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Natural and efficient communication with humans requires artificial agents that are able to
understand the meaning of natural language. However, understanding natural language is
non-trivial and requires proper grounding mechanisms to create links between words and
corresponding perceptual information. Since the introduction of the “Symbol Grounding
Problem” in 1990, many different grounding approaches have been proposed that either
employed supervised or unsupervised learning mechanisms. The latter have the
advantage that no other agent is required to learn the correct groundings, while the
former are often more sample-efficient and accurate but require the support of another
agent, like a human or another artificial agent. Although combining both paradigms seems
natural, it has not achieved much attention. Therefore, this paper proposes a hybrid
grounding framework which combines both learning paradigms so that it is able to utilize
support from a tutor, if available, while it can still learn when no support is provided.
Additionally, the framework has been designed to learn in a continuous and open-ended
manner so that no explicit training phase is required. The proposed framework is evaluated
through two different grounding scenarios and its unsupervised grounding component is
compared to a state-of-the-art unsupervised Bayesian grounding framework, while the
benefit of combining both paradigms is evaluated through the analysis of different
feedback rates. The obtained results show that the employed unsupervised grounding
mechanism outperforms the baseline in terms of accuracy, transparency, and deployability
and that combining both paradigms increases both the sample-efficiency as well as the
accuracy of purely unsupervised grounding, while it ensures that the framework is still able
to learn the correct mappings, when no supervision is available.

Keywords: language grounding, cross-situational learning, interactive learning, sample efficiency, human-agent
interaction, CLEVR

1 INTRODUCTION

The most natural form of communication between humans is natural language, which allows a
person to transmit knowledge to another person or to request another person to perform a specific
action Ellis (1993). Enabling artificial agents to become accepted partners and collaborate with
humans in a natural and efficient way therefore requires the artificial agents to understand natural
language. However, understanding natural language is non-trivial and requires agents to ground
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natural language in the real world by creating connections
between symbols, i.e., words or phrases, and their meanings,
i.e., perceptual information extracted through the agents’ sensors
from the environment. A variety of grounding approaches have
been proposed in the literature, which either utilize supervised or
unsupervised learning techniques to obtain links between words
and corresponding concrete representations1. The latter
represent sets of invariant perceptual features obtained
through an agent’s sensors that are sufficient to distinguish
percepts belonging to different concepts2. Supervised
approaches are usually sample efficient because the employed
tutors, which can be both humans or other artificial agents,
actively support the grounding process and either prevent the
creation of wrong mappings or ensure that they are quickly
removed, however, these approaches depend on the availability
and trustworthiness of a tutor and fail, if no supervision is
available or the tutor provides false information. An example
is the Grounded Naming Game (Steels and Loetzsch, 2012),
which is an interactive learning based approach that has been
applied in different studies to ground colors, spatial relations and
other modalities (Bleys et al., 2009; Spranger, 2013). In contrast to
the previously described approaches, unsupervised approaches
avoid this dependency on supervision and utilize instead co-
occurrence information, i.e., how often a specific symbol appears
together with a specific concrete representation. The advantage is
that they work without the support of a tutor, however, they are
less sample efficient and often also less accurate. Examples are
cross-situational learning (Siskind, 1996; Smith et al., 2011) based
approaches that have been used to ground objects, actions, and
spatial concepts (Dawson et al., 2013; Aly et al., 2017). Only
limited work, i.e., (Belpaeme and Morse, 2012; Nevens and
Spranger, 2017; Roesler, 2020a), has been done to compare or
combine both approaches (see Section 2.3). Therefore, this study
proposes and evaluates a hybrid grounding framework that
combines both paradigms. More specifically, this study extends
a recently proposed unsupervised cross-situational learning based
grounding framework (Roesler, 2020b), which has been shown to
achieve state-of-the-art grounding results, with a novel
interactive learning based mechanism to learn from feedback
provided by a tutor. The hypothesis is that the hybrid framework
is more sample efficient and produces more accurate groundings
than frameworks that use only unsupervised learning, while at the
same time being able to work in the absence of supervision, which

is not the case for purely supervised frameworks. Therefore, the
main research questions investigated in this study are: 1) Do the
proposed feedback mechanisms increase the sample efficiency of
the unsupervised grounding framework and the accuracy of the
obtained groundings? 2) Does combined verbal and pointing
feedback3 has a stronger positive influence on the grounding
performance than pointing-only feedback? 3) Does the model
perform as well as state-of-the-art unsupervised grounding
models, if no supervision is provided. To verify the hypothesis
and investigate above research questions, two different human-
agent interaction scenarios are employed, which require the agent
to ground synonymous shape, color, action, and preposition
words through geometric characteristics of objects, color mean
values, action feature vectors, and spatial vectors. Additionally,
grounding results are obtained for different feedback rates, i.e., for
different amounts of supervision, to investigate whether more
feedback leads to better groundings.The remainder of this paper
is structured as follows: Section 2 provides an overview of related
work. The proposed hybrid grounding framework and the
employed experimental setup are described in Sections 3 and
4. The obtained grounding results are presented and evaluated in
Section 5. Finally, Section 6 concludes the paper.

2 RELATED WORK

Since this paper investigates the combination of unsupervised and
supervised grounding approaches for language grounding, this
section describes related work employing purely unsupervised or
supervised mechanisms as well as the limited number of works
that have, at least partially, addressed the combination of both
paradigms.

