanged from Episodic-

GWR. From here on we modify the architecture for Subnode-

GWR. We modify P(i,j) to become Pei, where each row ei in Pei

resembles one physical exercise that the network is supposed to

recall. The row itself consists of the best matching units bi,t in

consecutive order as they were activated during the last epoch of

training on a physical exercise:

Pei �

e0
e1
e2
..
.

ei

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ei � bi,0, bi,1, bi,2, . . . , bi,t[ ]. (9)

There are two advantages to this approach. On the one hand,

since Gamma-GWRs solely rely on context to determine a node’s

successor, they tend to loop in their prediction if a node

references to itself. On the other hand, Episodic-GWRs,

according to Eq. 8, forbid nodes to be their own successor at

all. This limits the capability of the network to learn physical

exercises that require to hold a pose for some frames. These issues

are resolved by the modifications described in Eq. 9, which allow

for nodes to precede themselves without looping and thus

making it possible to store physical exercises, where one pose

spans over a longer time frame. The complete algorithm is also

depicted in Algorithm 1. After training, the Subnode-GWR can

recall the pattern of poses and motion vectors for the trained

physical exercise.

Algorithm 1. Training of Subnode-GWR (S-GWR).

However, the network is tuned for the body dimensions it has

been trained on, which limits its ability to be used for analyzing

movements from other users. Thus, the primary extension from

the Subnode-GWR to the Gamma-GWR stems from the

necessity to apply the trajectory of BMUs, that are stored in

Pei and resemble a physical exercise, to different body shapes and
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variations following from mismatching, e.g., age, gender and/or

general appearance of the performer of a sample exercise. Hence,

we integrate subnodes to the existing nodes. Their weight vector

and context vector are computed as:

wi,j,l � x t( ),
ci,j,l,k � ci,j,k.

(10)

For a given physical exercise that has previously been trained,

i.e., a trajectory ei exists, we extend each BMU bi,j that currently

mismatches the input x(t) with a subnode. To do so, the weight

vector of the current BMU is set for the subnode, as indicated in

Eq. 10. Since the entry point to the subnodes is always the parent

node, the context ci,j,k is simply copied. This allows the Subnode-

GWR to easily adapt to new unseen body shapes and variations,

while keeping the trajectory of BMUs that maps the physical

exercise intact and prevents loss of knowledge about previous

body shapes.We use Pei to compare the real-time pose estimation

of the user from OpenPose with the weight vector of the current

BMU bi,j directly or one of its subnodes bi,j,l for exercise ei if the

error on the first frame is lower. The distance between the actual

and supposed pose is computed as

dpose � x t( ) − wi,j,l

���� ����2. (11)

We use dpose to display the joint-wise error in the current pose

compared to the supposed pose of a physical exercise in our

human-robot interaction, allowing for precise feedback to the

user. Should dpose, however, be larger than a predefined threshold

dt,learning on the first frame, the continual learning scheme is

triggered, where for each BMU bi,j in trajectory ei a subnode is

created corresponding to the current input pose x(t). Also, the

user is asked to perform the physical exercise once as a baseline. It

is important to note that for this step, a fitness professional is

advised, since all feedback following is, due to the architecture of

the Subnode-GWR, established on this initial performance. Else,

if dpose < dt,learning the training with the Pepper is executed as

described beforehand. The algorithm supporting continual

learning is shown in Algorithm 2.

Algorithm 2. Continual Learning of Subnode-GWR (S-GWR).

5 Experiments on Subnode-GWR
performance and robustness

In order to evaluate our approach, two different datasets were

created, one synthetic (Virtual-Squat) and one with real-world video

recordings (Office-Squat). The synthetic Virtual-Squat dataset1 was

created using the Blender open-source 3D creation suite2 and the

MakeHuman open-source creation tool for virtual humans3. The

dataset consists of ten different avatars (shown in Figure 3). The

avatars have randomized heights, weights, body shapes,

clothing, skin colors, hairstyles and hair colors to evaluate

the robustness of the pose estimation to superficial visual

properties of the avatars and the robustness of the exercise

analysis to different proportions.

For the physical exercise, we selected a squat where, instead

of keeping the arms straight in front of the body as is typical for

FIGURE 3
Overview of the ten virtual avatars in the Virtual-Squat dataset, differing in height, weight, clothes, color of skin and gender.

