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The development of autonomous robotic systems is a key component in the expansion of
space exploration and the development of infrastructures for in-space applications. An
important capability for these robotic systems is the ability to maintain and repair structures
in the absence of human input by autonomously generating valid task sequences and task
to robot allocations. To this end, a novel stochastic problem formulation paired with a
mixed integer programming assembly schedule generator has been developed to
articulate the elements, constraints, and state of an assembly project and solve for an
optimal assembly schedule. The developed formulations were tested with a set of
hardware experiments that included generating an optimal schedule for an assembly
and rescheduling during an assembly to plan a repair. This formulation and validation work
provides a path forward for future research in the development of an autonomous system
capable of building and maintaining in-space infrastructures.
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1 INTRODUCTION

As the exploration of space continues to develop, many opportunities arise to advance the current
understanding of celestial objects, develop and deploy new experiments, and harness natural
resources that have thus far been inaccessible. From building telescopes and space structures too
large to launch from Earth [Belvin et al. (2016); Karumanchi et al. (2018); Roa et al. (2020)] to
building structures for human habitation on Mars or the Lunar surface [Thangavelautham et al.
(2020)], the use of robotic workforces will be instrumental in achieving the next steps in space
exploration. These applications will require robotic systems capable of constructing, maintaining,
and repairing infrastructures in conditions with limited input from humans. This in-space
autonomous assembly problem (ISAAP) can be categorized into three general groups. The
sensor network: a complex autonomy system that allows for the robots to observe their
surroundings. A task allocation system: a system that will sequence and allocate tasks to
complete the assembly. And finally, the local robot autonomy that allows an individual robot to
carry out its tasks (this includes the kinematic models, dynamics models, and control logic). The
work presented here will focus on the task allocation and assignment portion of this problem since it
is relatively unaddressed in the in-space domain. The current state-of-the-art for in-space robot
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assembly operations are primarily done through teleoperation
Rognant et al. (2019). In the few cases where there is autonomy, it
is limited and requires human supervision and interaction Lee
et al. (2016); Belvin et al. (2016). This paradigm of requiring
teleoperation or even human supervised autonomy is not viable
for longer distance missions Saunders et al. (2017) nor for
missions with increased complexity Rognant et al. (2019).
Because this is a newer frontier for autonomous robotics, the
literature is rather sparse and there remains much to be explored
and developed Rodriguez et al. (2021). As such, there is currently
no clearly preferred architecture for this application Nanjangud
et al. (2019). Some research for autonomous assembly has been
done for particular assembly scenarios such as Ikea furniture
assembly Knepper et al. (2013), manufacturing cell Arai et al.
(2013), and construction Hartmann et al. (2021). However, the
formulations utilized in these applications deal with simple
assemblies, predetermined sequences, brute force computation,
or combined task allocation and robot motion planning which
does not scale well Hartmann et al. (2021). As a result, many of
the assembly applications for in-space are not able to be fully
autonomous and use manually defined task sequences
Karumanchi et al. (2018). A very recent work by Rodriguez
et al. (2021) begins to address this with a proposed system
that uses a state space that tracks the state of each module in
a global context and utilizes a planning architecture that uses
graph search algorithms to evaluate proposed assembly
sequences.

In this current state, the task scheduling knowledge base is still
missing important elements necessary for robotic assembly in the
absence of human input. Once such element is the modeling of
robotic ability with chance of failure and how that impacts state
transitions. A second element is a state formulation that can
accommodate state changes reflecting repair operations or the
undoing of assembly steps. Finally, continuity constraints (one
robot required for the same action across jobs) are another
important factor in realistic assembles that have not been
modeled in the task scheduling literature. The novel work
presented in this paper moves the current state of literature
forward and offers a problem formulation capable of
articulating robotic ability and how the chances of failure
impact state transitions. The formulation also naturally
expands to accommodate all possible state transitions that
could occur in an assembly, including transitions related to
repair or partial disassembly. This work then presents a task
sequencing and task to robot allocation solution generation
method (assembly schedule generator) that will utilize
information encoded in the novel assembly problem
formulation and produce assembly schedules in an optimal or
near optimal way. This solution generation includes the
traditional constraints such as sequence and robot processing
time considerations and novel continuity and local workspace
considerations. These contributions take the literature a step
closer to functional autonomous robotic systems in-space that
are capable of replanning and reallocating tasks without the need
for human supervision, a necessary capability if autonomous
robotic systems are going to assemble and repair structures in an
environment with uncertainty without human input.

