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In dynamic (social) environments, an affective state of “stress” can be adaptive and
promote agent wellbeing, but maladaptive if not appropriately regulated. The presence of
(and interactions with) affect-based social support has been hypothesised to provide
mechanisms to regulate stress (the “social buffering” hypothesis), though the precise,
underlying mechanisms are still unclear. However, the hormone oxytocin has been
implicated in mediating these effects in at least two ways: by improving social
appraisals and reducing the short-term release of stress hormones (i.e., cortisol), and
adapting an agent’s long-term stress tolerance. These effects likely facilitate an agent’s
long-term adaptive ability by grounding their physiological and behavioural adaptation in
the (affective) social environment, though these effects also appear to be context-
dependent. In this paper, we investigate whether two of the hypothesised hormonal
mechanisms that underpin the “social buffering” phenomenon affect the long-term
wellbeing of (artificial) social agents who share affective social bonds, across numerous
social and physical environmental contexts. Building on previous findings, we hypothesise
that “social buffering” effects can improve the long-term wellbeing of agents who share
affective social bonds in dynamic environments, through regular prosocial interactions with
social bond partners. We model some of the effects associated with oxytocin and cortisol
that underpin these hypothesised mechanisms in our biologically-inspired, socially-
adaptive agent model, and conduct our investigation in a small society of artificial
agents whose goal is to survive in challenging environments. Our results find that,
while stress can be adaptive and regulated through affective social support, long-term
behavioural and physiological adaptation is determined by the contextual perception of
affective social bonds, which is influenced by early-stage interactions between affective
social bond partners as well as the degree of the physical and social challenges. We also
show how these low-level effects associated with oxytocin and cortisol can be used as
“biomarkers” of social support and environmental stress. For socially-situated artificial
agents, we suggest that these “social buffering” mechanisms can adapt the (adaptive)
stress mechanisms, but that the long-term efficacy of this adaptation is related to the
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temporal dynamics of social interactions and the contextual perception of the affective
social and physical environments.

Keywords: artificial agents, affective perception, affective interaction, social allostasis, social bonds, homeostasis,
social buffering, stress

1 INTRODUCTION

1.1 Background
The ability for a (social) agent to make contextually-relevant
decisions depends on her perception of that context. Among
other things, this is dependent on an agent’s affective state, the
contextual cues in her (physical and social) environment, and the
(types of) interactions available to her. This affective contextual
perception plays an important role in the adaptation of
behaviours, and is essential (particularly in dynamic
environments) in facilitating the long-term wellbeing and
autonomy of any adaptive (biological and artificial) agent. For
these autonomous agents, adaptation to dynamic external
environments is made more complex when the environment
itself is (sometimes exclusively) comprised of other
autonomous social agents that are also continually adapting
their interactions. In these cases, the (real-time) affective
perception, adaptation of behaviours and decision-making
must also account for the affective interactions and dynamics
of the social environment as part of their adaptive process: a
seemingly-natural process in biological social agents (Schulkin,
2011).

One consistent theme in these biological (both human and
non-human) systems is that individuals who exist as part of a
society, form affective social relationships, and who positively
interact with other social agents, report improved adaptability,
wellbeing, and survival in dynamic (stress-inducing)
environments (Schülke et al., 2010; Cameron et al., 2009;
Holt-Lunstad et al., 2010). One prominent hypothesis to
explain this phenomenon is known as “social buffering”
(Kikusui et al., 2006; Cohen and Wills, 1985). This hypothesis
posits that social support can provide amechanism tomediate the
maladaptive (psychological, physiological, and behavioural)
“stress” responses (Hostinar, 2015) that occur during, and in
anticipation of, threatening or stressful situations, and this
socially-grounded regulation of “stress” facilitates the long-
term wellbeing (that is, maintaining the stability of an
organism’s internal milieu (Bernard, 1878) through
homeostatic processes (Cannon, 1929)) of social agents with
affective social support.

Given that stress can play a significant adaptive role in
regulating homeostasis via physiological and behavioural
adaptation (McEwen et al., 2015; McEwen and Wingfield,
2003), appropriate regulation of its adaptive (as opposed to its
maladaptive (Hannibal and Bishop, 2014)) effects can propose
significant advantages for socially-supported agents. Though the
underlying mechanisms of “social buffering” are likely multi-
faceted (Hostinar, 2015) and contextually-dependent (Sapolsky
et al., 2000; Abbott et al., 2003)—making them difficult to
elucidate in natural systems (Uno et al., 2002)—the hormone

oxytocin has been hypothesised to mediate these effects in (at
least) two ways: by increasing the valence of affective bond
partners (Kirschbaum et al., 1993), and by “buffering” the
activation of an internal stress (autonomic nervous) system
(Ditzen and Heinrichs, 2014; Uno et al., 2002).

The adaptive effects (on physiology and behaviour) presented
by both “stress” and the “social buffering” phenomenon likely
underpin an adaptive process known as “(social) allostasis”
(McEwen and Wingfield, 2003; Sterling, 2020; Schulkin, 2011):
a re-imagining of classical theories of homeostasis. Social
allostasis describes an anticipatory or predictive adaptation of
stability-seeking homeostatic mechanisms: by integrating prior
and current (internal, external and social) information to adapt
physiology and behaviours in anticipation of changing
environments. Where homeostasis describes the maintenance
of vital physiological parameters to an ideal (or a range of) set
points—correcting deficits through error-correcting negative
feedback loops—allostasis proposes that the homeostatic
mechanisms (including the range of set points that ensures
stability) can be (and, indeed, are) adjusted as a predictive or
anticipatory process. These anticipatory adjustments of
homeostatic mechanisms—likely mediated by hormones (such
as cortisol and oxytocin) (Sterling, 2020)—aim to minimise
(potential) future internal errors before they need to be
corrected. It can therefore be considered as a “second-order”
mechanism that adapts the adaptive (homeostatic) mechanism:
though ambiguity of its precise definition still remains (Ramsay
and Woods, 2014). Nevertheless, the “social buffering”
phenomenon and its associated (hormonal) mechanisms can
be appropriately integrated into the framework of social
allostasis (Figure 1); proposing a biologically-plausible
framework of social adaptation for (artificial) social agents
(Sterling, 2020) which, in turn, can significantly contribute to
our understanding of social adaptation of biological agents.

The remainder of the paper is set out as follows: we continue
this section by describing some related work in Section 1.2 and
present our research questions and hypotheses in Section 1.3.
Section 2 presents a complete description of our simulation
environment and agent model used in our investigation.
Section 3 describes our experimental set up and presents our
results. We discuss our findings further in Section 4, summarise
our conclusions in Section 5, and highlight some of the work’s
limitations and future directions in Section 6.

1.2 Related Work
Addressing social adaptation for embodied (socially-)adaptive
agent models remains an ongoing area of research, with a range of
approaches being considered. This includes affect-based
behavioural adaptation in human-agent (both physical and
virtual) interactions (Hiolle et al., 2014; Tanevska et al., 2019;
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Ghafurian et al., 2019; Youssef et al., 2015); imitation of others
(Breazeal et al., 2005; Doering et al., 2019); and social learning
through both physical (robot) (Bartoli et al., 2020) and virtual (Le
et al., 2020, 2018) partners, as well as in multi-agent systems
(Tampuu et al., 2017; Yonenoh et al., 2019; Pérez et al., 2017).
Recent work has also consideredmodels of higher-order cognitive
functions: adapting behaviours by inferring the intention or
affective state of others (Pieters et al., 2017; Görür et al.,
2017), or by perspective taking of other social agents (Trafton
et al., 2006).

Work in human-robot interactions (HRI) have also
investigated the adaptive role of (the formation of) affective
social bonds between humans and artificial (physical) agents,
including work with both children (Belpaeme et al., 2012;
Cañamero and Lewis, 2016; Ros et al., 2011; Ligthart et al.,
2019) and adults (Vollmer et al., 2018; Shiomi et al., 2017;
Andreasson et al., 2018; Hiolle et al., 2012; Willemse and Van
Erp, 2019) across numerous types of embodiments (see the survey
by (Leite et al., 2013)). In all of these works, however, the effects
and analysis of these social bonds have been at a dyadic level (a
human-agent pair bond), as opposed to the group or social level.
Attempting to address those limitations, our previous work has
investigated some of the adaptive effects of affective social bonds
in a society of artificial (virtual) agents (Khan et al., 2020, 2019;
Khan and Cañamero, 2021).

While work in HRI has also investigated the effects of social
interactions on “stress,” this work has largely focused on how
these interactions affect the “wellbeing” of the human actor (see
(Ling and Björling, 2020) for a review), but not the artificial agent.
For instance, (Aminuddin et al., 2016; Willemse et al., 2017;
Shiomi and Hagita, 2021; Felnhofer et al., 2019), assessed
numerous psychological and/or physiological measures related
to “stress” during and after interactions with a robotic partner,
with (Willemse and Van Erp, 2019) assessing the effects after
partners had established an (affective) bond with their robot
partner. Despite some recent work that assessed how an
embodied model of “stress” affected the (compulsive)

behaviours and wellbeing of a robot, (Lewis and Cañamero,
2019), more work is still required to understand how the
adaptive properties associated with “stress” (and its underlying
mechanisms) can affect (positively or negatively) the “wellbeing”
of (virtual or physical) artificial agents.

1.3 Motivation, Research Questions, and
Hypotheses
As noted by (Paiva et al., 2014), one common theme in these
different approaches towards social adaptation is that their
mechanisms of learning, prediction, and action are, in some
way, inspired by biological systems. Despite its biological
plausibility, models for socially-adaptive embodied agents have
yet to consider the underlying mechanisms of “social buffering”
(and “social allostasis” more generally) as part of their (bio-
inspired) approaches. Given the challenges in studying the
hypothesised hormonal mechanisms of “social buffering” in
biological systems (Uno et al., 2002), artificial models can be
used to abstract and study some of these effects in silico to further
understand their function in biological systems. As initial steps to
address this limitation, we have previously conducted
investigations into the adaptive effects of both “stress” and one
element associated with the “social buffering” phenomenon (via
oxytocin’s effects on social salience modulation) using a society of
artificial agents (Khan et al., 2020).