2.1 Unsupervised Grounding
The motivation for unsupervised grounding approaches comes
from the fact that children are able to learn the meaning of
words, i.e. ground them in the real world, without any explicit
teaching or supervision by already proficient language users,
e.g., their parents or other adults (Bloom, 2001). One possible
mechanism that allows children to ground words in an
unsupervised manner and without the need for a tutor is
cross-situational learning, which allows to learn the
meaning of words across multiple exposures while handling
referential uncertainty. The main idea of cross-situational
learning is that a set of candidate meanings, i.e., mappings
from words or phrases to corresponding concrete
representations, can be created for every situation a word is
used in and that the correct meaning is located where the sets
of candidate meanings intersect so that the correct word-
concrete representation mappings will reliably reoccur
across situations (Pinker, 1989; Fisher et al., 1994; Blythe
et al., 2010; Smith and Smith, 2012). Several experimental
studies have confirmed that humans employ cross-situational

1Harnad (1990) calls them “categorical representations” that are created by
reducing “iconic representations” of inputs, which are obtained through an
agent’s sensors, to a set of invariant features that are sufficient to distinguish
percepts belonging to different concepts.
2The meaning of the term concept is still an area of active philosophical debate (see
e.g. (Margolis and Laurence, 2007; Zalta, 2021)) and in most grounding studies it is
either used synonymous to words or symbols, e.g., Stramandinoli et al. (2011); Aly
et al. (2017), or it is completely avoided by directly stating that words are grounded
through concrete representations, e.g., (Nakamura et al., 2009; Marocco et al.,
2010). Since the scenario employed in this study contains synonyms and
homonyms, concepts can neither be represented through words nor concrete
representations, instead they are implicitly represented by the connections between
words and concrete representations.

3The two investigated types of feedback, i.e., pointing-only feedback and combined
verbal and pointing feedback are described in detail in Section 3.3.
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learning for word learning, if no prior knowledge of language is
available. For example, Akhtar and Montague (1999)
conducted a study with 24 two-, three- and four-year-olds
in which the children were presented with novel objects that
differed in their shape and texture. During the experiment a
new artificial adjective was introduced by telling the child
“This is a adjective one,” where adjective referred to the shape
or texture of the target object. Afterwards, several other objects
were shown to the child that had the same characteristic
referred to by the used adjective. The results showed that
two-year-olds are already able to use cross-situational
learning to infer the meaning of initially unknown words.
In a different study by Smith and Yu. (2008), 28 12-month-
old and 27 14-month-old infants were presented 30 times for
four seconds with pictures of two objects on a screen while
the name of one of the objects was played via a loudspeaker.
During the whole experiment the eye gaze of the infants was
recorded to identify for how long they looked at each of the
displayed objects and the results showed that they looked
longer at the target than the other object, thus, confirming the
successful use of cross-situational learning for world learning
in infants. Due to the results obtained in the experimental
studies with infants and children, a variety of algorithms has
been proposed to simulate cross-situational learning in
humans and enable artificial agents, such as robots, to
learn the meaning of words by grounding them through
corresponding concrete representations. Fontanari et al.
(2009) applied a Neural Modeling Fields Framework to a
grounding scenario in which a tutor presents two objects to a
learner while uttering a word that refers to one of the objects
so that the learner can infer the correct word-object mapping
utilizing co-occurrence information across several situations.
While the framework is overall able to infer the correct word-
object mappings, it has several drawbacks. First, it requires
the data of all situations to be presented at once and is
therefore not able to learn in a continuous fashion that is
required in realistic scenarios in which unseen words or
objects can occur at any time. Second, it is not clear
whether the framework can handle real noisy perceptual
data because the used concrete representations were
perfect and not created from real perceptual data. Finally,
the model has only been evaluated for an extremely simple
scenario that only contained a single modality and one word
utterances without auxiliary words. Tellex et al. (2011) and
Dawson et al. (2013) used probabilistic graphical models to
ground spatial language through corresponding concrete
representations in an offline fashion using large corpora of
examples. The employed models performed well for
sentences that only contained words they had encountered
during training but had problems when sentences contained
unknown words. This problem can be addressed through the
use of larger datasets, however, they are not easy to obtain
because the models require detailed annotations to learn
from and it is impossible to create a dataset including all
existing words with all possible meanings because language is
constantly changing, i.e., new words or meanings are created.
Another limitation of the models is that they are not able to

handle synonyms, i.e., multiple words referring to the same
concept4, which is a substantial limitation because many
words are synonymous in specific contexts5. Aly et al.
(2017), Roesler et al. (2018), and Roesler et al. (2019) also
employed probabilistic models for grounding, however, they
used different experimental setups, grounded different
modalities, i.e., spatial relations, actions and shapes, and
investigated different research questions. For example,
Roesler et al. (2019) investigated the utility of different
word representations for grounding of unknown
synonyms, which are words for which at least one of their
synonyms have been encountered during training while the
word itself was not encountered. The results showed that
representing words through semantic vectors obtained via
Word2Vec6 leads to better grounding of unknown synonyms
than representing each word through a different symbol, e.g.,
a number, that encodes no additional information. However,
Roesler et al. (2018) showed that for known synonyms
representing words through simple symbols leads to better
groundings if the semantic information contains noise. Thus,
in this study words are represented through simple symbols
because in contrast to all studies described above, which
required perceptual data and words to be collected in
advance for offline training, the employed framework is
able to continuously learn new groundings so that all
synonyms are known synonyms because no separate offline
training phase is necessary. Furthermore, in contrast to the
scenario used in this study, none of the scenarios used in the
described studies contained homonyms, i.e. one word refers
to multiple concepts.