1 https://www2.informatik.uni-hamburg.de/WTM/corpora/VirtualSquat.zip.

2 https://www.blender.org.

3 http://www.makehumancommunity.org.
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this exercise, they are raised to the side. The selected exercise

offers multiple advantages. First of all, for the user, this

movement strains muscles that are required for essential daily

activities, e.g. lifting and sitting as well as sports movements

(Myer et al., 2014). Secondly, it is challenging for human pose

estimation, since all joints are moved. Thirdly, it is a cyclic

exercise with two halting points (standing upright, squatting

down), which is demanding on the pose prediction. Finally, the

camera view is monocular, and the pose estimation is two-

dimensional. Therefore, the camera cannot capture the

physical exercise extending into the depth while squatting

down, increasing the difficulty.

FIGURE 4
All common errors rendered for virtual avatar one in comparison to the correct execution. Left to right, top to bottom, the illustrated cases are:
correct execution, arms not raised, too low, knees not bent, upper body tilt, and too fast. Shown is the 50th frame of the 100-frame videos.

TABLE 1 Network parameters used for Gamma-GWR, Episodic-GWR and Subnode-GWR used in and optimized on all experiment results.

Parameters Gamma-GWR Episodic-GWR Subnode-GWR

α 0.5

β 0.5

ck 5 1

b 0.2

i 0.001

Κ 1.05

τb 0.3

τn 0.1

at 0.99

ht 0.3

μage 20

μsize 200

dt,pose 5 pixel (normalized: 0.04)

dt,learning - 15 pixel (normalized: 0.15)
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Each avatar repeats the same exercise (squat) in one correct

and five incorrect ways. The squat exercise was animated by hand

using a video recording of a correctly performed exercise. The

five incorrect executions model frequent errors during the

exercise. Correct and incorrect exercises, illustrated in

Figure 4, were then applied as animations to the ten avatars.

Note that the virtual avatars offer the benefit of constructing

incorrect exercise executions without burdening real participants

with the straining activities. Each exercise is recorded over

100 frames in 480 × 320 resolution using the Cycles rendering

engine. Furthermore, to simulate imperfect alignment between

Pepper and its interaction partner, each execution of the exercise

was recorded in four different ways: 1) with the avatar centered in

the image and facing straight ahead, 2) with the avatar rotated by

5° clockwise, 3) with the avatar translated by 5 cm to the left, and

4) with the avatar both rotated and translated. In total, the dataset

contains 10 different avatars performing six different exercise

executions with four different rotations and translations, leading

to 240 exercise videos.

The count of 10 avatars is deemed to be a realistic reflection of

the number of participants in a future application that may share

an exercise robot at any one time. Variances in appearance,

ethnicity, attire and such are dealt with on the level of pose

estimation, i.e. by OpenPose, so the number of virtual avatars

does not need to be exhaustive in order to produce a robust system.

Variances in body morphology are furthermore efficiently handled

by the subnode mechanism, which, as previously described, creates

a new subnode for participants with significant differences in body

size and/or proportions to what has previously been seen. The

system scales well with the number of users and thereby subnodes,

as the inference time stays constant (same number of nodes), the

memory requirement increases slowly and linearly (estimated

150 KB per user), and the prediction accuracy is independent

for each subnode. This means that adding further users, especially

ones of different body proportions, essentially does not affect the

performance of the system for existing users.

The second dataset created for the purposes of evaluation in this

work is the Office-Squat dataset.4 This dataset contains 60 videos of

640 × 480 resolution, each showing one execution by the same

individual of the same squat as used in the Virtual-Squat dataset.

There are 18 correct squat sequences, and 42 with one of the errors

shown in Figures 4, 7. Out of the 60 sequences, there are also 13 that

intentionally incorporate a translation component, leaving 47 that

are similarly aligned. Each video sequence is annotated with a

primary and secondary error classification, each out of the list

correct, arms, low, high, tilt, or fast. This allows the ground truth for a

video to, for example, classify amain error, e.g. high, in combination

with a secondary error, e.g. fast. If there is no secondary error, then

the secondary classification is correct. Example snapshots from the

Office-Squat dataset can be found in Figure 7.