To address some of the limitations in the existing (biological
and artificial agent) literature, the aim of the study presented in
this paper is to investigate the effects of (two elements of) the
“social buffering” phenomenon on viability (wellbeing)
management and social behavioural dynamics. Specifically, we
focus on two hypothesised hormonal effects that mediate this
phenomenon: oxytocin’s effects on improving the valence of
social partners (Hennessy et al., 2009) (i.e., the “social
salience” modulation element), and oxytocin’s effects on
“buffering” the internal stress system (Heinrichs et al., 2003))
(i.e., the stress tolerance modulation). Building on the findings of

FIGURE 1 | A theoretical framework for how the hypothesised mechanisms of “social buffering” that we investigate in this paper (blue and red lines) underpins a
mechanism of “social allostasis,” via an intermediary hormonal system. Perceived stressful environments result in activation of an internal stress system (McEwen et al.,
2015): positive interactions with affective social support releases oxytocin, which has numerous stress-regulatory effects (“social buffering” (Kikusui et al., 2006)). This
affective hormonal system then adapts the internal homeostatic mechanism via physiological and behavioural adaptation.
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these “social buffering” effects in biological (Kikusui et al., 2006;
Cohen andWills, 1985) and artificial (Khan et al., 2020) societies,
the two hypotheses (H1 and H2) for this study are as follows:

(H1): Social buffering would provide significant advantages (in
the long term) to the wellbeing of a group of agents that share
affective social bonds, when compared to groups without
social bonds.

Our research questions stemming from this hypothesis are:

• RQ1.1: What is the effect that the social salience (“bond
valence”—BV) modulation element of social buffering has
on internal viability management?

• RQ1.2: What is the effect that adding the stress tolerance
(threshold) modulation element of social buffering to the
social salience modulation element has on (internal)
viability management (particularly in the long term)?

(H2): Social buffering would have significant effects on the
type of social behavioural dynamics of groups.

Our research questions stemming from this hypothesis are:

• RQ2.1: What is the effect of the social salience modulation
element of social buffering on the social behavioural
dynamics of the group, in terms of positive (grooming)
and negative (aggression) social behaviours?

• RQ2.2 What is the effect that adding the stress tolerance
(threshold) modulation element of social buffering to the
social salience modulation element has on the social
behavioural dynamics of the group, in terms of positive
(grooming) and negative (aggression) social behaviours?

Based on observations in humans which report mixed efficacy
associated with the “buffering” of internal stress systems (Doom
et al., 2017; Hostinar, 2015), we predict that we will see larger
wellbeing improvements associated with oxytocin’s modulation
of social salience (model type BV), than on its role modulating
stress tolerance (model type BV+ST).

We conduct our investigation using a small, rank-based
society of artificial agents whose goal is to “survive”
(i.e., maximising their viability) through the maintenance of
their internal (“physiological”) environment via homeostatic
mechanisms. To test our hypotheses, we model numerous
hypothesised effects associated with cortisol and oxytocin that
underpin the “social buffering” phenomenon; and test their
incremental effects on agent wellbeing and behaviours across
three different social contexts (related to the agents that have
social support available) and three dynamic physical
environments (related to resource availability).

2 AGENT SIMULATION

2.1 Simulation Environment
The simulation environment was developed using the NetLogo
platform, version 5.3.1 (Wilensky, 1999), modelled as a simple,
enclosed, two-dimensional world (of size 99 × 99 units).
Mirroring our previous environments (Khan et al., 2020,

2019), the environment consisted of two types of objects
(resources): autonomous Agents, and Food. A screenshot of
the complete environment can be seen in Figure 2. The model
is publicly available and can be found in our Supplementary
Material S1.

Agents (represented as discs, Figure 2) are artificial entities
whose actions are driven by the regulation of an internal,
homeostatically-controlled “physiology” consisting of two
competing needs: Energy and SocialNeed. This physiological
regulation is achieved through an embodied agent model
called the Action-Selection Architecture, discussed in Section
2.2.1) which all agents are endowed with.

Agents perceive the world through a fixed field-of-vision (20
units in radius by 80°), and interact with the world by either
randomly wandering (an appetitive behaviour) through the
environment at a rate of speed (defined as the number of units
moved at each time step, and calculated using Eq. 10a) through
the environment in the absence of external stimuli, or performing
one of two consummatory behaviours: Eating food resources or
Touching (either positively or negatively) other agents (Section
2.3). We describe these behaviours, and present visual examples,
in Section 2.3.

Food (Figure 2, yellow spheres) constitutes a physical
resource that can be acted on by agents (i.e., agents can Eat
food). In our simulation, all food resources have the same
maximum amount of “nutrition” (4 units), which decreases at
a fixed rate (0.01 units per time step) when an agent is acting on it
(i.e., Eating it). When an agent is not acting on (Eating) a food
resource, its nutritional amount increases by 0.001 per time step
(up to its maximum nutritional value): mirroring basic food
“replenishment” in natural systems. The size of a food
resource is dynamic, and equal to its nutritional
availability (i.e., a food with 2 units of nutrition available is 2
units in size).

2.2 Agent Model
2.2.1 Action-Selection Architecture
Following the approach originally proposed by (Cañamero, 1997)
and used previously in our research group (Lones et al., 2017;
Lewis and Cañamero, 2019; Cañamero and Lewis, 2016; Khan
et al., 2020), the goal of our artificial agents is to maintain the
“stability” (i.e., the viability (Ashby, 1954)) of their internal
environment (the internal milieu (Bernard, 1878)), through
the homeostatically-controlled regulation of two competing
internal needs: Energy and SocialNeed (Figure 3).

Taking this approach, an agent’s actions (behaviours) are
driven by an internal agent model (referred to here as the
Action-Selection Architecture, or ASA) which consists of three
connected layers: internal physiological needs v, motivational
states m, and behaviours b (Table 1). The ASA selects from a set
of behaviours to minimise the deficits (i.e., the errors) of these two
internal needs to maximise an agent’s long-term well-being
(i.e., maintaining viability). This approach to action-selection
constitutes a classic, ethology-inspired (Tyrell, 1993) “Two-
Resource Problem” (McFarland and Spier, 1997): a standard,
minimally-complex approach to action-selection problems which
has been used in previous studies of adaptive behaviours
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FIGURE 2 | Left: A screenshot of our simulated environment, consisting of two types of resources: Food (yellow spheres) and Agents (green discs). The dotted line
between agents indicates agents that share an affective social bond. The size of agents visually represents their social status (rank). Right: A top-level view of the
components of the embodied agent model, with arrows indicating interactions between different components. These are described further in Section 2.2.1).

FIGURE 3 | An overview of the Action-Selection Architecture which selects behaviours to regulate the two internal (physiological) variables Energy and SocialNeed.
Numbers in parenthesis correspond to relevant equations in this section. Further details are provided in Table 1.

TABLE 1 | Relationship between internal “physiological” variables v, its relevant internal motivationm, the external stimuli S relevant to each internal variable, and behaviour b
associated with each motivation OT: Oxytocin. CT: Cortisol. *: Only for agents with affective social bonds. **: Opposing effects based on behaviour: CT decreases (-) if
Groom; CT increases (+) if Aggression. TactInt (Tactile Intensity) and Speedt are discussed in the Agent Model section. All parameter values are apriori values taken from
previous investigations (Khan et al., 2020; Khan and Cañamero, 2021).

Internal variable Energy SocialNeed

Loss Rate γv 0.003 × 2 × (Speedt) 0.003
Motivation (m) Hungry (mH) Lonely (mL)
Stimuli (S) Food (SF) Agent (SA)
Behaviour (b) Eat (bEat) Touch (bTouch) (TouchGroom, TouchAggression)
Physiological Effect on Actor A v: +0.003/time step OT: +0.003 × TactInt* v: +0.05 × TactInt
Physiological Effect on Recipient R N/A OT: +0.003 × TactInt CT: +/- 0.003 × TactInt **
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(Kiryazov et al., 2013; Lowe et al., 2010; Lewis and Cañamero,
2019; Montebelli et al., 2008).

The first internal need (which we also call internal variables) is
Energy, which is analogous to a physical need to consume
physical resources (i.e., to maintain blood glucose levels). The
second, called SocialNeed, is akin to a “psychological” (as well as
physiological (Morrison, 2016)) need for tactile social contact.
Both internal needs remain in the range 0–1, with an “ideal” set
point of the upper limit (1). Each of these needs experience a
small deficit at each time step (seen in Table 1), and agents are
driven to maintain each variable as close to their respective ideal
set points as possible. In this agent model, Energy is a survival-
critical variable: if it drops to its minimum value (0), an agent is
no longer viable and will “die.” We describe the complete
mathematical details of our agent model below.

At the start of each time step t, each of the two internal
variables v, Energy (v1) and SocialNeed (v2), experience a small
loss at a rate of (γv):

vn,t � vn,t−1 − γv (1)
The loss rate of SocialNeed is a preset, static value (γ2 = 0.003).

Conversely, the loss rate of Energy is non-static: it is modulated by
an agent’s movement speed (i.e., her “metabolic” activity; see Eq.
10a). We summarise this in Table 1.

Next, the deficits, or errors (d) of each of the internal variables
v are calculated as the difference between each variable’s current
value vt and its “ideal” (or attractor) value D, respectively:

dv,t � D − vn,t (2)
In line with the cue-deficit model proposed by (McFarland and

Spier, 1997): each of these internal deficit values d are combined
with the perception of external stimuli S relevant to correcting
each of the deficits, to calculate the “intensity” of two internal
motivations (m): Hungry, (mH) and Lonely (mL). In our agent
model, the corresponding stimuli are Food (SF, to correct Energy
deficits), and Agents (SA, to correct SocialNeed deficits) (see
Table 1). Therefore:

mt � dt + dt × Si( ) (3a)
Mt � max mH,mL( ) (3b)

Each motivational intensity remains in the range 0–1, with the
motivation returning the highest value selected as the most
“urgent” (winning) motivation M. Finally, the winning
behaviour B is calculated by combining the intensity of the
winning motivation M with the physiological effects ω that
each of the behaviours b has on satisfying the internal variable
v associated with that particular motivation. In the present model,
each behaviour only has physiological effects on a single internal
variable respectively, resulting in a 1:1 mapping between
motivations and behaviour (Table 1). Concretely, to Eat (bEat)
when an agent is Hungry (mH), or Touch (bTouch, either Groom
or Aggression which is described in Section 2.2.2) when the
winning motivation is Lonely (mL) (Table 1).

bt � Mt × ωbv (4a)
Bt � max bEeat, bTouch( ) (4b)

Agents satisfy their current motivation by performing the
winning behaviour either by moving to an available resource
or wandering through the environment until a resource is
available. When either of the error-correcting behaviours (Eat
or Touch) have been performed, the value of the relevant internal
variable is updated at a context-dependent rate (Table 1). In this
two-resource problem of action-selection, agents are always
motivated to perform one of these two actions at every time step t.

2.2.2 Social Assessment Component
The Social Assessment Component (Khan et al., 2019), or SAC,
provides an affective appraisal of the social environment prior to
the execution of the winning behaviour B, which contextually
adapts the (type of) behaviour that an agent performs. The SAC
calculates the relative “value” (called AgentVal, χ) of agents it
perceives in the (local) environment, to determine:

1) which agent to socially interact with when the winning
behaviour is Touch.

2) whether to perform a socio-positive (Groom) or socio-
negative (Aggression) behaviour when the winning
behaviour is Touch.