2.2 Supervised Grounding
The motivation for supervised grounding approaches is that
although children do not need any support to learn their
native language, there is evidence that active support by tutors,
e.g., their parents or other language proficient people, simplifies
word learning and therefore makes children learn faster (Bloom,
2001). Similar to cross-situational learning based approaches,

4A concept can be referred to by multiple words (synonyms), while one word can
refer to multiple concepts (homonyms). One concept can then be grounded
through multiple concrete representations (homonyms), while it is not possible
to have synonymous concepts, i.e. multiple concepts being grounded through the
same concrete representation. Since the framework employed in this study
represents concepts only implicitly, synonyms are words that refer to the same
concrete representation and homonyms are concrete representations that refer to
the same word.
5The “Principle of Contrast” states that no two words refer to the exact same
meaning, i.e. there are no true synonyms, but words can be synonyms in specific
contexts (Clark, 1987). For example, chocolate and sweets are usually not
synonymous because sweets has a broader meaning, however, when there is
only one box of chocolate on the table and someone asks for the chocolate or
sweets the words are synonymous in that context because they have same meaning,
i.e., they refer to the same object.
6Word2Vec uses a large corpus of plain text as input and outputs a vector space,
where each distinct word is represented by a vector and the distance between two
vectors corresponds to the syntactic-semantic similarity between two
corresponding words Mikolov et al. (2013a,b).
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interactive learning based approaches are inspired by studies
about how infants and young children learn words. For
example, Horst and Samuelson (2010) conducted a study with
24-months old infants investigating whether they could
sufficiently learn the names of several novel objects so that
they were able to remember them after five minutes, which is
a large enough delay to require retrieval from long-termmemory.
The experiments conducted in the study consisted of two main
parts. First, the novel object names were taught by presenting two
familiar objects with one novel object. The results showed that the
children picked the target object on average more than 70% of the
times, independent of whether the experimenter asked for a
familiar or novel object. However, when they were presented
with two previously novel objects that had been named during the
first part of the experiment and one novel object they did not
know the name of, they only picked objects requested by the
experimenter at chance level when no feedback was provided
during the first part of the experiment. In contrast, when feedback
was provided in form of extensive labeling, i.e., after the child
selected an object the experimenter held up the correct object and
pointed to it while stating its name, e.g., “Look, this is the dog!,”
the number of times the correct object was selected was around
70%. Thus, feedback in the form of extensive labeling significantly
increased the children’s word learning performance. In a different
study, Bedford et al. (2013) investigated word learning differences
between 31 24-month-old infants at low and high risk for Autism
Spectrum Disorder (ASD), which is a neurodevelopmental
condition leading to deficits in social communication and
interaction (American Psychiatric Association and others,
2013). At the beginning of the experiment the children were
introduced to all objects used during the experiment without
naming them so that the novelty of objects had no influence on
the obtained results. Afterwards, an experimenter showed
several objects to the child, while asking to select a specific
one, e.g. “Can you give me the moxi?”. Once the child had
chosen one of the objects, the experimenter either provided
feedback by holding the correct object in front of the child and
saying, e.g. “Yes/No, this is the moxi. What a nice moxi!,” or
just said “Thank you” without providing any feedback
(Bedford et al., 2013). Finally, after the child was allowed to
play for 5 minutes with other toys, the experimenter showed
the child four times pairs of objects of which only one had been
named during the experiment to investigate whether the child
remembered which object belonged to the provided name. For
two of the four target objects used during this phase, feedback
had been provided during the previous phase, while for the
other two no feedback had been provided. The results showed
that providing feedback increased the number of words the
children learned and that this increase was larger for the
children that had a lower risk for ASD. Inspired by the
previous studies with children, supervised or interactive
grounding approaches try to utilize the support of a tutor
to obtain word-concrete representation mappings in a sample
efficient and highly accurate manner. The main idea is that
direct teaching and feedback prevents an artificial agent from
learning wrong mappings and reduces the complexity of
language grounding by limiting the number of possible

mappings. She et al. (2014) used a dialog system to ground
higher level symbols through already grounded lower level
symbols during human-robot interactions7. While the system
was able to obtain correct mappings in a fast and interactive
manner, the applicability of the proposed system is rather
limited because it requires a sufficiently large set of grounded
lower level symbols as well as a professional tutor to answer its
questions. Especially, the former is difficult to obtain because it
is impossible to know in advance what situations an agent will
encounter after deployment in the real world and therefore
which grounded lower level symbols need to be available.
Thus, the presented grounding approach is inadequate as
the main or sole grounding mechanisms, while it can be
useful in combination with other grounding mechanisms
that do not require the existence of already grounding lower
level symbols and can therefore be used to obtain them. The
need for a human tutor that knows the correct mappings also
limits the applicability of the Grounded Naming Game (Steels
and Loetzsch, 2012), which has been shown to allow artificial
agents to quickly learn word-concrete representation
mappings in an interactive game like manner. The used
procedure is relatively simple, i.e., an agent gets an
instruction, selects the target object by pointing at it, and
receives immediate feedback from a human tutor (Bleys et al.,
2009; Spranger, 2013). The mechanism works very well
because the feedback enables the agent to substantially
decrease the set of possible mappings by restricting the set
of possible concrete representations a word can be mapped to.
Another important constraint used in many studies that
employed the Grounded Naming Game methodology is
that only a single word or phrase referring to a specific
attribute of an object is provided which is completely
different from real utterances used by humans that consist
of many words8. Due to the efficiency and simplicity of the
Grounded Naming Game methodology and the fact that it
does not require any prior knowledge or previously obtained
groundings, the feedback mechanism employed by the
proposed hybrid grounding framework follows a similar
approach (Section 3.3).