5.1 Motion prediction with Gamma-GWR

In our first experiment, we evaluate the Gamma-GWRmotion

prediction capabilities.We, therefore, process the virtual avatar one

squat videos with OpenPose to extract the key points. Then, we

train the Gamma-GWR on these key points. It should be noted

that all GWR architectures evaluated in this article are nominally

trained on only a single video of a correct exercise execution, and

TABLE 2 Average joint-wise error in pixels over 100 frames between
key point prediction from Gamma-GWR (with increasing number
of predicted poses up to 100) and OpenPose’s real-time estimation.
Green indicates the smallest error and red the highest.

Gamma-GWR 1 5 10 25 50 100

REye 1.31 4.04 12.25 36.04 72.94 72.95

LEye 1.08 4.11 12.40 36.01 72.61 72.60

REar 2.34 3.98 10.88 32.63 65.95 65.94

LEar 1.86 3.49 10.57 32.55 66.19 66.19

Nose 0.35 3.53 11.78 35.31 71.56 71.56

Neck 1.29 3.20 9.63 27.27 55.13 55.12

RShoulder 0.20 2.64 9.12 27.51 55.96 55.96

LShoulder 1.77 3.38 9.59 27.66 56.12 56.13

RElbow 0.64 1.65 6.09 19.39 39.47 39.47

LElbow 0.69 2.29 6.75 20.41 40.88 40.88

RWrist 1.43 3.64 9.51 17.96 36.37 36.39

LWrist 1.95 3.97 9.97 19.54 38.84 38.84

MidHip 2.15 3.12 5.90 15.00 28.88 28.88

RHip 1.73 2.83 5.74 14.86 28.75 28.75

LHip 1.91 2.64 5.45 14.49 28.47 28.47

RKnee 2.26 2.70 3.87 8.56 15.78 15.77

LKnee 1.97 2.46 3.94 7.91 14.34 14.30

RAnkle 2.09 2.06 2.06 1.96 1.87 1.87

LAnkle 1.43 1.51 1.83 2.12 3.02 3.01

RHeel 2.74 2.70 2.61 2.37 1.97 2.00

LHeel 3.46 3.37 3.33 3.09 2.81 2.81

RBigToe 3.04 3.03 3.02 2.88 2.74 2.74

LBigToe 3.69 3.70 3.69 3.74 3.82 3.82

RSmallToe 1.04 1.06 1.15 1.06 1.12 1.11

LSmallToe 0.99 1.00 1.09 1.35 1.74 1.74

Average 1.74 2.88 6.49 16.47 32.29 32.29

4 https://www2.informatik.uni-hamburg.de/WTM/corpora/OfficeSquat.zip.
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then evaluated on other videos from the same avatar or individual.

For all architectures, we chose the parameters as noted in Table 1.

The Gamma-GWR predicts the successor node v by creating

a merge vector based on the weight and context of the current

BMU u comparing it to all node contexts according to

s u( ) � argmin
v∈V

ds u, v( )( ),
ds u, v( ) � merge u( ) − cv,k

���� ����2. (12)

We denote the average joint-wise error over 100 frames per

increasing prediction horizon in Table 2. One can see that for the

feet the error over all predictions is nearly constant. This is

reasonable, since the squat exercise does not involve motion of

the feet, which results in near-constant error for the left and right

feet. However, for the upper-body joints and face features, the error

increases substantially until 50 predictions. After that, it is nearly

identical to the results for 100 predictions. To further understand

the error for the upper body, we refer to Figure 5 and the

corresponding video5. From the bottom row of Figure 5, one

can see that the architecture is able to process the downward

motion but gets stuck in the first halting point and does not recall

the upward motion correctly. Therefore, we assume that the

Gamma-GWR gets stuck in a loop of a self-referencing node

and thus, cannot predict the upwardmotion. This also explains the

similarity between 50 and 100 predictions, since, in both cases, the

predictions halt at the same stage of the physical exercise. As a

consequence, the question arises whether a mechanism for

recalling a trajectory of BMUs as in the Subnode-GWR and the

Episodic-GWR, which does not use a prediction scheme based on

computation but rather on a look-up table, performs better.