3) whether to approach or avoid a (preoccupied) food resource
when the winning behaviour is Eat.

This is calculated by combining three points of information: 1)
an acting agent’s (A) affective (hormonal) state, 2) the (local)
social status of other agents R in the environment (i.e. agents that
it can immediately perceive), and 3) the existence and quality of
an affective social bond between agents. Using this information,
the SAC calculates a “trade-off” between affective and (local)
social information—an abstraction of the flexible social decision-
making seen in biological systems (Mielke et al. (2020); Asakawa-
Haas et al., (2016); Gerber et al.,(2020); Mielke et al., (2020, 2018);
Asakawa-Haas et al., (2016); Gerber et al., (2020))—prior to the
execution of (social) behaviours. We define the components of
the SAC below.

Social Status (Rank): In our model, an agent’s social status (or
social rank) K corresponds to her status in a hierarchical society.
It is a predetermined, fixed value; modelled as a normalised value
between 0 and 1 (with 0 being the lowest-ranked and increasing in
1/n increments, where n is the total number of different ranks in a
society). An agent’s social status (rank) loosely corresponds to the
degree of “control” she has in the environment. By default,
higher-ranked agents have priority access to resources, and are
favoured by others for positive social interaction, which is
calculated using Eq. 6.

Affective Social Bond: An affective social bond is defined as a
pre-existing, mutually-positive affective social relationship
between two agents (for instance, a parent–offspring
relationship). In our model, it is represented as a fixed
Boolean flag (ΞAB = 1 if a bond exists, else 0).

Bond Strength (Dyadic Strength Index): Affective social
bonds also have a “strength” associated with them, which we
refer to as the Dyadic Strength Index (DSI, ). This is a bi-
directional value that stays in the range 0–2, used to model and
measure the affective quality of a social bond between two agents.
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Higher DSI values denote a mutually-strong affective bond
between agents A and B, while a low value denotes a
mutually-weak affective bond between them. The strength of
these bonds are subject to a small decay rate (μϒ = 0.9997) at each
time step when a social interaction has not taken place between
bonded agents (Table 1). In other words, in absence of any social
interaction that reinforces or strengthens a bond, social bonds
between agents become “weaker”.

The SAC then works as follows: Firstly, agent A calculates the
relative rank difference (normalised between -1 and +1 in 0.25
increments) and each agent B she perceives:

ΔK AB( ) � KA − KB (5)
Negative ΔK values correspond to agent B outranking agent A,

and vice-versa for positive values. The relative rank difference is
then combined with the presence and quality of an affective bond
between agents A and B.

χB � ΔK AB( )︸��︷︷��︸
Relative Rank
Difference

+ ΞAB × ϒΞ,AB × OTA( )[ ]︸����������︷︷����������︸
Affective Bond Status

(6)

When no bond exists between agents A and B, χB = ΔK(AB). As
we see in Eq. 6, the bond strengthϒ is further modulated byOTA.
Here, OT stands for “oxytocin”; one of two simulated hormones
with numerous modulatory effects in the agent model. We
describe this in further detail in the next section. Combining
all of these parameters, χB can take the range -1 to +3.

2.2.3 Affective (Hormonal) System and Effects
Building on our own previous work (Khan et al., 2019, 2020;
Khan and Cañamero, 2021), and also following the approach that
has been used extensively in related approaches (Lewis and
Cañamero, 2019; Lones et al., 2017; Cañamero and Lewis,
2016; Montebelli et al., 2008; Iizuka and Di Paolo, 2008), our
agent model accounts for several biologically-inspired
abstractions of hormonal mechanisms that act as (hormonal)
modulators on an agent’s physiology and behaviours. These
hormonal mechanisms are inspired by two biological
hormones: cortisol (CT) and oxytocin (OT). However, we do

not propose that our computational abstractions are a precise
modelling of the complete biological hormones themselves.
Rather, these models aim to capture the dynamics of some of
the (hypothesised) mechanisms of these hormones in biological
systems, and, in line with the approach of (Cañamero, 2019), aim
to capture some features of “affective cognition” grounded in the
hormonal modulation of an underlying action-selection model.
Nevertheless, these abstractions are grounded in biological
studies (see Table 2 and subsequent subsections), which we
propose can support the generalisability of our model to
biological systems. These hormonal effects have been
illustrated in Figure 4 and summarised in Table 2.

The first “hormone” in our model, cortisol (CT), represents a
stress-related hormone: released as a function of (perceived
internal and external) stressors (including receiving negative
social interactions from agents). The second hormone,
oxytocin (OT) can be considered a “social” hormone which is
released as a function of positive (tactile) social interaction. As we
describe below (and also summarised in Table 2), our modelling
of oxytocin is used to capture two of the hypothesised “stress-
regulating” effects of social support. A third component of our
affective system, called Stress Tolerance, simply describes the
amount of cortisol an agent can withstand in her physiology,
where transgression of this tolerance results in her undergoing an
affective state of “stress.” In this model, it can be considered a
simple abstraction of an autonomic nervous system (Kyrou and
Tsigos, 2009; McEwen et al., 2015).

2.2.3.1 Cortisol
In our model, cortisol (CT) is a stress-related (Bollini et al., 2004)
hormone that plays an adaptive role (Schulkin, 2003) on agent
physiology and behaviour (Table 2). CT levels are dynamic, and
either “secreted” (increased) or “inhibited” (reduced) in an agent
at a rate of γCT: calculated as a function of an agent’s perceived
internal and external stress. Internal stress relates to an agent’s
physiological deficits and external stress relates to the perceived
availability of external resources (i.e. her perceived level of
“control” of her physiology and environment (Bollini et al.,
2004)). For agent A, at time step t, changes in CT levels are
calculated as follows:

TABLE 2 |Overview of the two hormones in the Affective (Hormonal) System in our agent model: describing how each hormone is secreted (increased), inhibited (reduced),
and the modulatory effects they have on agent physiology or behaviour. Number in parentheses are corresponding equation(s) for each effect. Cells in blue denote our
abstractions of the two “social buffering” effects that we investigate.

Hormone Increased via Reduced via Modulatory Effects on
Agent model

Abstracted biological effect

Cortisol (CT)
“Stress hormone”

Receiving Aggression
(Section 2.2.3.1)

Performing Aggression
(Section 2.2.3.1)

Modulates agent speed/Energy
expenditure (Eq. 10a)

Cortisol increases energy metabolism
Brillon et al. (1995)

Internal and External
Stress (Eq. 8)

Modulates intensity of Touch interactions
(Groom, Aggression) (Eq. 11)

“Stress” increases intensity of tactile
interactions.

Oxytocin (OT)
“Social hormone”

Receiving/Performing
Grooming (Eq. 14)

No (tactile) interaction
with social bond partner
(Eq. 14)

Modulates valence of social bond
partners Eq. 6

Oxytocin improves bond partner
valence Crockford et al. (2014)

Modulates internal “stress tolerance”
(Eq. 15)

Oxytocin “buffers” HPA-axis activation
DeVries et al. (2003)
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CTt � CTt−1 + γCT (7)

where γCT � dv︸︷︷︸
Internal Stress

− Ŝagents + Ŝfood
2︸�����︷︷�����︸

External Stress

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ × w (8)

Here, dv is the mean deficit (Eq. 2) of the two physiological
variables (Energy and SocialNeed), indicating how far an agent is
from her ideal physiological state. External stress (Ŝagents +
Ŝfood)/2 is calculated as the mean “availability” of external
stimuli (Agents or Food) that an agent perceives. In other
words, it is a value which represents the perceived level of
“certainty” or “control” of the external environment (where a
lack of certainty or control results in higher “stress” (Sapolsky,
2004)). Using the affective appraisal of other agents (χ, calculated
in Eq. 6), resource “availability” is calculated as follows:

Ŝagents � Sagents × 1 − χB( ), and (9a)
Ŝfood � 1when χB ≥ 0 else 0 (9b)

A positive resulting value of γCT results in CT being increased in
an agent, and a negative value results in CT being inhibited in an
agent. Finally, w = 0.005, a scalar parameter used to regulate the
sensitivity of γCT, and which was tuned to our specific
environmental conditions.

CT has two modulatory effects on our agent model. These have
been summarised in Table 2 and illustrated in Figure 4. Firstly,
inspired by its effects on energy metabolism (Brillon et al., 1995;
Careau et al., 2008), CT modulates the default movement speed
(Speed0 = 0.5 units/time step) of an agent. This increased movement
speed proportionally depletes an agent’s Energy at a rate of γE:

Speedt � Speed0 × 1 + CT( ) (10a)
γE � γE0 × 2 × Speedt( ) (10b)

Secondly, CT directly modulates the “intensity” at which
tactile interactions (Touch: either TouchGroom or
TouchAggression) are performed by an agent. Specically: the
more CT present in an agent’s physiology, the “stronger” the
tactile interaction (TactInt):

TactInt � bTouch × CT (11)

where bbTouch is the intensity of the winning Touch behaviour
(calculated by Eq. 4b).

Abstracting dynamics of affective touch (Morrison, 2016), the
intensity of this tactile interaction affects both the acting agent A
and recipient R of the tactile interaction. For agent A, it satisfies
her physiological SocialNeed variable (v2), and reduces her own
level of CT, proportional to TactInt:

v2 � v2t−1 + TactInt × c( ) (12)
CTt � CTt − TactInt (13)

For the recipient agent R, CT is either inhibited or
secreted—dependent on the type of tactile interaction
received—proportional to the TactInt received by agent A:

CTR � CTR − TactIntA × o, if TouchGroom

CTR + TactIntA × o, if TouchAggression
{

Finally, the strength of any existing social bond (the DSI, ϒ,
described in Section 2.2.2) between agents A and R is also
proportionally strengthened or weakened, dependent on the
type of tactile interaction received:

ϒAR � ϒAR + TactInt × i, if TouchGroom

ϒAR − TactInt × i, if TouchAggression
{

Finally, all scalar values in the equations above (c = 0.1; o = 0.3,
i = 0.5) are apriori values used to regulate the values of respective
equations, which were tuned to our specific environment prior to
previous investigations (Khan et al., 2020, 2019; Khan and
Cañamero, 2021).

2.2.3.2 Stress Tolerance
Each agent is endowed with a Stress Tolerance value (θST,
between 0 and 1): an abstraction of the “autonomic nervous
system” in biological systems (Kyrou and Tsigos, 2009; McEwen
et al., 2015)). This Stress Tolerance value simply determines how
much of the stress hormone CT an agent can withstand in her
physiology before she becomes “stressed”. All agents start with
the same Stress Tolerance (θST(d) = 0.5).