2.3 Hybrid Grounding
Combining unsupervised and supervised grounding approaches
has so far not received much attention despite the potential to
combine their strengths and eliminate or at least reduce the
impact of their shortcomings. Nevens and Spranger (2017)
investigated the combination of cross-situational and
interactive learning and came to the conclusion that the more
feedback is provided, the faster new mappings are obtained and

7For example, to teach the artificial agent the higher level symbol “grab,” the tutor
would instruct the agent to first “open” its gripper, “move” to the target object, and
then “close” its gripper, relying on “open,” “move,” and “close” to be already
grounded.
8Even the utterances used to name novel objects in word learning studies with
young children or infants are complete grammatically correct sentences, like
“Look, this is the cheem!” (Horst and Samuelson, 2010), and not just single
words, like “Cheem!”.
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the higher the accuracy of the obtained mappings. While these
findings, i.e., that feedback improves the accuracy and sample-
efficiency, seem reasonable and intuitive, the employed cross-
situational learning algorithm was very limited, thus, it is not
clear whether feedback would have provided the same benefit, if a
more sophisticated unsupervised grounding mechanism would
have been employed. A different study by Roesler (2020a)
extended an unsupervised cross-situational learning based
grounding framework, which has achieved state-of-the-art
grounding performance (Roesler, 2020b), with a mechanism to
learn from explicit teaching and showed that explicit teaching
increases the convergence speed towards the correct groundings.
The main disadvantage of the employed supervised learning
mechanism is that it requires the tutor to artificially create a
special teaching situation, which is a simplified version of the
environment specifically designed to ensure that the agent will
correctly learn a specific mapping. Finding a tutor who is able
and willing to put this amount of effort into teaching the agent,
is very unlikely. Since in both studies one of the employed
mechanisms, i.e. the unsupervised mechanism in (Nevens and
Spranger, 2017) and the supervised mechanism in (Roesler,
2020a), were quiet limited, this study combines two
mechanisms that have previously been shown to achieve
state-of-the-art grounding results and evaluates whether
their combination leads to better sample-efficiency and
accuracy, while ensuring that supervision can be provided
in a simple and natural way, and is not required to learn
the correct groundings.

3 GROUNDING FRAMEWORK

The proposed hybrid grounding framework consists of three
main parts: 1) Percepts clustering component (Section 3.1),
which determines the corresponding concrete
representations for encountered percepts through
clustering, 2) Unsupervised grounding component
(Section 3.2), which detects auxiliary words and creates
word-concrete representation mappings through cross-
situational learning, 3) Supervised grounding component
(Section 3.3), which uses an interactive feedback based
learning mechanism to improve the accuracy of word-
concrete representation mappings as well as the
acquisition speed. The unsupervised grounding component
is based on an unsupervised grounding framework (Roesler,
2020b) that has recently been shown to outperform
probabilistic model based approaches, which have been
used in many previous grounding studies, e.g., (Tellex
et al., 2011; Dawson et al., 2013; Aly et al., 2017; Roesler
et al., 2019). The individual parts of the hybrid grounding
framework are illustrated below and described in the
following subsections.

1. Percepts clustering:
• Input: Shape, color and, preposition percepts.
• Output: Concrete representations of percepts.

2. Cross-situational learning:

• Input: Natural language instructions, concrete
representations of percepts, previously detected auxiliary
words, and occurrence information of words and concrete
representations.

• Output: Set of auxiliary words and word to concrete
representation mappings.

3. Interactive learning:
• Input: Natural language instructions, concrete
representations of percepts, set of auxiliary words and
feedback information.

• Output: Word to concrete representations mappings.

3.1 Percepts Clustering Component
The grounding mechanisms employed by the proposed
framework (Sections 3.2 and 3.3) require that percepts are
converted to concrete representations, which can be obtained
through any clustering or classification algorithm. In this
study, clustering is used because it neither requires labeled
data nor explicit training, in comparison to classification
algorithms. The employed clustering algorithm is
DBSCAN9, which is a density-based clustering algorithm
(Ester et al., 1996) that does not require the number of
clusters to be known in advance, which is important
because it is impossible to know in advance how many
different shapes, colors, actions, or prepositions an agent
will encounter when employed in the real world. The
cluster numbers determined by DBSCAN are then provided
to the grounding mechanisms to ground words through
concrete representations by mapping words to cluster
numbers, where the latter can be used to identify matching
percepts.

3.2 Cross-Situational Learning Component
The cross-situational learning based grounding component is
based on the unsupervised grounding framework proposed by
Roesler (2020b) and uses cross-situational learning to create
mappings between non-auxiliary words10 and their
corresponding concrete representations. The approach
proposed in Roesler (2020b) has been chosen for the
unsupervised grounding component because it was able to
ground actions, shapes, and colors more accurately and faster
than probabilistic model based approaches, while also being able
to successfully handle synonyms. However, two main changes
have been made to the original framework that lead to slightly
better auxiliary word detection and grounding results. First, the
unsupervised grounding component does not have any
restriction that all concrete representations need to be used
once for grounding before any concrete representation can be
used to ground multiple words. Second, the auxiliary word
detection mechanism has been modified so that words only

9The employed version of DBSCAN is available in scikit-learn (Pedregosa et al.,
2011).
10Auxiliary words are words that only exist for grammatical reasons, e.g., “the” or
“while”, and do not have corresponding concrete representations.
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need to occur one time more than any concrete representation to
be marked as an auxiliary word, however, they also need to occur
at least two times. Together both changes lead to a slight
increase in grounding performance as described in Section 5.1.
Following the basic steps, illustrated through Algorithms 1, 2
are described.