5.2 Comparison between GWR variants

In our second experiment, we compare the performance of

the Gamma-GWR with five predictions against the Episodic

-GWR and our proposed architecture, the Subnode-GWR. For

this experiment, we report in Table 3 the average error for all

25 key points over 100 frames between the real-time estimation

of OpenPose of the physical exercise performed by the virtual

avatar 1 (see upper left image in Figure 3) and the individual

prediction method of each architecture.

With an average error of 1.73, the Subnode-GWR performs

best, with the Episodic-GWR ranking second with 1.98, leaving the

Gamma-GWR behind with 2.88. The results show that the

prediction algorithm of the Gamma-GWR lacks behind the

approach of the Episodic-GWR. In Figure 6, however, it

becomes obvious that disallowing nodes to reference themselves

leads to asynchronous predictions. Nodes missing in P is

equivalent to skipping frames in the rendered video. Therefore,

the predicted blue skeleton performs the exercise slightly faster

than the virtual avatar for Episodic-GWR. This issue is overcome

by the Subnode-GWR, which triggers no erroneous feedback, as

can be seen in the bottom row of Figure 6, distinguishing the

Subnode-GWR as the best approach for the task at hand. Though,

FIGURE 5
Frames 1, 30, 50, 70 and 100 of avatar one performing the physical exercise. The real-time human pose estimation of OpenPose is shown in
green/red and is superposed with a blue skeleton showing the predicted pose from the Gamma-GWR. Red indicates that the mismatch between
prediction and real-time estimation is larger than dt,pose for the given joint. The top row corresponds to Gamma-GWRwith five predictions, while the
middle and bottom rows correspond to 25 and 50 predictions, respectively.

5 https://www2.informatik.uni-hamburg.de/wtm/videos/gwr_virtual.mp4.
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while it performs well on virtual avatar 1, on which it was trained,

the Subnode-GWR’s novelty lies in its online learning scheme,

which is evaluated in a third experiment.

5.3 Online learning of subnode-GWR

To test that the Subnode-GWR is able to learn incrementally,

we train the network on virtual avatar 1, and then online on the

remaining nine virtual avatars. This process involves training the

Subnode-GWR on exactly one correct execution video for each

virtual avatar in turn, and then evaluating on all videos of all

avatars. It can be observed that the performance of the Subnode-

GWR does not change at all for any of the avatars when further

avatars are trained. This is as expected and is seen to be because

further online training can only add subnodes, not modify

previous ones, hence preserving the exact performance on

previously trained avatars. Note that online learning is required

for inference on subsequent avatars as the Subnode-GWRmethod is

intended as one-shot learning, not zero-shot learning. Note also that

the inference time, and thereby real-time capability, of the proposed

method is dominated by the inference time of OpenPose, which is

about 45 ms per 640 × 480 frame (43 ms for the 480 × 320 frames of

the virtual dataset) on a relatively modest system with a GTX

1650 GPU and i5 CPU. The inference time of the Subnode-GWR

architecture on the same system is approximately 0.8 ms per frame,

with peaks of up to 1.3 ms. For reference, this is only 0.1 ms slower

on average than the times measured for both Gamma-GWR

TABLE 3 Average joint-wise error in pixels over 100 frames between key point prediction from Gamma-GWR with five predictions, Episodic-GWR as
well as Subnode-GWR and OpenPose’s real-time estimation. Green indicates the smallest error and red the highest.

Avatar 1 Gamma-GWR Episodic-GWR Subnode-GWR

REye 4.04 2.00 1.21

LEye 4.11 1.58 0.85

REar 3.98 2.81 2.32

LEar 3.49 2.72 1.94

Nose 3.53 1.80 0.40

Neck 3.20 1.63 1.19

RShoulder 2.64 1.54 0.33

LShoulder 3.38 2.19 1.73

RElbow 1.65 1.55 0.71

LElbow 2.29 1.02 0.61

RWrist 3.64 1.34 1.45

LWrist 3.97 1.69 1.87

MidHip 3.12 1.88 2.12

RHip 2.83 1.34 1.68

LHip 2.64 1.78 1.85

RKnee 2.70 2.12 2.31

LKnee 2.46 1.75 1.98

RAnkle 2.06 2.12 2.10

LAnkle 1.51 1.41 1.46

RHeel 2.70 2.81 2.80

LHeel 3.37 3.52 3.48

RBigToe 3.03 3.05 3.05

LBigToe 3.70 3.71 3.71

RSmallToe 1.06 1.04 1.05

LSmallToe 1.00 0.97 0.98

Average 2.88 1.98 1.73
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and Episodic-GWR. A GWR-based approach can have

computation time issues when growing beyond a certain

size, and this is true for the Subnode-GWR as well.