Combined with the affective assessment of social agents (Eq.
6), this state then determines whether the winning behaviour

FIGURE 4 | An overview of the hormonal mechanisms modelled in the Affective (Hormonal) System of our agent model. OT = Oxytocin. CT = Cortisol. θST = Stress
Tolerance. Number in parentheses is the equation(s) that correspond to our modelling of specific effects. * = Effect accounted for in our second experiment only.
Descriptions of these effects are seen in this section, and summarised in Table 2.
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Touch will be performed in a positive (Groom) or negative
(Aggression) manner.

When CT levels do not transgress an agent’s Stress Tolerance
(CT < θST), all Touch behaviours with other agents are socio-
positive (TouchGroom). However, when CT ≥ θST (i.e. an agent is
“stressed”), agents adapt their Touch behaviour—performing
either TouchAggression or TouchGroom based on their affective
appraisal of the other agent (Eq. 6). Therefore, when agent A
is driven to Touch another agent B:

bTouch �
TouchGroom if CT< θST
TouchGroom if CT≥ θSTandχB ≥ 1
TouchAggression if CT≥ θSTandχB < 1

⎧⎪⎨⎪⎩
2.2.3.3 Oxytocin
The second hormone in our model, oxytocin (OT), is a socially-
influenced hormone (Quintana and Guastella, 2020) that models
numerous dynamics of the biological hormone in natural
systems. In our present model, it is secreted as a function of
(positive) social interactions (Uvnas-Moberg and Petersson,
2005; Carter, 2014) and has two modulatory effects which
serve as abstractions of two hypothesised mechanisms that
underpin the “social buffering” phenomenon (Kikusui et al.,
2006; Cohen and Wills, 1985). First, increased OT increases
the valence of social support: reducing the perceived stress
associated with the external environment ((Taylor, 2006;
Hennessy et al., 2009)). Second, it modulates (or “buffers”) an
agent’s internal stress tolerance (akin to activation of the
sympathetic nervous system, (Heinrichs et al., 2003); described
in Section 2.2.3.2).

Abstracting effects of “affective touch” (Ellingsen et al., 2016;
Morrison, 2016), OT is “secreted” in both the acting (A) and
recipient (R) agents after a positive tactile interaction. The rate of
secretion is proportional to the intensity of the tactile interaction
(TactInt, Eq. 11) performed by A. In other words, the “stronger”
the positive tactile interaction, the more OT released in both
agents. At all other times, OT experiences a small decay (μ =
0.005) per time step. Therefore, for both agents A and R:

OTt � OTt−1 − μOT( ) + TactIntA (14)
As mentioned above, our modelling of OT has two

modulatory effects related to its hypothesised, stress-reducing
effects. Firstly, OT modulates the valence of affective bond
partners it perceives: a mathematical abstraction of OT’s
hypothesised role on preferential attention to (and improved
valence of (Taylor, 2006; Hennessy et al., 2009)), affective bond
partners in natural systems (Shamay-Tsoory and Abu-Akel,
2016). This modulatory effect is described in Eq. 6: which
then has an effect on 1) the perception of external
(environmental) stress (Eq. 9a, Figure 4), and 2) the affective
appraisals of social agents when performing Touch behaviours
(Section 2.2.2).

OT’s second effect is that it “buffers” an agent’s internal
tolerance to (physiological) stress (the Stress Tolerance
discussed in Section 2.2.3.2, by modulating an agent’s default
Stress Tolerance θST0 proportional to her OT level:

ΘSTt � ΘST0 × 0.5 +OTt( ) (15)
where the default Stress Tolerance θST0 � 0.5. Since OT stays in
the range 0–1, the possible range for ΘST = 0.25–0.75.

2.3 Agent Perception and Behaviours
Agents have a fixed 80° field-of-vision of length 20 units. Agents
perceive resources when they fall within this range. In absence of
a relevant resource, agents randomly wander through the
environment, initially at a default rate of 0.5 units per time
step, which is modulated by the CT in its physiology (E).
When the presence of a stimuli motivates an agent to perform
a behaviour (Eq. 3a), they move towards that resource to perform
one of their two consummatory behaviours:

• Eat is performed on food resources by stopping to take
“bites” of food, satisfying their internal Energy variable at a
fixed rate (+0.01 per time step) until themotivation has been
satisfied.

• Touch is a tactile interaction between two agents and
encapsulates both the socio-positive Groom and socio-
negative Aggression behaviours, which is determined by
the affective state of the acting agent, and their affective
relationship with the other agent (Section 2.2.3.2). In both
instances, Touch behaviours are executed in a single time
step and have contextual effects on the satisfaction of the
internal SocialNeed of the actor, hormone secretion/
inhibition and affective bond quality (Table 1).

We provide short visual examples of these behaviours in
videos found in our Supplementary Material S1.

3 EXPERIMENT AND RESULTS

3.1 Experimental Conditions
Experiments were conducted in the simulation environment
described in Section 2. Following the approach in our
previous work (Khan et al., 2020, 2019; Khan and Cañamero,
2021), we used a society of six artificial agents, where three agents
share affective social bonds and the remaining three are
unbonded. We have found that this group size (six agents) to
be a suitable number of agents that 1) allows the society to be split
into multiple (non-dyad) groups, 2) permits for the appropriate
level of complexity for analysis, and 3) allows for analysis at the
levels of the overall society, the sub-groups, and the individual
agents (which we call the macro, meso, and micro-levels,
respectively). A summary of our experimental conditions can
be found in Table 3, with detailed descriptions below.

Model Types (3): Our investigations were conducted using two
separate models, describing the type of OT mechanism(s) that our
agents were endowed with, plus a control model. In our first
experiment, OT onlymodulated the valence of social bond partners
(Eq. 6), reducing the perceived stress from the environment (Eq.
8). We refer to this as the Type BV (Bond Valence) model. In our
second experiment, OT retains these effects and also modulates an
agent’s internal Stress Tolerance value (Eq. 15; Figure 4. We refer
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to this as the Type BV+ST (Bond Valence + Stress Tolerance)
model. Our Control condition described an agent model that did
not include any of OT’s effects, but did retain all of the CT
mechanisms we described in Section 2.2.3.1.

Affective Bond Combinations (3): For each of these model
types, we tested three different combinations of agents who
shared affective social bonds in the society, with the other
three agents without them. These combinations referred to
agents of different social ranks (from A1, the highest-ranked,
to A6, the lowest-ranked), and are inspired by relationships in
biological systems. The three combinations were as follows: Bond
Combination A consisted of agents A1-A2-A6 sharing affective
social bonds, constituting an (allo-)parental relationship; with
Bond Combination B (A3-A4-A5 bonded) and Bond
Combination C (A4-A5-A6 bonded) constituting middle-
ranked and lowest-ranked “close-kin” relationships respectively.

World Conditions (3): We conducted our experiments in
three different physical environments (Figure 5. These physical
environments (which we also call world conditions) refer to the
dynamics of food availability, and represent different degrees of
physically-challenging (and thus increasingly-stressful)
environments. Following from previous work (Khan et al.,
2019), the base world condition (the Static (STA)
environment) consists of four food resources, fixed in the four
corners of the environment. The second world condition,
Seasonal (SEA) was a dynamic environment where, after
2000 time steps, the number of food resources steadily
changed every 1,000 time steps (which we refer to as a
“season”): changing from four→one→four in one-food
increments. This loosely corresponds to biological seasons,
where food steadily becomes more and less abundant in fixed
time intervals. Our third environment, Extreme (EXT), was a

TABLE 3 | Table summarising the three experimental parameters and a brief description of each experimental condition. Coloured cells correspond to the illustration of the
model types in Figure 6. BV = Bond Valence; BV+ST = Bond Valence + Stress Tolerance. World conditions are illustrated in Figure 5. Equations refer to our modelling of
each respective effect. Agent number refers to her hierarchical rank (1 = highest, 6 = lowest).

Model types

Control Agent model does not include any of OT’s effects.

Type BV OT modulates the valence of social support (Eq. 6); reducing the perception of external stress (Eq. 8)

Type BV+ST Type BV effects and OT modulates internal stress tolerance (Eq. 15)

Bond Combinations
A Agents A1-A2-A6 bonded; Agents A3-A4-A5 unbonded.
B Agents A3-A4-A5 bonded; Agents A1-A2-A6 unbonded.
C Agents A4-A5-A6 bonded; Agents A1-A2-A3 unbonded.
World Conditions
Name Description
Static (STA) Static environment where four food resources are fixed in the corners of the environment (Figure 5, left).
Seasonal (SEA) Dynamic environment where food resources steadily changes every 1,000 time steps in one-food increments (Figure 5,

centre).
Extreme (EXT) Dynamic environment where food resources suddenly changes every 1,000 time steps increments (Figure 5, right).

FIGURE 5 | Screenshots of the three environments that our experiments were conducted in. Yellow spheres = food resources. Green discs = agents. Left: The
Static (STA) environment, with four fixed food resources in each corner of the simulated environment. Centre: The Seasonal (STA) environment. After 2000 time steps,
food resources (yellow spheres) incrementally decrease by one resource every 1,000 time steps (inner white arrows); and then increase at the same rate (outer white
arrows). Right: The Extreme (EXT) environment. After 2000 time steps, food resources immediately change from four to one, back to four, every 1,000 time steps.
The size of the disc represents an agent’s rank (the higher the rank, the larger the agent).
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dynamic environment where changes in food resources were
more severe: changing from four to one resource instantaneously
across the same time intervals. This represented more “extreme”
changes in the physical environment (i.e. such as an
unpredictable change in the ecosystem which results in severe
food shortages). The specific details of these environmental
changes can be found in Table 4.

Experiments were conducted using a PC running Windows
10 64-bit operating system with an Intel Xeon CPU at 2.5 Ghz (8
threads) and 12 GB of RAM. Each experimental condition was
simulated 20 times, with each run limited to 15,000 time steps
(where one time step is defined as a single simulation update
cycle). We have previously found this (Khan et al., 2020) to be a
sufficient number of observations for statistical analysis in similar
experimental set ups. The total run time for all experiments using
this set up was approximately 70 h Figure 6.

3.2 Metrics
Agent performance was primarily assessed in terms of its
“viability” (Ashby, 1954). Using the metrics proposed by
(Avila-Garcia and Cañamero, 2004), we considered agent
viability across numerous measures; by both accounting for
the length of time (the quantity) of her viability, as well as
how well an agent regulates her internal variables (the
“quality” of stability).

The first metric, Life Length (LL), describes the number of time
steps that agent A survives (i.e. keeps her Energy variable above 0)
as a percentage of the total simulation run time (between 0% and
100%). It is calculated as follows:

LLA � tlifeA
tmax

(16)

where tlifeA is the total number of time steps agent A kept her
Energy above 0, and tmax is the maximum simulation run time (in
this case, 15,000). The second measure, Comfort (CO) is one of
two measures of “quality,” and measures the mean value
(between 0 and 1) of an agent’s two internal variables (Energy
and Social):

COA: � ∑tlifeA
i�1

1 − di( )
tlifeA

(17)

where di is the mean of the two internal variables Energy and
SocialNeed. The second measure of “quality”, Physiological
Balance (PB) reports the homogeneity (between 0 and 1) of
the satisfaction of both internal variables during an agent’s life.