Algorithm 1. The grounding procedure takes as input all
words (W) and concrete representations (CR) of the
current situation, the sets of all previously obtained word-
concrete representation (WCRPS) and concrete
representation-word (CRWPS) pairs, the set of auxiliary
words (AW), and the set of permanent phrases (PP) and
returns the sets of grounded words (GW) and grounded
concrete representations (GCR).

Algorithm 2. The auxiliary word detection procedure takes as
input the sets of word and concrete representation occurrences
(WO and CRO), and the set of all previously detected auxiliary
words (AW).

First, words that belong to a phrase are substituted by the
phrase using a dictionary based approach, i.e. by checking
whether any possible word sequence is part of the set of
permanent phrases (PP). Theoretically, phrases can be
automatically added to PP using machine learning, however,
not much work exists on detecting phrases similar to the ones
used in this study, e.g. “on the left side of” or “on the left of”, since
they are only phrases in specific contexts and the latter of the
examples is also part of the former11. Afterwards, auxiliary words
are detected and removed from the current sentence by
comparing word and concrete representation occurrences to

identify words that occurred much more than any concrete
representation (Algorithm 2). The sets of remaining words
and concrete representations are then used to update the sets
of word-concrete representation and concrete representation-
word pairs (WCRPS and CRWPS). If feedback was provided
during earlier situations, the feedback mappings (WCRPSF and
CRWPSF) obtained by the interactive learning component
(Section 3.3) are merged with WCRPS and CRWPS. Finally,
the highest word-concrete representation and concrete
representation-word pairs are determined for each word and
concrete representation, respectively, and saved to the sets of
words and concrete representations (GW and GCR).

3.3 Interactive Learning Component
The supervised or interactive learning component is inspired by
the Grounded Naming Game methodology (Steels and Loetzsch,
2012), but has been designed so that it smoothly integrates with
the unsupervised grounding component described in the
previous section (Section 3.2). The main idea is to allow
agents to receive and utilize non-verbal and verbal feedback
from a tutor, when available, without depending on it.
Feedback can consist of two parts: 1) pointing to the correct
object, which allows the agent to identify the concrete
representations belonging to the target object, and 2) an
utterance, which provides a short description of the
characteristics of the target object. While the first part,
i.e., pointing to the correct object, is required for the
interactive learning component to work, the second part, i.e.
the utterance, is optional. The feedback is used by the agent to
update its mappings to increase the probability that it identifies
the target object correctly in similar situations in the future.
Algorithm 3 provides an illustration of the two proposed
feedback mechanisms. First, the set of non-target object
concrete representations (NOCR) is calculated by subtracting
the set of target object concrete representations (TOCR) from
the set of all object concrete representations (AOCR). Afterwards,
word-concrete representation and concrete representation-word
feedback pairs are created or updated for each word in the
instruction sentence and concrete representations in TOCR, if
no verbal feedback is available. Otherwise, i.e., if verbal feedback
is provided, feedback pairs are created or updated using the
feedback sentence and each concrete representation in TOCR and
NOCR. Thus, the feedback mechanism automatically takes into
account verbal feedback (WF), if available, but does not require it
because otherwise the instruction words (WI) will be used
instead. The feedback mechanism has one parameter,
i.e., FRC, which represents the feedback related change and
determines how strong the influence of feedback is on the
obtained mappings. FRC was initially set to two to ensure that
feedback is twice as important as co-occurrence information,
while ensuring that wrong feedback would not have a too strong
influence. This setting was later also experimentally verified as the
best setting. Feedback is integrated with the unsupervised
algorithm by merging WCRPS and WCRPSF as well as
CRWPS and CRWPSF in lines 5 and 9 of Algorithm 1 so that
pairs that receive positive feedback are strengthened and pairs
that receive negative feedback are weakened.

11Roesler and Nowé (2019) proposed a cross-situational learning based approach to
automatically detect phrases very similar to the ones employed in this study,
however, the mechanism did not work reliably for the sentences in this study and
has therefore not been used.
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Algorithm 3. The feedback procedure takes as input the words
of the instruction of the current situation (WI) and the
feedback sentence (WF), the set of all object concrete
representations (AOCR), the set of the target object
concrete representations (TOCR), the set of detected
auxiliary words (AW), and the sets of previously obtained
word-concrete representation feedback (WCRPSF) and
concrete representation-word feedback (CRWPSF) pairs,
and returns updated WCRPSF and CRWPSF. The strength
of the feedback is regulated through the parameter FRC, which
was set to 2 for this study.

4 EXPERIMENTAL SETUP

The 1,000 situations used in the experimental scenario are
simulated using an environment based on the CLEVR dataset
(Johnson et al., 2017). Every situation in the simulated
environment consists of three or four objects with

randomly chosen shapes, colors, materials, sizes and
positions (Figure 1). Additionally, every situation has
different light conditions, which adds noise to the
perceived color information so that the similarity of two
percepts of the same color varies depending on the light
conditions. Three different modalities are extracted for each
situation: 1) object shapes, which are represented by
Viewpoint Feature Histogram (VFH) (Rusu et al., 2010)
descriptors that encode the objects’ geometries and
viewpoints, 2) object colors, which are represented by the
mean RGB values of all object pixels, 3) preposition percepts,
which are represented by 3D spatial vectors describing the
spatial relation of the centroids of two objects. After all
perceptual information have been obtained, a random
sentence describing the generated scene is created, which
has the following structure: “the color shape preposition the
color shape,” where color, shape, and preposition are
substituted by one of 12 shape, 16 color, and 6 preposition
words/phrases (Table 1) to match the randomly selected
target and reference objects. Most of the percepts can be
referred to by several synonymous words to investigate how
well the proposed framework handles synonymous words and
phrases12. Additionally, each preposition word can be
grounded through two homonymous prepositions, e.g., “on
the right of” can be grounded through concrete
representations 12 and 13, and “behind” can be grounded
through concrete representations 12 and 14 (Table 1). The
reason is that prepositions are not discrete because most
objects need to be moved in two dimensions to reach the
position of another object, therefore, if an object is in front of
or behind another object it is most of the time also on the left
or right of that object. Figure 1 illustrates this nicely because
the red cylinder in Figure 1A is not just in front of the
yellowish cylinder as indicated by the corresponding

FIGURE 1 | Two example scenes illustrating the used shapes and colors as well as the variation in size, material and light conditions. The corresponding sentences
are: (A) “the red cylinder in front of the yellowish cylinder” and (B) “the red quadrate on the left side of the reddish cylinder”.