However, the number of nodes in our application scenario

grows with the length and number of exercises, not the number

of different persons, which are represented by the Subnode

mechanism. Therefore, the growing nature of the Subnode-

GWR network during incremental learning does not lead to a

substantial increase in computation time due to the nature of

the subnodes, which have a constant lookup time per node.

Table 4 shows the accuracy result of classifying all joints in all

videos (including common error videos) in a binary manner, i.e.

as correct or erroneous. For instance, in an incorrectly performed

exercise where the arms are in the wrong position, the arm joints

are expected to be marked as erroneous, while the remaining

joints are expected to be marked as correct, and any deviation

thereof by the Subnode-GWR results in a drop in quoted

accuracy. For the correct performance of the exercise, the

Subnode-GWR is able to give accurate feedback for all joints.

As we can see, however, that accuracy reduces to 71.6% for the

‘too low’ error. One can see that for avatar 9 (see Figure 3), the

accuracy is substantially lower in comparison to other avatars

and common errors. This repeats for the common error where

the user performs the exercise too fast. After further

investigation, we conclude that this inaccuracy results from

the Subnode-GWR selecting the wrong subnode in the first

frame. This is due to the fact, that avatar nine resembles many

other avatars with nearly matching height and weight features.

This leads to the question of how robust the approach overall is

against variations in, e.g., rotation and translation.

5.4 Robustness against rotation and
translation

In order to further evaluate the robustness and spot possible

drawbacks of the approach, we conduct a fourth experiment,

where we rotate each avatar for every exercise by 5°, translate

them by 5 cm to the left and lastly combine both rotation and

translation. In Table 5, the accuracy for a centered view without

rotation and translation is 89.9%, with rotation 88.6%, with

translation 90.1% and finally with both rotation and translation

combined 83.5%. Overall, the network seems to be unaffected by

translation, surprisingly leading to a small increase in accuracy.

Rotating the avatars by 5° leads to a small drop in accuracy of

around 1%. Combining both rotation and translation reduces the

accuracy by around 6%. Most influential to this drop is the

common error where the upper body is tilted, which drops by

about 15% to an accuracy of 77.2%. Still, reflecting on all common

errors in execution and keeping in mind that they have been

exaggerated for the avatars in order to properly evaluate robustness

on challenging tasks, we feel that with an average accuracy of 88%

over all variations and disturbances, the Subnode-GWR is robust

against perturbations commonly occurring in the application.

FIGURE 6
Frames 1, 30, 50, 70 and 100 of avatar one performing the physical exercise. The real-time human pose estimation of OpenPose is shown in
green/red and is superposed with a blue skeleton showing the predicted pose from each architecture. Red indicates that the mismatch between
prediction and real-time estimation is larger than dt,pose for the given joint. The top row corresponds to 5-prediction Gamma-GWR, while themiddle
and bottom rows correspond to Episodic-GWR and Subnode-GWR, respectively.
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5.5 Overall error classification

Inorder for thePepper robot tobe able toprovidemore targeted

feedback to a prospective user, an expert-knowledge 5-class binary

classifier is built on top of the Subnode-GWRoutput. Given a video

sequence as well as the OpenPose detections and Subnode-GWR

predictions for it, the classifier generates a score for each of the five

error types, and if that score is greater than 1 (the scores are

individually multiplicatively scaled so that one is the appropriate

threshold for each), this error is predicted to be present. The greater

the score, the more confidence there is that the error is severe,

allowing thePepper robot toprioritisewhich errors to give feedback

on andhow soon. If greater or less sensitivity to the errors is desired,

the thresholdofone canbe adjusted individually per error class. The

predictedprimaryerror is theerrorwiththehighest scoreabove1,or

correct if no such error exists. The predicted secondary error is

similarly defined after excluding the primary error from

consideration. Figure 7 shows examples of six different video

sequences (video6), along with their corresponding classifications

and scores as predicted by Subnode-GWR.