PBA � ∑tlifeA
i�1

1 − |d1 − d2|( )( )
tlifeA

(18)

where (1 − (|d1 − d2|) denotes the absolute difference between the
internal variables Energy (d1) and SocialNeed (d2).

In addition to these viability-related metrics, we reported data
related to the agents’ internal hormone (OT and CT) and Stress
Tolerance (ΘST) levels, and the (temporal) distribution of social
behaviours (Groom andAggression. We also report rates of “intra-
bond” (Grooming or Aggression) interactions: the number of
either Grooming or Aggression that a bonded agent (or group
of agents) performed towards other members of their bonded

TABLE 4 | Availability of food across different “seasons” in each of the world environments illustrated in Figure 5. Food availability is colour-coded for visualisation purposes:
green indicates periods where maximum number of food resources 4) are available, and red indicates periods where minimum number of food resources 1) are available.

Time step Start 0 2001 3001 4001 5001 6001 7001 8001 9001 0,001 11,001 12,001 13,001 14,001
End 2000 3000 4000 5000 6000 7000 8000 9000 10,000 11,000 12,000 13,000 14,000 15,000

World Condition Season 1A/1B 2 3 4 5 6 7 8 9 10 11 12 13 14
Static

Seasonal 4 3 2 1 2 3 4 3 2 1 2 3 4 3

Extreme 4 1 4 1 4 1 4 1 4 1 4 1 4 1

FIGURE 6 | Left: The two different model types investigated in our experiments. Right: The three different combinations of agents that shared affective social bonds
(Bond Combinations). Arrows between agents indicate agents that shared an affective social bond in each condition.
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group, as a percentage of the total number of that particular type
of interaction performed by that agent (group). Specifically:

intraBondGroom � GroomA→B

GroomA→B + GroomA→UB
(19)

intraBondAggression � AggressionA→B

AggressionA→B + AggressionA→UB

(20)

where GroomA→B is the number of grooming interactions
performed by agent A on another bond partner B, and
GroomA→UB is the number of Grooming interactions
performed on unbonded (UB) agents. This definition is
identical for Aggression interactions.

Datawas captured at each time step at the individual agent level, and
aggregated across all simulation runs. We use Pearson’s Correlation
Coefficient to describe correlations between experimental variables. For
between-group comparisons, we use one-way analysis of variance
(ANOVA). Statistical significance is reported at the 0.05 level. We
supplement our quantitative results with qualitative reporting of agent
and group behaviour where appropriate.

3.3 Results
We first report results regarding our viability-related metrics (Life
Length (LL), Comfort (CO), and Physiological Balance (PB))
across our different experimental conditions. We report results
both at the aggregated society level, and on the performance of
bonded agent groups, with some reporting of unbonded groups
where appropriate.

3.3.1 Viability Indicator Metrics
Overall, compared to control, bonded agents across both the Type
BV and Type BV+ST conditions reported significant
improvements across all three viability indicator metrics (Life

Length, Mean Comfort, and Physiological Balance). In general,
Type BV+ST agents reported greater overall improvements in
viability compared to Type BV agents. These results were
reported at an aggregated level for bonded agent groups, as
well at the society level. Figure 7 shows the mean results of
the viability indicator metrics for bonded agents across all
experimental groups.

Life Length: At an aggregated level, both Type BV and BV+ST
models outperformed control groups across all experimental
conditions, with Type BV+ST groups reporting statistically-
significant differences across all conditions. Comparing
between-groups, Type BV+ST groups survived for longer than
Type BV across all environmental conditions: with LL
improvements between 20% and 70% in STA world
conditions, 56%–75% in SEA world conditions, and 37%–72%
in EXT world conditions (p < 0.05 across all results). This
improvement was seen for both bonded (+27%–+74%) and
unbonded (+13%–+86%) agents in Type BV+ST conditions vs.
Type BV conditions.

Comfort: We found statistically-significant improvements in
CO for bonded agents in Type BV+ST conditions (STA:
0.82–0.85 (p = 0.035), SEA: 0.81–0.84 (p = 0.031, EXT:
0.73–0.80 (p = 0.025)) vs. Type BV agents (STA: 0.69–0.71,
SEA: 0.62–0.63, EXT: 0.58–0.61). There was a non-significant
difference between bonded agents in Type BV conditions and
Control groups (p = 0.22), but a statistically-significant difference
between Type BV+ST and Control (p < 0.01 for all world
conditions and bond combinations), and Type BV+ST vs.
Type BV (p = 0.02 − 0.042) models. These improvements
were found in bonded agents (Figure 7, left), and to a lesser
extent in unbonded agents (Figure 7, right). Overall, only bonded
agents in the Type BV+ST groups reported consistent
improvements in Mean Comfort vs. Control groups.

FIGURE 7 | Results of the three viability-related metrics by model type (Control, Type BV, Type BV+ST): aggregated by bonded (Bo) and unbonded (Unb) agents
across all world (STA: Static, SEA = Seasonal, EXT = Extreme) and Bond (A,B,C) conditions. Black bars show standard error of mean values.
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Physiological Balance: Bonded agents in both Type BV (STA:
0.78–0.80, SEA: 0.78, EXT: 0.76) and Type BV+ST (STA:
0.87–0.97, SEA: 0.72–0.77, EXT: 0.72–0.83) conditions
reported statistically-significant improvements in PB vs.
Control. Compared to Control, bonded agents reported
improvements to PB in both Type BV (+6–21%, p = 0.031 −
0.21), with statistically-significant improvements across all
conditions in Type BV+ST (+16–49%, p = 0.01 − 0.02)
groups. For both model types, unbonded agents also
experienced improvements in PB (Type BV: −2–+39%, p =
0.036 − 0.49; Type BV+ST: +11–43%, p = 0.022 − 0.036).

In sum, we found improved viability-related performance for
bonded agents (and for some unbonded agents) in conditions
where half of the society shared affective social bonds and were
endowed with (at least) one of the stress-regulating effects.
Comparing between models, groups endowed with the Type
BV+ST model (those with two stress-regulating effects of OT)
outperformed Type BV groups (endowed with one mechanism)
across all viability-related metrics. This was seen across all
environmental and bond conditions.

3.3.2 Hormone and Stress Tolerance Levels
3.3.2.1 Oxytocin
In both Type BV and Type BV+ST groups, bonded agents
reported the highest amount of oxytocin (OT) in STA world
conditions (Figure 8). This result was found across all bond
combinations. We found associations between the increasing
difficulty of the physical environment (STA, SEA, EXT) and
reduced levels of mean OT for bonded agents. This was seen
across both Type BV (r = 0.763) and Type BV+ST (r = 0.693)
groups.

Bonded agents endowed with the Type BV+STmodel reported
statistically-significant higher mean OT levels vs. Type BV

societies across all environmental conditions (Bond A:
+7%–75%, B: +46%–57%, C: +42%–57%, p < 0.01 for all
conditions), with one exception (Bond A in SEA
environments). These improvements in OT were reported
despite no direct changes on OT “secretion” between these
two models. Surprisingly, and despite their higher dominance
ranks, agents in Bond A (Figure 8) reported the lowest mean OT
levels (0.55–0.64) compared to lower-ranked Bond B (0.67–0.74)
and C (0.65–0.74) respectively in the Type BV+ST groups.

3.3.2.2 Cortisol
In Control groups, we found mean CT levels to be strongly
inversely-correlated with an agent’s social rank across all
environmental conditions (STA: r =0 .711, SEA: r = 0.826,
EXT: r = 0.829). This correlation was not found in conditions
using the Type BV or Type BV+ST models, when social bonds
were accounted for.

In conditions using either the Type BV or Type BV+STmodel,
we found lower mean CT levels for both bonded and unbonded
agents vs. Control (Figure 8, bottom). Increases in mean CT
levels in these groups were associated with the increasingly-
challenging world conditions (STA, SEA and EXT, respectively,
Figure 8, bottom). Comparing the two groups, bonded agents
with the Type BV+ST model reported statistically-significant
reductions in mean CT vs. Type BV bonded agents across all
bond combinations and environmental conditions (STA: -6 to
-24% p = 0.013 − 0.025, SEA: -7 to -11%, p = 0.027 − 0.036, EXT:
-5 to -6%, p = 0.033 − 0.047), with one exception (EXT, Bond B,
+1%, not significant). In sum, Type BV+ST groups experienced
significantly lower levels of mean CT when compared to both
Control and Type BV groups.

As we had expected, we found that the evolution of mean CT
levels to be associated with the dynamics of the three different

FIGURE 8 | Results for the mean OT and CT levels across all experimental conditions. STA = Static, SEA = Seasonal, and EXT = Extreme world environments,
respectively. Bond Conditions are denoted as A, B, and C, respectively. Top: Mean OT levels for bonded agents in both Type BV and Type BV+ST models. Bottom:
Mean CT levels for bonded (green line) and unbonded (grey line) agents across Control (CTRL), Type BV, and Type BV+ST models.
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physical environments (STA, SEA, EXT, Figure 9). While CT
levels increased throughout the course of the experiment for both
model types, the magnitude of these increases was significantly
greater in the two dynamic conditions (SEA and EXT): roughly
following the different dynamics of food availability (Table 4).
Across all conditions, mean CT trends were similar between both
Type BV and Type BV+ST groups, with the latter generally
reporting lower mean CT levels in comparison.

Mean CT and Viability Indicators: At an individual agent level,
we found a moderately-strong correlation between mean CT
levels and mean survival time (LL) for agents with affective
social bonds. This association was seen across both Type BV
(r = 0.631) and Type BV+ST (r = 0.690) groups. In Type BV+ST
groups, this correlation was weaker in STA environments for all
Bond Conditions (A: r = 0.392, B: r = 0.453, C: r = 0.211), but
stronger over SEA (A: r = 0.529, B: r = 0.704, c: r = 0.658) and EXT
(A: r = 0.687, B: r = 0.723, c: r = 0.608) world conditions. We
found no association between Mean Comfort (CO) and mean CT
levels, but moderately-strong correlations between mean CT and

Physiological Balance (PB) in the two dynamic environments
(SEA: A: r = 0.841, B: r = 0.810, C: r = 0.748, EXT: A: r = 0.752, B: r
= 0.776, C: r = 0.547).