12For example, the concept cube can be referred to by the words cube, block,
hexahedron, and quadrate, while the concept red can be referred to by the words
red and reddish (Table 1).
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sentence, but also on the right side of it. Similarly the red
quadrate in Figure 1B is both on the left side and behind of
the reddish cylinder. Thus, two different concrete
representations can be used to ground each of the
preposition words.

The obtained situations are then used to simulate human-
agent interactions during which the human tutor asks the
agent to select an object based on a natural language
description. The employed interaction procedure is
described below.

1. The human places three or four objects in front of the agent
and the agent obtains the corresponding shape, color and
preposition percepts and converts them to corresponding
concrete representations.

2. The human provides a natural language description of the
target object, e.g., “the red cylinder in front of the yellowish
cylinder”.

3. The agent updates its word-concrete representation mappings
using cross-situational learning (Section 3.2).

4. The agent identifies the target object and points to it.
5. If the agent pointed to the correct object, the human signals

success, otherwise failure. Success or failure is either
indicated through pointing and a verbal description, e.g.
“yes the red cylinder” or “no the red cylinder,” or pointing-
only, i.e., the human only points to the correct object which
implicitly tells the agent whether it had selected the correct
object.

6. The agent updates its sets of word-concrete representation and
concrete representation-word feedback pairs based on the
received feedback (Section 3.3).

The fifth and sixth steps are not necessary for the agent to learn
the correct mappings, since it is, based on the obtained results
(Section 5), able to learn them in an unsupervised manner.
However, the feedback provided in step five is necessary for
the supervised learning mechanism employed by the proposed
framework (Section 3.3).

5 RESULTS AND DISCUSSION

In this section the proposed hybrid continuous grounding
framework is evaluated through two different human-agent
interaction scenarios that differ in terms of the employed
natural language utterances, perceptual features, and
interaction procedures. The situations used in the first
scenario are on the one hand rather simple because each
situation contains only a singe object and the sentences are
relatively short, while on the other hand every concrete
representation can be referred to by at least two synonymous
words and the used percepts have been obtained in a real
environment. Additionally, the scenario has been used in
previous grounding studies (Roesler et al., 2019; Roesler,
2020b) to evaluate unsupervised grounding approaches
including an earlier version of the unsupervised grounding
mechanism used by the proposed framework so that it
provides a good opportunity to evaluate the latter. The
second scenario consists of more situations with more
complex natural language utterances and a larger number of
concrete representations. Like the first scenario, the second
scenario contains many synonyms but also homonyms,
i.e., one word or phrase can be grounded through two or
more concrete representations. The higher complexity of the
second scenario is important because it is only possible to
evaluate the benefit of combining unsupervised and
supervised grounding approaches, if the groundings they
obtain individually are not optimal. Thus, the second
scenario is used to evaluate two different types of feedback
and different feedback rates (Section 4) for the hybrid
grounding framework.

5.1 Evaluation of the Unsupervised
Grounding Component
Since the foundation of the proposed framework is a cross-
situational learning based unsupervised grounding mechanism
to ensure that it works when no feedback is provided, it is

TABLE 1 | Overview of all concepts with their corresponding synonyms and concrete representation numbers (CR#) according to Figure 6.

Type Concept Synonyms CR#

Shape Cube cube, block, hexahedron, quadrate 1
Sphere sphere, ball, spheroid, pellet, globe, orb, globule 2
Cylinder cylinder 3

Color Gray gray, grayish 4
Red red, reddish 5
Blue blue, blueish 6
Green green, greenish 7
Brown brown, brownish 8
Purple purple, purplish 9
Cyan cyan, greenish-blue 10
Yellow yellow, yellowish 11

Preposition Right on the right of, on the right side of 12, 13
Front in front of 13, 15
Behind behind 12, 14
Left on the left of, on the left side of 14, 15

Auxiliary Word - please 0
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important to compare the groundings achieved by the
unsupervised grounding component with other previously
proposed unsupervised grounding models. To do this, the
scenario used by Roesler (2020b),13 is employed, which consists
of 125 situations described by shape, color and action percepts as
well as an instruction with the following structure: “(please) action
the color shape”, where action, color, and shape are replaced by one
of 45 different words, while the auxiliary word “please” only

appears in 44.8% of the situations. Five different shapes, colors
and actions are included and each color and action can be referred
to by two synonymous words, while shapes have five
corresponding synonyms. Roesler (2020b) compared an earlier
version of the unsupervised continuous grounding component
(UCG) to a probabilistic graphical model (PGM), thereby,
providing an easy way to compare the unsupervised grounding
component to existing state-of-the-art grounding models. Figure 2
shows the accuracy of the obtained groundings for all three models
and two different cases. For the first case (Figure 2A) all situations
are encountered during training and testing because both the
proposed framework and UCG are able to learn continuously

FIGURE 2 |Mean grounding accuracy results, corresponding standard deviations, and percentage of sentences for which all words were correctly grounded for
the probabilistic graphical model (PGM) and unsupervised continuous grounding framework (UCG) presented in (Roesler, 2020b) as well as the unsupervised grounding
component of the hybrid grounding framework proposed in this study (Proposed) when employing them in the scenario described in (Roesler, 2020b). (A) shows the
results when all situations are used for training and testing and (B) when 60% of the situations are used for training and the remaining 40% for testing.