The binary classifiers have intentionally been kept very

heuristically simple to demonstrate that Subnode-GWR is

doing the main work, and are implemented simply by

focusing on the mean joint errors of certain joints during

certain phases of the video. For example, the high score is

calculated as the mean upward error in the hip and arm

joints during the central third of the exercise, multiplicatively

normalized so that one is an appropriate threshold. The tilt score,

for example, is simply calculated as the (normalized) absolute

difference between the mean upward errors in the left and right

wrist in the central third of the exercise. Different exercises

require different thresholds due to the varying required

precision. Therefore we normalize each threshold to a value

of one via multiplication. The results of the video sequence

classification on the 60 Office-Squat videos are shown in

Figure 8. We refer to top-1 classification if we only compare

the predicted primary error with the primary ground truth

error, and top-2 if we compare in an ordered fashion both

primary and secondary errors. We observe that all mistakes that

the classifier makes relate to the somewhat tricky distinction

between the fast and correct classes (except for a single

secondary misclassification of a correct sequence as low). In

general, it can be concluded that temporal mistakes are more

difficult to identify than visual ones in this scenario. In total, the

rate of correct top-1 classification is 93.3% (95.7% if excluding

videos with translation), and rate of correct top-2 classification

is 85.0% (87.2% without translation).

By comparison, the Virtual-Squat dataset only has single

error classification labels, so only the top-1 success rate is

relevant, which is 96.7% for no translation/rotation. The only

mistakes are two spurious tilt classifications for avatar 5, which

come about because OpenPose temporarily fails for one arm

during the central exercise phase. The addition of translation and

rotation to the avatar videos does not change the result other than

pure translation, which only misclassifies a single avatar five

video, leading to a success rate of 98.3%.

TABLE 4 Accuracy and standard deviation for classifying joints over all avatars performing the exercise including common errors correctly as right or
wrong based on dt,pose for a centered position in the field of view of the camera (no rotation or translation).

Centered Correct Arms Low Knees Tilt Fast

Avatar 1 1.00 1.00 1.00 1.00 1.00 1.00

Avatar 2 1.00 1.00 0.88 1.00 0.84 1.00

Avatar 3 1.00 0.76 0.92 1.00 0.80 1.00

Avatar 4 1.00 0.92 0.48 1.00 1.00 1.00

Avatar 5 1.00 0.52 0.52 0.96 0.88 1.00

Avatar 6 1.00 1.00 0.60 1.00 1.00 1.00

Avatar 7 1.00 1.00 0.92 1.00 0.96 1.00

Avatar 8 1.00 0.96 1.00 1.00 1.00 1.00

Avatar 9 1.00 1.00 0.36 1.00 0.88 0.08

Avatar 10 1.00 0.32 0.48 1.00 0.92 1.00

Average 1.000 0.848 0.716 0.996 0.928 0.908

Std. Dev 0.000 0.242 0.250 0.013 0.075 0.291

6 https://www2.informatik.uni-hamburg.de/wtm/videos/sgwr_office.mp4.
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6 Discussion

For the most part, a discussion of the core competences and

shortcomings of the presented GWR models has been provided

along with the previous experimental section. It was seen that

episodic memory and context were vital to the performance of

the system, especially due to the repeatingnature of poses that occur

during physical exercises. This alone was not enough, however, to

accurately learn the required exercise trajectories, as the ability for

temporarypauses in themotion, requiring the samenode to remain

activeovermultipleframes,neededtobeconsidered.Thiswasseento

be addressed by the Subnode-GWR approach, which avoided

asynchronous predictions and otherwise erroneous feedback to

the user due to an obvious mismatch of the predictions.

One clear advantage of Subnode-GWR is that it is able to

independently learn the exercise appearance for many user body

shapeswithoutadverselymixingand/orforgettingtheappearanceof

previous body shapes. This ability is especially relevant for the

TABLE 5 Average accuracy and standard deviation for classifying joints over exercise including common errors with deferring positions (rotation: 5°,
translation: 5 cm) correctly as right or wrong based on dt,pose.