3.3.3 Stress Tolerance
As a reminder, in the Type BV+ST model, OT also modulated an
agent’s internal Stress Tolerance (θST, Eq. 15), which had a default
value of 0.5. Figure 10 shows the evolution of the mean θST value
across all three environmental conditions, aggregated for all
agents in each bond condition. Mean θST at the agent-level
can be seen in Table 5. Overall, mean θST for bonded agents
corresponded to the environmental difficulty: STA: Bond A: 0.42,
Bond B: 0.56, Bond C: 0.54; SEA: Bond A: 0.35, Bond B: 0.42,
Bond C: 0.42, and EXT: Bond A: 0.33, Bond B: 0.51, Bond C: 0.42,
respectively.

Despite some agents (A1 and A2) in Bond Condition A being
the highest-ranked in the society, agents in this bond condition
reported the lowest mean θST values across all conditions (A1,
0.29–0.31, and A2 0.31–0.33), with the lowest-ranked bond

FIGURE 9 | Temporal evolution of mean CT levels for bonded agents in Type BV (blue) and Type BV+ST (green) model conditions, across the different
environmental conditions. STA = Static, SEA = Seasonal, EXT = Extreme world conditions, respectively.

FIGURE 10 | Temporal evolution of the internal Stress Tolerance (θST) values, aggregated for bonded agents in each bond condition. Bond A = Agents A1, A2, A6
bonded. Bond B A3, A4, A5. Bond C A4, A5, A6. Mean θST for individual agents can be seen in Table 5.
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partner A6 adapting their θST to significantly-higher values
(0.40–0.61). Bonded agents in Bond Conditions B and C
reported significantly less variance between their θST values
(0.2–0.7) than agents in Bond Condition A (0.11–0.30).

In summary, the adaptation of internal Stress Tolerance was
not consistent between groups, but contextually-dependent on
the specific bond combination and the degree of physical
(environmental) challenge. Within bonded groups themselves,
the adaptation of an agents’ internal Stress Tolerance was not
consistent, with closer-ranked agents (Bond Conditions B and C)
reporting less variance between bonded agents than bonded
agents with larger rank differences (Bond Condition A).

3.3.4 Social Interactions
3.3.4.1 Intra-Bond Grooming and Aggression
We now report the rates of “intra-bond” socio-positive Groom
and socio-negative Aggression interactions that occurred between
agents who shared an affective social bond. As a reminder, the
term “intra-bond” refers to interactions that take place between
agents who share an affective social bond in each bond
combination condition. The rate is defined by Eq. 19.

Grooming: Overall, we found intra-bond Grooming rates to
approximately correspond to the mean social rank of bonded

agents (Bond Conditions A, B, and C, respectively; Table 6) for
both Type BV and Type BV+ST models. In other words, the
higher the mean rank of the bonded group, the higher the
amounts of intra-bond Grooming. Comparing Type BV and
Type BV+ST agents, Type BV+ST agents reported significantly
higher rates of intra-bond Grooming across all bond and world
conditions (Table 6), with these differences most notable in Bond
Conditions B and C.

However, we found inconsistent results between intra-bond
Grooming rates and increased environmental challenges (STA,
SEA, and EXTworld conditions respectively). In Type BV groups,
Bond Condition A reported their highest intra-bond Grooming
rates in STA world environments (64%), Bond Condition B in
SEA environments (42%), and Bond Condition C in EXT
environments (22%). Similar results were reported by Type
BV+ST agents (Bond Condition A: STA [68%], C: EXT:
[35%]), with Bond Condition B reporting improved intra-
bond Grooming in STA environments (54%).

Aggression: For all groups (including Control), overall
Aggression rates at the society level were associated with the
relative challenge of the world environment (Table 6). STA world
conditions saw the lowest Aggression rates (Type BV: 7–9%, Type
BV+ST: 6%–9%), with higher ranges seen in the SEA (Type BV:

TABLE 5 | Mean values of the Stress Tolerance for bonded agent in Type BV+ST models, aggregated across all simulation runs. Default Stress Tolerance for unbonded
agents = 0.5. Red cells highlight agents that shared an affective bond in those conditions. STA, Static; SEA, Seasonal; EXT, Extreme world conditions, respectively.

World
Condition

Bond
Combination

A1 A2 A3 A4 A5 A6 Mean
of Bonded
Agents

STA A 0.31 0.33 0.50 0.50 0.50 0.61 0.42
STA B 0.50 0.50 0.60 0.54 0.53 0.50 0.56
STA C 0.50 0.50 0.50 0.54 0.55 0.52 0.54
SEA A 0.29 0.31 0.50 0.50 0.50 0.44 0.35
SEA B 0.50 0.50 0.43 0.41 0.42 0.50 0.42
SEA C 0.50 0.50 0.50 0.44 0.41 0.40 0.42
EXT A 0.29 0.31 0.50 0.50 0.50 0.40 0.33
EXT B 0.50 0.50 0.48 0.52 0.52 0.50 0.51
EXT C 0.50 0.50 0.50 0.43 0.43 0.40 0.42

Bold values indicate mean Stress Tolerance value for agents who shared an affective bond in each condition.

TABLE 6 |Rates of intra-bondGrooming and Aggression, determined as a percentage of overallGrooming and Aggression behaviours performed by bonded agents in each
condition. STA, Static, SEA, Seasonal, EXT, Extreme world conditions.

Model type

Type BV Type BV+ST

Bond Condition World Condition Grooming (%) Aggression (%) Grooming (%) Aggression (%)

STA 64 31 68 25
SEA 60 42 63 27

A EXT 60 45 65 23

STA 37 78 54 69
SEA 42 91 45 52

B EXT 29 78 47 73

STA 15 100 23 100
SEA 17 100 28 100

C EXT 22 100 35 100
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12–13%, Type BV+ST: 10%–14%) and EXT (Type BV: 14–18%,
Type BV+ST: 14%–18%) world conditions.

We found a moderately-strong correlation between the
relative challenge of the world and the total number of
Aggression interactions at a society level for all agents across
Type BV (r = 0.526) and Type BV+ST (r = 0.661) groups. At the
intra-bond level, however, across all bond groups and
environmental conditions, bonded agents endowed with the
Type BV+ST model reported lower intra-bond Aggression
rates vs. Type BV. In other words, higher rates of Aggression
interactions by Type BV+ST bonded agents were performed on
agents with whom they did not share an affective social bond
(unbonded agents), compared to the Aggression performed by
those endowed with the Type BV model.

In sum, bonded agents with the Type BV+ST model reported
higher rates of intra-bond Grooming, and lower rates of intra-
bond Aggression compared to Type BV models. While no
consistent association was found for socio-positive Grooming
rates at an aggregated level, overall and intra-bond Aggression
rates were associated with increasingly-challenging (i.e. more
stress-inducing) world conditions.

3.3.4.2 Temporal Distribution of Positive Social Interactions
Compared to the Type BV group, bonded agents endowed with
the Type BV+ST model saw an improvement in the absolute
number of intra-bond Grooming interactions (Figure 11;
Table 6). These improvements in the number of intra-bond
Grooming interactions were most notable during the earlier
stages in the world environments. In the Type BV group, 36%
of all intra-bond Grooming occurred within the first two food
“seasons” (2,000 time steps, when food remained unchanged)
aggregated across all conditions. This was lower for bonded
agents in the Type BV+ST group (with 24% of all intra-bond

Grooming occurring during the same time period), despite
reporting an increase in the overall Grooming.

In other words, higher rates of intra-bond Grooming were
concentrated in earlier phases in Type BVmodels, withGrooming
interactions in Type BV+ST models found to be more dispersed
throughout the experimental run. While we expected Grooming
to decrease in later phases as the environmental stressors
increased in the dynamic physical environments (SEA and
EXT), we found this to occur more in agents endowed with
the Type BV model, but less so in agents with the Type
BV+ST model.

Early-Stage Grooming and Life Length: We further analysed
whether early-stage socio-positive interactions (defined as
number of interactions within the first 2,000 time steps, where
food availability was abundant in all conditions) between bonded
agents were associated with improvements in long-term viability.
While we found mixed, non-significant correlations between
these variables in Type BV conditions, we found that in Type
BV+ST conditions, the total amount of early-stage intra-bond
Grooming was strongly correlated with mean Life Length across
all bond conditions (Bond Condition A: r = 0.723, B: r = 0.772, C:
r = 0.610), and similarly-strong correlations as world conditions
increased in difficulty (Table 7).

Early-Stage Grooming and Affective Perception: We then
performed a post-hoc analysis to assess the relationship
between the number of early-stage (t < 2000 time steps)
positive social interactions (Grooming) and the mean
AgentVal (χ, the measure of affective perception) of bond
partners. We present this relationship in Table 7 Overall, the
higher the amount of early-stage Grooming between bond
partners, the higher the mean affective perception (AgentVal,
χ) of bond partners in the long-term. This relationship was
significantly stronger in Type BV+ST models (where OT had a

FIGURE 11 | Temporal dynamics of total intra-bond Grooming between bonded agents in each world condition (STA = Static, SEA = Seasonal, EXT = Extreme)
across 20 simulation runs, for both Type BV (blue) and Type BV+ST (red) models.
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secondary effect on adapting the internal Stress Tolerance)
than Type BV models where OT only increased the valence of
social bond partners. We discuss the reasons for this in
Sections 4.2, 4.3.

In sum, early-stage Grooming between bond partners was
associated with improvements in mean Life Length for bonded
agents with the Type BV+ST model across numerous physical
and social environments. >From the post-hoc analysis, we also
found a relationship between the increased difficulty of the
physical environment and the affective perception of bonded
agents in the Type BV+ST (but not Type BV) group. Unlike
bonded agents with the Type BV model, positive social
interactions between bonded agents in Type BV+ST models
were significantly less affected by dynamic environmental
conditions, with positive social interactions more evenly
distributed across the experimental runs in the Type BV+ST
groups.

4 DISCUSSION

Our results found how social support, through some of the
hypothesised hormonal mechanisms that underpin the “social
buffering” phenomenon, resulted in significant improvements in
viability for artificial agents who shared affective social bonds,
across several stress-inducing environmental and social
conditions. These artificial agents reported significant viability
improvements vs. control when their agent models accounted for
either one or two of oxytocin’s (OT’s) hypothesised stress-
regulatory effects: modulating the valence of social support
(Type BV models in our experiments), and “buffering” the
internal stress response system (Type BV+ST models)—with
agents endowed with the latter model significantly
outperforming the Type BV model and Control across all
viability-related metrics.

Taken together, we found support for our hypothesis (H1)
that “social buffering” can improve the viability of a small group
of artificial agents with affective social bonds, through the social
regulation of adaptive “stress” mechanisms. However, in
contrast to our prediction that we would see larger wellbeing
improvements associated with oxytocin’s modulation of social
salience, we found that the magnitude in wellbeing
improvements was significantly greater between the two
groups endowed with the different “social buffering”
mechanisms (Type BV vs. Type BV+ST models) than
between the groups with no “social buffering” mechanisms

and those endowed with a single “social buffering”
mechanism (Control vs. Type BV models).