FIGURE 3 |Mean number and standard deviation of correct and false mappings over all 125 situations of the scenario used in (Roesler, 2020b) for theunsupervised
grounding component of the proposed hybrid grounding framework (Proposed) and the unsupervised continuous grounding framework (UCG) proposed in (Roesler,
2020b). The dotted part only occurs, when all situations are used for training.

13The dataset is currently not publicly available, but can be obtained from the
author on request.
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so that no separate offline training phase is required. However, this
case is unrealistic for PGM because it requires an offline training
phase and it is very unlikely that it encounters all possible situations
already during training. Thus, in the second case (Figure 2B) only
60% of the situations are used for training, thus, the learning
mechanisms of the proposed framework and UCG are deactivated
after 60% of the situations have been encountered. Figure 2 shows
that for the first case the continuous learning frameworks are able
to achieve perfect groundings. In contrast, PGM only achieves
more than 90% accuracy for shapes, while for actions and auxiliary
words it achieves only accuracies around or below 50%. For the
second case, which is more realistic for PGM while introducing an
unrealistic restriction for the continuous grounding frameworks,
the grounding accuracies for all frameworks drop. For PGM the
largest decrease is for shapes. This large decrease might be due to
the higher complexity of the shape percepts (308 dimensional
vectors) in comparison to action (30 dimensional vectors) and
color (10 dimensional vectors) percepts so that the lower number
of training situations is not sufficient for the baselinemodel to learn
the correct groundings. For the continuous grounding frameworks
(Proposed and UCG) the accuracies decrease much less,
nevertheless the results show that the changes described in
Section 3.2 improve the auxiliary word detection algorithm so
that the revised algorithm is able to detect all auxiliary words for
the employed scenario. Additionally, the change to the cross-
situational learning mechanism, i.e., removing the restriction
that all concrete representations need to be used once for
grounding before a concrete representation can be used to
ground multiple words, improves both the accuracy of the
obtained action groundings (Figure 2B) as well as the speed of
convergence towards the correct mappings (Figure 3)14, while it
causes only a slight decrease of the grounding accuracy for shapes.
Overall, the results illustrate the large accuracy improvement when
comparing the proposed unsupervised grounding algorithm
(Proposed) with a state-of-the-art probabilistic model (PGM),

which is similar to other unsupervised learning models that
have been used in many previous grounding studies, like
(Tellex et al., 2011; Dawson et al., 2013; Aly et al., 2017; Roesler
et al., 2019). Besides the better grounding accuracy, the proposed
algorithm has the additional advantage that it does not require an
explicit training phase but continuously integrates new words and
concrete representations into its set of word-concrete
representation mappings as illustrated by Figure 3, which
makes it more applicable for real world human-agent
interactions because it is impossible to create a large enough
training set to cover all possible situations that could occur
during these interactions.

5.2 Evaluation of the Hybrid Grounding
Framework
The hybrid grounding framework is evaluated through a
simulated human-agent interaction scenario (Section 4). The
main questions investigated in this section are whether
combining unsupervised and supervised grounding approaches
leads to more sample efficient, accurate and flexible grounding
than using only one of the two paradigms and whether combined
pointing and verbal feedback provides a benefit over pointing-
only feedback.

Figure 4A shows the grounding results when only non-verbal
pointing-only feedback is provided. It clearly shows that the
feedback mechanism has only a small mostly positive effect on
the accuracy of the obtained groundings. In comparison, when
the tutor also provides verbal feedback the accuracy of the
obtained groundings improves visibly (Figure 4B) with the
number of correctly grounded sentences increasing from about
20% to more than 50%. This increase is mostly due to an increase
in the grounding accuracy of prepositions as well as colors, while
the accuracy of shape groundings increases only slightly. The
reason for the latter is that the lower accuracy for shapes is mostly
due to the words “block” and “cylinder” being incorrectly
classified as auxiliary words so that the availability of feedback
only provides limited benefit because it has no influence on the
auxiliary word detection algorithm. Figure 5 shows how the

FIGURE 4 |Mean grounding accuracy results, corresponding standard deviations, and percentage of sentences for which all words were correctly grounded for
both types of feedback. (A) shows the grounding results when pointing-only feedback is provided and (B) when both pointing and verbal feedback is provided.

14Due to the need for an offline training phase, no corresponding results can be
obtained for PGM.
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number of correct and false mappings changes over all
1,000 situations for different feedback rates, i.e. depending on
how often feedback is given. For pointing-only feedback the final
number of correct mappings, i.e., after 1,000 situations, increases
when feedback is provided for at least 50% of the situations, while
the final accuracy does not increase further, if feedback is
provided for more situations. However, when feedback is
provided for all situations, the number of correct mappings
increases faster than when feedback is only provided for 50%

of the situations (Figure 5A). For combined pointing and verbal
feedback there is a clear difference regarding the final grounding
accuracy as well as the speed correct mappings are obtained
(Figure 5B). For example, when no feedback is provided, it takes
more than 90 situations until the number of correct mappings is
equal to the number of false mappings, while it only takes about
27 and 19 situations when feedback is given for 50% of the
situations or all situations, respectively. Additionally, after all
1,000 situations have been encountered the number of correct