Variation Centered Rotation Translation Rot. + Trans

Correct 1.000 0.724 0.980 0.812

Arms 0.848 0.880 0.860 0.720

Low 0.716 0.876 0.752 0.812

Knees 0.996 0.996 0.996 0.988

Tilt 0.928 0.932 0.920 0.772

Fast 0.908 0.908 0.900 0.904

Average 0.899 0.886 0.901 0.835

Std. Dev 0.106 0.091 0.089 0.096

FIGURE 7
Examples of all common errors in the Office-Squat dataset, overlaid with the pose detection by OpenPose (green-red) and the prediction from
the Subnode-GWR (blue). Left to right, top to bottom, the illustrated cases are: correct, arms, low, high (knees not bent), tilt, and fast. If a secondary
error classification is predicted that is just under the threshold of being accepted, it is indicated as ‘tendential’. Note that the fast case is a snapshot
during the ascent phase.
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continual use of an exercise robot in an environment like a care

facility. Our proposed model enables a long-term human robot

interaction with many different exercise partners, thus enabling

lifelong learning. To cope with many different users, one possible

improvement to the method would be to create a new subnode

individually for each new user instead of just new users with

significantly different proportions. This would lead to a moderate

increase in memory use by the model, but not to a level where even

thousands of users per robot would become infeasible.

Although the method proved to be robust against mild

changes in user orientation and position within the frame, it is

surmised that explicit normalization techniques would allow even

large translation and scale variations to be dealt with accurately.

Such normalization, for example, could be based on the mean

dimensions of a human bounding box detection of the user at the

beginning phase of each video. Normalization against deviations in

user rotation is a significantly more difficult problem, as the 2D-

projected trajectory of the human pose keypoints changes in a

complex and nonlinear fashion as a function of the rotation angle.

One hypothetical solution would be to estimate 3D-human-poses

from each video frame sequence and normalize the yaw rotation of

these poses before forming a 3D-comparison. The conversion of

2D-video sequences into 3D poses is a notably ambiguous

problem, however, as many feasible 3D-poses share the same

2D-projection, even before occlusions are considered.

It is expected in possible future work that the Subnode-GWR

architecture could be applied to other tasks without significant

overhaul. One example would be gesture recognition, or even

hand gesture and/or sign language recognition. Modern pose

detection frameworks like OpenPose can estimate finger

keypoints in addition to body keypoints, and these could

easily be incorporated as additional inputs to the Subnode-

GWR. The increased sensitivity of the system to position and

orientation changes could be addressed with the aforementioned

normalization techniques, with normalization occurring, for

instance, relative to the hand bounding boxes. Subnode-GWR

could be useful for gesture recognition because it allows aspects

like varying body proportions to be dealt with, as well as possibly

even allowing adaptation to the slightly varying gesture styles of

different individuals. The online learning aspect of Subnode-

GWR would also allow gestures to be added or refined on the fly,

allowing the system to adapt and evolve dynamically with time.

7 Conclusion and future work

Physical exercise is a precondition for a healthy lifestyle, but

requires proper technique in order to prevent injuries. To

support this, we employed the humanoid robot Pepper as a

motivator and feedback giver and developed the GWR algorithm

with subnodes and an incremental online learning scheme, which

we call Subnode-GWR. While the proposed architecture works

well within its purpose, there are still caveats that can be

improved. For one, the Subnode-GWR tackles forgetting by

increasing the capacity of the network rather than

restructuring knowledge. This is, of course, a drawback of the

Grow-When-Required approach itself, which has not been

solved yet and requires future work. Secondly, the Subnode-

FIGURE 8
Confusion matrix of the classifier on the Office-Squat dataset for just the primary errors (top-1), and for both the primary and secondary errors
(top-2). Many video sequences do not have a secondary error, helping explain why the accuracy of the correct class substantially increases for top-2.
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GWR requires carefully monitored input from a supervisor (e.g. a

physiotherapist) during the learning phase, since its adaptivity is

limited within a range of tolerance that has to be tuned manually.

Here, future work could improve on the adaption process,

making it self-sustained, not requiring additional supervision.

Still, we evaluated the Subnode-GWR against already existing

GWR variants (Gamma-GWR and Episodic-GWR) and showed

the advantages of it. We also examined in further experiments the

capabilities of the Subnode-GWR regarding learning on multiple

avatars, the robustness against rotation and translation, and the

applicability to real-world data. We envision the use of the

Subnode-GWR beyond its current application. It can be

beneficial in any case where a robust and precise replay of

information, e.g., as an episodic memory, is required.
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