Furthermore, we found that the efficacy of these “social
buffering” mechanisms was not consistent between
environmental and social conditions; suggesting that the
benefits associated with “social buffering” may not be
generalisable. Rather, the (long-term) affective perception and
interactions with social support, and therefore its effects on
regulating stress and improving viability, was significantly
affected by the amount of positive, early-stage bond partner
interactions, as well as the degree of the physical and social
challenges for bonded agents. We found how early-stage bond
partner interaction—and thus the long-term affective perception
of the social and physical environment—was also significantly
affected by the types of stress-regulatory mechanisms that bonded
agents were endowed with.

Despite being detrimental to agent performance in some
scenarios, we found how a stress-induced hormone (CT) can
provide adaptive viability advantages (with respect to
regulating a homeostatically-controlled internal physiology)
for artificial agents, permitting agents to dynamically adapt
physiology and behaviour across numerous contexts. The
degree to which “stress” was adaptive (as opposed to
maladaptive) was contextually-dependent on both the
challenge of the physical environment as well as the
(perceived) availability of affective social support. We argue
that researchers of embodied, socially-adaptive agent models
should consider such affective, stress-related mechanisms as a
low-level adaptive mechanism.

The contextual differences in our findings suggest that the
(efficacy of the) stress-reducing effects of social support may
not be a universal phenomenon among social (natural and
artificial) agents, but rather dependent on the wider social
and physical environment, as well as an agent’s own
development of affective systems. For natural agents, our
results can guide future studies in better understand some
of the contexts that underpin the inconsistent stress-reducing
effects of social support (Abbott et al., 2003). For artificial
(social) agents, these findings have implications on the future
development of their socially-adaptive models. Rather than a
general model of (social) adaptation, future approaches may
need to consider the specific environmental or social
environments that these artificial agents will be required to
adapt to. Below, we focus on several key findings below,
supplementing the quantitative results presented above
with qualitative analysis.

TABLE 7 | Results of r-values of Pearson’s Correlation Coefficient tests between the number of early-stage (i.e., before 2,000 time steps) intra-bond Grooming interactions
and mean AgentVal∖Chi value across both model types, bond conditions and world conditions.

Early-stage grooming × AgentVal Early-stage grooming × Life length

Model type Type BV Type BV+ST Type BV Type BV+ST

WORLD/BOND CONDITION A B C A B C A B C A B C
STATIC 0.542 0.614 0.680 0.691 0.772 0.757 0.387 0.451 0.353 0.591 0.680 0.550
SEASONAL 0.551 0.601 0.578 0.811 0.745 0.785 0.427 0.224 0.623 0.710 0.759 0.633
EXTREME 0.696 0.753 0.732 0.838 0.850 0.848 0.586 0.375 0.332 0.802 0.798 0.605
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4.1 Early-Stage Social Interactions Affects
Long-Term Affective Perception of Social
Support and Long-Term Survival
We found how both the long-term affective perception of social
support (in non-control groups) and survival time (Life Length) was
strongly correlated with early-stage positive social interaction
(Grooming) between bond partners (Table 7); underpinning the
long-term efficacy of the “social buffering” effects of (affective) social
support (via stress reduction, Figure 9). These results highlight a
significant role of adequate, early-stage positive social interactions in
the long-term development of affective (social) perception of social
bond partners: potentially affecting the efficacy of their stress-
reducing (“social buffering”) effects. Specifically, that there was a
strong relationship between the number of early-stage positive social
interactions between bonded agents, an agent’s affective perception
of bond partners, and their survival time (i.e. their ability tomaintain
homeostatic stability).

These dynamics support discussions from both neuroscience
(Gunnar and Hostinar, 2015) and psychology (Landry et al.,
2001) regarding the implications of early-stage positive social
interaction on the long-term social and affective development in
social agents (including humans): with oxytocin a likely mediator
in this affective development (Carter, 2014). Similarly, the lack of
(early-stage) social interactions has been found to have adverse
effects on long-term affective development—and even the onset
of social and affective disorders—across numerous animal
models (see (Mumtaz et al., 2018) for a review). The results
from our embodied model further strengthens these suggestions.

However, this association was only found in the models where
oxytocin also modulated internal stress tolerances (Type BV+ST),
and not in groups where oxytocin only improved bond partner
valence. These results may therefore give insight into some of
oxytocin’s mechanisms in biology which contribute to the
affective development of social agents, and we predict that it is
this “buffering” of the internal stress tolerance system (i.e. such as
the autonomic nervous system) that may play a significant role in
the socially-affective development in biological agents Future
work using biological models should look at empirically
testing this hypothesis.

4.2 Oxytocin-Mediated “Social Buffering”
Facilitates an Affective “Anticipation” of
Stressful Conditions
A second observation of agents endowed with the Type BV+ST
model (where OT “buffered” their stress tolerance) was that this
mechanism underpinned a positive affective feedback loop
between physiological adaptation and socio-positive
interactions (Figure 12). We attempt to explain the causal
interactions underpinning this affective feedback loop, with
references to our quantitative results where appropriate.

Early-stage Grooming between bond partners (i.e., when food
was more abundant, Figure 5) as described in Section 4.1
permitted OT to stay elevated for bonded agents (Figure 8).
Elevated OT, which adapted the Stress Tolerance (i.e., the
activation level of the “sympathetic nervous system,” Eq. 15;
Figure 10) of these bonded agents, then permitted those agents to

FIGURE 12 | Illustration for how early-stage socio-positive interaction in Type BV+ST, but not Type BV, models shaped long-term affective perception and the
long-term efficacy of “social buffering.”Grooming in early stages (when food wasmore abundant) releases OT in Agent A, which reduces the perception of external stress
(Eq. 8) and therefore reducing CT release. In Type BV+ST models, OT adapts the internal Stress Tolerance, permitting higher amounts of CT to be tolerated before
undergoing “stress”. In later food phases (in SEA and EXT conditions), when food becomes scarcer and external stress leads to increased CT release, CT levels
were less likely to transgress the “buffered” Stress Tolerance value. This resulted in reductions in socio-negative interactions, and increased socio-positive interactions,
between bond partners: which underpinned further OT release, improving valence of social support, and improved the long-term efficacy of “social buffering” effects. +
denotes increase of hormone or behaviour. - denotes a decrease.
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tolerate more stress (CT) before becoming “stressed”. In dynamic
environments (SEA and EXT), when the physical environment
changed (i.e., when food availability decreases at various rates
over time), the increased environmental stress increases CT levels
(Figure 9). However, as OT levels modulated internal stress
tolerances (θST) before these environmental changes occurred,
agents did not become “stressed.” Instead, they continued to
perform socio-positive interactions (as opposed to socio-negative
interactions) between each other. In other words, agents were able
to maintain strong affective relationships and elevated OT levels
during periods of “good” environmental conditions, which
“buffered” their Stress Tolerance before environments
changed: as a type of “anticipatory” process to withstand the
upcoming environmental changes.

Conversely, in Type BV models where OT did not adapt this
internal Stress Tolerance, bonded agents reported lower OT levels
(Type BV: 0.37–0.51, Type BV+ST: 0.40–0.74), increased CT
levels (0.28–0.66 vs. 0.22–0.60), and higher absolute intra-bond
Aggression numbers (810 vs. 296). These physiological and
behavioural consequences of not adapting the stress tolerance
limited the long-term efficacy of social support on reducing stress.

For Type BV+ST agents, the stress-reducing effects of OT-
mediated social support resulted in increased OT levels for
socially-supported agents, which promoted further adaptation
of the stress response and prosocial behaviours which further
promoted OT release and maintained strong affective
relationships with bond partners.

We suggest that these allostatic-type mechanisms, mediated by
oxytocin, constitute a type of low-level, affect-based anticipatory
adaptation of an agent’s internal model prior to the onset of
future (unseen) stressful or threatening conditions, improving
viability at the agent and group level.

This affective feedback loop mirrors similar suggestions from
biology and neuroscience: that OT’s effects on stress-regulation
may be facilitated (in part) by its positive feedback loop on
seeking prosocial interactions (Taylor, 2006; Insel and Young,
2001). However, in biological systems, reward-based
dopaminergic mechanisms have previously been suggested to
play a role in these effects (Bielsky and Young, 2004; Nelson and
Panksepp, 1998). Our results found these effects to emerge in
absence of such systems. Considering our biologically-grounded
approach to modelling these hormonal mechanisms and
behaviours (Section 2) and the findings of this study, we
predict that in natural systems (including humans), OT
mechanisms may play a more direct role on affiliative
behaviours, independent of reward-based mechanisms.

4.3 Early-Stage Social Interaction, Affective
Development, and “Tend-and-Befriend”
Behaviours for Long-Term Stress
Regulation
Following observations in ethology which finds associations with
food scarcity and reduced intra-group grooming interactions (i.e.
more competition (Yamakoshi, 2004; Lehmann et al., 2007), we
had expected to find reduced intra-bond Grooming during
periods of “poorer” food availability (i.e. as environmental

stress increased: Table 4). However, this was only found for
bonded agents endowed with the Type BV model (Figure 11). In
contrast, Type BV+ST groups reported increases in socio-positive
interactions (Grooming) and reduced Aggression, even during
periods where the external environment increased in challenged.

As we found in our previous study (Khan et al., 2020), the
different social behaviours exhibited during stressful conditions
bear similarities to (the behavioural components of) the “fight-or-
flight” and “tend-and-befriend” theories. Briefly, “fight-or-flight”
(Cannon, 1929) proposes that, in response to a threatening or
stressful situation, social agents can either become aggressive
towards others or withdraw from the situation. More recently, the
“tend-and-befriend” hypothesis (Taylor, 2006) suggests that
social agents (including humans) seek positive, affiliative
interactions during stressful conditions in order to facilitate
long-term survival.

We propose that the “fight-or-flight” behaviours seen in Type
BV agents was a stress-reducing behaviour performed in the
absence of adequate anticipation of stressful conditions—a
“reactive” behaviour in absence of any “buffering” of stress
tolerance—while the “tend-and-befriend” behaviours seen
from agents endowed with the Type BV+ST models were
associated with agents that also engaged in early-stage positive
social interactions (Section 4.1). As we suggested above, these
early-stage social interactions were associated with elevated OT
levels and the long-term affective regulation of stress
mechanisms, which we suggest underpinned a type of socially-
mediated “affective development” in these agents.

Given oxytocin’s implications on nurturing, “tend-and-
befriend” behaviours across species (Taylor, 2006; Carter,
2014; Ross and Young, 2009), our findings may lend further
support to the hypothesis that these (long-term) stress-coping
behaviours develop as a result of positive social interactions in
early life stages; which may underpin the appropriate
development of an “affective” system via OT mechanisms. In
addition, the “tend-and-befriend” hypothesis has also been
considered a more “maternal” behaviour in natural systems
(Taylor, 2006), where both elevated levels of OT and female
reproductive hormones have been implicated in mediating these
social behaviours. This suggestion is supported by our own
results, with the increased OT levels we had observed in our
Type BV+ST models (Figure 8) correlating with early-stage (and
overall) socio-positive interactions (Table 6).