FIGURE 5 |Mean number and standard deviation of correct and false mappings over all 1,000 situations, when feedback is provided for 0%, 50% or 100% of the
situations, where FR means feedback rate. (A) shows the results when pointing-only feedback is provided and (B) when pointing and verbal feedback is provided.
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mappings is about 14% higher if feedback is provided on average
every second situation than if no feedback is provided, followed
by another 11% increase, if feedback is provided every situation.
These results illustrate the benefit of verbal feedback in addition
to pointing feedback. However, the results also show that the
framework does not depend on feedback and achieves decent
grounding results, if no feedback is provided, which is important
because the availability of feedback cannot be guaranteed. Figures
3, 5 also illustrate the continuous learning ability of the proposed
framework, which is very important when considering
deployment in real environments that require open-ended
learning because it is impossible to create a large enough
dataset that contains all possible words and concrete
representations that an agent could encounter. In addition, it
also shows the transparency and explainability of the framework
because at any time it is possible to check the current mappings
and understand why they have been created based on the
available co-occurrence information stored in WCRPS,
CRWPS, WCRPSF, and CRWPSF (Sections 3.2 and
3.3).While the accuracies provide a good overview of how

accurately the groundings are for each modality, they neither
provide any details about the accuracy of the groundings obtained
for individual words nor any details about the wrong mappings.
Therefore, Figure 6A shows the confusion matrix for all words
and modalities, which illustrates how often each word was
grounded through the different modalities, when no feedback
is provided. The figure shows that there is some confusion
between shapes and colors as well as prepositions and shapes,
while overall most words are grounded through the correct
modality. When pointing-only feedback is provided for every
situation the confusion for shapes disappears and the confusion
for colors also decreases (Figure 6C). For prepositions the change
is bidirectional, i.e., for two prepositions the confusion gets less
while for two other prepositions they are more often grounded
through shapes. However, this confusion disappears when
combined verbal and pointing feedback is provided every
situation (Figure 6E). In that case, there is only very light
confusion for “purple,” “on the left of,” and “behind”. Since
grounding is not about determining the modality a word belongs
to but to create a mapping from words to corresponding concrete

FIGURE 6 | Confusion matrices of words over different modalities (left side) and words over different concrete representations (right side) for all ten situation
sequences and three different types of interactions, i.e., no feedback (A, B), pointing-only feedback (C, D) and combined verbal and pointing feedback (E, F).
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representations, it is important to also look at the confusion
matrices of words over different concrete representations.
Figure 6B shows the confusion matrix of words over different
concrete representations when no feedback is provided. The
figure shows that there is not much intra-modality confusion
and that most of the inter-modality confusion is for the concrete
representations of the shapes, i.e., concrete representations 1,
2 and 3, and yellow, i.e., concrete representation 11, because many
words are incorrectly mapped to them, although all mappings
except for “on the left side of” are relatively weak. For the
preposition words it is interesting to see that most of them are
mapped to two concrete representations, which is correct because
all prepositions should be grounded through two homonymous
concrete representations. When looking at Figure 6C, which
shows the confusion matrix for the case were pointing-only
feedback is provided for every situation, it is interesting to see
that the mappings for prepositions are less accurate and weaker.
The reason for this is that pointing-only feedback strengthens
the mappings from the concrete representations of the target
object’s shape and color with all words of the utterance. Thus,
the mappings from the preposition words to the concrete
representations of shape and color are strengthened as well,
the former even more because there are only three different
concrete representations for shapes in comparison to eight for
colors. However, when combined verbal and pointing feedback
is provided the confusion for prepositions is gone and in
general there is nearly no confusion (Figure 6F). The
former is due to the availability of the feedback sentence
which ensures that only the mappings from the color and
shape words of the target object to the corresponding concrete
representations are strengthened. This clearly shows the
importance of verbal feedback when comparing it to the
pointing-only feedback case, while the confusion matrices
also showed that the proposed framework is also able to
achieve decent groundings, if no feedback is available,
which confirms the results presented in Section 5.1.

6 CONCLUSIONS AND FUTURE WORK

This paper investigated whether combining unsupervised and
supervised grounding mechanisms improves the sample-
efficiency and accuracy of the former, while avoiding the
latter to fail in the absence of supervision. More specifically,
a hybrid grounding framework, which uses cross-situational
learning to ground words in an unsupervised manner, while

being able to utilize pointing-only or combined pointing and
verbal feedback to speed up the grounding process and
improve the accuracy of the obtained groundings, was
evaluated through a simulated human-agent interaction
scenario. The results showed that the ability to learn from
human feedback improves both the sample-efficiency and
accuracy of the framework. When only non-verbal
feedback in form of pointing is provided the improvement is
only minor and only for concrete representation that can be
pointed at, e.g., shapes or colors, while it has a negative effect on
concrete representations of concepts that cannot be pointed at,
e.g., prepositions. In comparison, when also verbal feedback is
provided, the grounding accuracy improves substantially
achieving nearly perfect grounding for colors and
prepositions. Additionally, the results also showed that the
proposed framework is still able to correctly detect auxiliary
words and ground a large number of non-auxiliary words
correctly when no feedback is provided, which is very
important because it cannot be assumed that a tutor who is
willing to provide feedback is always available. In future work, it
will be investigated how robust the proposed feedback
mechanism is regarding false feedback, e.g., the tutor
points to the wrong object or uses a wrong word to describe
the target object. Additionally, it will be
investigated whether the framework can be extended to
benefit from explicit teaching as described by Roesler
(2020a). Finally, the framework will be evaluated for
scenarios in which the agent has to manipulate the target
object instead of just pointing to it.
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