Taken together, these findings suggest that oxytocin may play
a significant role in early-stage affective development, and we
predict that its effects on developing (or adapting) an individual’s
tolerance to (physiological) stress (via its effects on the autonomic
nervous system) may be a key contributor to the different stress-
regulating behaviours (“fight-or-flight” vs. “tend-and-befriend”)
exhibited during stressful situations. Future investigations should
consider focusing on the effects of oxytocin, in absence of other
hormones (such as testosterone and oestrogen which have been
implicated in these behaviours) in biological systems.

While these mechanisms may be difficult to study in biological
systems, we propose that embodied computational models (such
as the model presented in this paper) can be used to appropriately
abstract and test these hypothesised biological mechanisms in
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silico. For adaptive models interested in human–robot (or
robot–robot) interaction, these findings also highlight how the
temporal nature of positive (social) behaviours can play a
significant role in the long-term efficacy of behavioural
adaptation.

4.4 Hormones as Embodied, Allostatic
Biomarkers of Contextual Information for
(Artificial) Agents
We argue that the hormonal mechanisms that we have modelled
can be considered embodied physiological “biomarkers” by being
able to dynamically encode (historical and current)
environmental information. Further, we suggest that these
minimal, low-level mechanisms can complement (and even
challenge) existing (biologically-inspired) approaches to
embodied adaptive systems, as a computationally-efficient
approach to integrating numerous points of (contextual)
information. The encoding of this information via (simple)
hormonal mechanisms can be considered a type of functional
affective state—aggregating multiple, diverse sources of
information down to a small subset of embodied signals—that
can then play an adaptive or predictive role in embodied, socially-
adaptive agent models. Here, we present our view on how both of
the hormones in our agent model appropriately encoded
contextual information about internal and external (both
physical and social) environments.

Cortisol’s release function (Equation 8) accounts for the
(perceived) internal physiological error signals—which can be
considered a low-level interoceptive signal of physiological states
[Schulz and Vögele, 2015]—and the “uncertainty” (specifically
through the perceived absence of resources), of the external
environment (Sapolsky, 2004). Simply put, cortisol can be
considered an embodied physiological signal that aggregates
the current information about the (perceived) internal and
external environments, with a parameter (w) that determines
its sensitivity to perceived changes.

Our modelling of oxytocin—released as a function of positive
social interaction—can be considered an internal signal that
represents the (perceived) level of (historical) positive social
support in a small society. Here, rather than modelling
discrete, computational models of memory as previous
approaches have done (Leite et al., 2014; Ho et al., 2009) and
given its modulatory role on the formation (and recall) of social
memory and social learning in biological systems (Neumann,
2008), we present our direct approach towards modelling “social
memory” as a low-level, biologically-inspired approach that can
capture the dynamics of this higher-order (cognitive) function in
our embodied agent model.

In addition, since CT had a direct effect on adapting a
homeostatically-controlled need (Energy, Table 1), and OT
(directly and indirectly) acted on systems that contribute to
reactive or anticipatory social behaviours (Section 4.3), these
basic hormones sufficiently capture “allostatic” mechanisms
(Schulkin, 2011; Sterling, 2020). For OT specifically, this
mirrors more recent suggestions from cognitive science
(Quintana and Guastella, 2020), suggesting that the biological

hormone (oxytocin) should be considered a hormone that
underpins allostatic adaptation, rather than only having a
regulatory role (or roles) on social behaviours (Bethlehem
et al., 2014).

This minimal approach stands in direct contrast to similar
approaches towards embodied (socially-)adaptive models. Most
notable are the more recent approaches that are built on the
predictive processing (or active inference) framework (for
example, (Ahmadi and Tani, 2019; Murata et al., 2015;
Schillaci et al., 2020; Park et al., 2017)) that often focus on the
modelling of higher-order cognitive function. Such approaches
often take computationally-expensive approaches (i.e. built on
deep neural networks), and either do not update their models to
account for contextual interactions during runtime (i.e. all
training is done offline) or perform these updates (retraining
the model) as a batch process. While such models are naturally
designed to exploit the computational resources available (and
thus perform well in their respective experimental paradigms) we
argue that this puts a (computational) limit on the generalisability
of these approaches, for both artificial and biological systems.

We propose that our computationally-cheaper abstraction of
simple hormonal mechanisms is sufficient in capturing
historical (prior) and current, contextual information relevant
to the (perceived) internal, external and social environments,
and it is this information that permits physiological and
behavioural adaptation (of our homeostatically-controlled
agent model). We have demonstrated that this bottom-up,
(biologically-inspired) approach can adequately capture
features of “affective cognition” (Cañamero, 2019) and can
play a significant role in socially-adaptive embodied agent
models: overcoming some of the limitations of previous
approaches and proposing a more generalisable approach for
future models. We therefore suggest that approaches towards
embodied, (socially-)adaptive models—and in particular
biologically-inspired approaches, or those working with
computational or temporal constraints (for example, physical
agents interacting with the world in real-time; with limited
onboard computational resources)—should consider
accounting for similar low-level, hormonal mechanisms as
part of their adaptive models to capture some dynamics of
these higher-order cognitive mechanisms.

5 CONCLUDING REMARKS

In this paper, we have investigated how some of the
hypothesised, hormonal (oxytocin) mechanisms associated
with the “social buffering” phenomenon affects the wellbeing
and social behaviours of agents in a small society. Building on
previous findings, we had hypothesised that two of oxytocin’s
stress-regulating effects (improving the valence of social
support, and adapting an internal tolerance to physiological
stress) would provide significant advantages to long-term
wellbeing of agents across numerous dynamic physical and
social environments.

We used a simulated agent model to investigate our
hypotheses in a small, rank-based society of six artificial
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agents, whose goal was to “survive” by maintaining the stability of
their internal environment through physical and social
behaviours, and investigated this across a number of dynamic
environments. We modelled some of the effects related to “stress”
and the “social buffering” phenomenon through simulated
hormones (cortisol and oxytocin) and incrementally accounted
for their effects in our agent model.

Our results found how these hormonally-mediated, stress-
regulating effects the “social buffering” phenomonon provided
significant advantages to the wellbeing of agents with affective
social support. However, the long-term efficacy of these effects
was dependent on the contextual perception of affective social
support (affected by the amount of early-stage social interaction),
the environmental contexts, and the precise hormonal
mechanism(s) accounted for in the agent model. Based on the
improvements observed from the combination of multiple
hormonal effects in the agent model, our results suggest that
for artificial agents, and potentially in biological agents, the effects
of social support on regulating stress may be multi-faceted in
nature.

For natural (social) agents, our experiments show support
for the suggestions that early-stage positive social interactions
can play a significant role in long-term affective and social
development through oxytocin-related mechanisms, which has
implications on long-term behavioural choices for social
agents. For (socially-)affective artificial agents, we argue that
viability across dynamic social and physical environments can
be improved via numerous mechanisms related to “social
buffering”. We also argue that (affective) “stress” can play a
significant role as an adaptive mechanism to promote long-
term wellbeing for (artificial) agents through the adaptation of
physiology and behaviours. Subsequently, we suggest that
socially-situated embodied agent models consider these
respective mechanisms as part of their approaches. Finally,
we argue that low-level, hormonal mechanisms can be used as
embodied “biomarkers” to minimally-encode interoceptive
and exteroceptive signals which can be used as mechanisms
for real-time, affect-based contextual decision-
making—addressing potential computational limitations of
similar approaches—and we suggest that future embodied
(socially-adaptive) models should consider these low-level
mechanisms as part of their approaches to long-term social
adaptation.

6 LIMITATIONS AND FUTURE WORK

To the best of our knowledge, our work is currently unique in
studying “social buffering” (and mechanisms of social allostasis)
using embodied agent models, and our findings and subsequent
discussion may be limited by this lack of related work in the field.
While our model has used empirically-determined parameter
tuning in building the model and testing our hypotheses in our
simulation environment, we recognise that such approaches may
suffer from overfitting the experimental paradigm. To verify our
model, we would like to see such systems replicated and extended
to additional artificial agent societies or physically-embodied

agents: either in human-robot interactions, or in small, multi-
agent systems.

In comparison to both biological agents and approaches to
(socially-)adaptive behaviour in HRI, our present agent
model—limited to only two internal “physiological” needs
and two (types of) behaviours—might appear too simple.
This comment also applies to the simulation environment
(i.e. the artificial ecology) that the experiments were
conducted in. As we discuss in Section 2, this minimally-
complex model was a purposeful decision: to maintain an
appropriate balance between a model that allows for
complex, adaptive behaviours, while remaining simple
enough to analyse. Depending on the research questions
investigated in the future, and following our incremental
design and methodology, further work would consider
extending this agent model—for instance, by adding an
additional physiological variable that needs to be regulated,
or an additional agent behaviour—or to investigate different
environment dynamics (i.e. changing the timings of food
“seasonality”, or making such environmental processes more
stochastic) to further understand the contextual nature of
“social buffering” as it may relate to biological systems. This
future work may also consider investigating additional
hypothesised systems—such as reward-based mechanisms
associated in positive social interactions—to better
understand their role in (the efficacy of) “social buffering”
and improving the long-term adaptability of agents in
artificial (and natural) systems.

Related to this point is that, biological societies
significantly vary in size and connectedness (see, for
instance, primate societies (Dunbar et al., 2018). It is
currently unknown if, and how, our current findings (using
a society of six agents) may scale up to larger social groups,
different groups of “bonded” individuals in a sub-group, or
the effects of dynamic social structures in higher-order
biological systems (such as fission-fusion dynamics). As
part of our future work, we intend on investigating these
models in both larger social groups, and dynamic sizes of
“bonded” agents, in an effort to replicate (human and non-
human) primate social structures. However, increases in
social group size comes at computational costs: 1) the
statistical non-independance of individual agent data
requires more observations for statistical analysis (i.e. the
“scaling” problem (Kenny et al., 2002)) and 2) the increased
complexity in capturing the non-linear interactions in such
systems (the “dynamics” problem (Hoey et al., 2018)). Such
scaling up of group sizes, therefore, should be done so with
caution.

One ongoing question with this type of computational
modelling, particularly in embodied systems, is, “how
generalisable is (this model) to other (artificial and biological)
systems?“. We argue that our modelling of these hormonal
dynamics, grounded in ethological and neuroscience literature
(Table 2) have maintained an appropriate level of abstraction
which can promote the generalisability of our results. To validate
the work undertaken, our future work aims to investigate any
potential relationships between the hormonal dynamics and
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agent behaviours from our own results with those from the
neuroscience and ethology literature.
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