2 MATERIALS AND METHODS

The contributing factors to the ISAAP can be thought of in three
general groups: assembling agents, tasks, and environment. The
assembling agents, in the context of this work, are robotic units
that make up the workforce to complete the assembly. These
robotic units often have different levels of ability for completing a
range of operations present in an assembly environment.
Contributing elements to this variation include mobility, local
workspace (reach), and end effector type. In addition to these
variations, there is often a stochastic element to each robot’s
ability sourced from uncertainty present in the sensor feedback
systems, state estimation through a metrology system, the
characteristics of the control algorithms, and variations in the
environment. To effectively assign robots in complex assembly
scenarios, these variations in ability needs to be articulated and
accounted for in the assignment process. The second group, tasks,
includes all of the steps necessary to build an assembly. To
accomplish a successful assembly, there are often specific task
sequences that must be followed to achieve a viable structure.
There may also be a range of connection methods and special
tools that are necessary in completing an assembly. A problem
formulation must be able to articulate these constraints in a form
that a schedule generator can process. The final group,
environment, also includes important considerations related to
the configuration of an assembly problem. Locations for parts and
designations for where assembly steps must take place must be
included in the formulation to allow the schedule generation
algorithm to include spatial considerations in the task sequencing
and robot to task allocation. All of these factors highlight the
complexity of the ISAAP and underscores the need for a flexible
and expansive framework to successfully articulate the different
features present in assembly projects.

2.1 Stochastic Assembly Problem Definition
To address the features described in the ISAAP, a stochastic
assembly problem definition (SAPD) has been develop to provide
a formulation that represents the details of the agents, tasks, and
environment, casting them into a framework suitable for task
allocation. This takes the form of three main groups: Elements,
the physical and functional characteristics; Constraints, to
articulate a valid assembly sequence; and State Representation,
a flexible mathematical model to represent the overall state of the
assembly in the context of a stochastic paradigm.

2.1.1 Elements
The Elements portion of the problem formulation describes the
“physical” portions of assembly agents, tasks, and environment
features in the ISAAP. This is done through four different classes:
Points, the important locations in the assembly space,
Components, the structural parts in the assembly, Joints, the
structural connection information, and Robots, the
autonomous operators forming the workforce in the assembly
problem. Each of these types will contain a property category that
will be used as a bookkeeping/information storage area
containing the information that does not contribute to the
current state of the assembly. This can include information
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such as the element’s name, type, starting location at the
beginning of the assembly, etc. The classes that contain the
information that does affect the state of the assembly will have
a second category, states. These stateful information entries will
include information such as the current location of the element at
a specific time in the assembly, if the element is in position or not,
if it is damaged, etc. The following sections expand on the
formulation structure for each of these element classes.

2.1.1.1 Points
This class is primarily used to describe locations of interest
through the assembly environment. Denoted by the set W =
{W1, . . . , Wi, . . . W|W|}, each point can be thought of as a
description of a specific location, position, or position and
orientation. Since these designations do not typically change as
the assembly progresses, this class will be stateless in most cases.
Each point will contain at least two property features: type and
location. The type feature allows for different categories of points
to be distinguished between and in most cases, at least a reference
type will be present to note the different locations. The location
feature provides the coordinate of the point in the workspace. The
overall formulation does not restrict the type of coordinate frame
(Cartesian, cylindrical, etc.) or specifically require orientation
information to be included, leaving it open to what fits the
assembly problem environment and application the best.
Additional property information can be added if required in
the context of the assembly.

2.1.1.2 Components
A component, represented in the set C = {C1, . . . , Ci, . . . C|C|}, is
any physical part that is included in the autonomous assembly
problem and is not an autonomous operator. This set contains all
of the elements that will need to be manipulated for the assembly.
Like the points class, each Ci has a set of properties describing the
type of component and other information that may pertain to the
assembly. The components directly affect the state of the
assembly. Therefore, each component is stateful and will
contain a set of state information features. There are generally
three different state features: in position/not in position, broken/
not broken, and current location. The first state, in position/not in
position, reflects if the component is in the correct installation
location. If it is not, additional actions will be required to move it
into position. The broken/not broken state describes if a
component is going to need to be replaced or if it can remain.
These two states allow for the description of a condition where a
component might be in place but installed wrong or when a
component has been broken after installation and needs to be
removed. Either case of being in the broken state will require a
task or task set to be inserted into the assembly sequence to
correct the problematic component. Finally, the current location
state provides the location information as the component
transitions around the environment. The property features for
each component, similar to those in points, will contain
information such as component type, locations, and weight (if
applicable). The location property feature can contain points that
are important to the component. Two primary examples are the
start location at the beginning of the assembly and the goal

location. An additional example includes points on the
component necessary for joining. By including these locations
in the component definition, their positions and orientations can
be with respect to the component’s location rather than the global
reference frame. This removes the need for them to be in the state
feature category and thereby reduces complexity in the overall
assembly state representation.

2.1.1.3 Joints
A joint, represented in the set K = {K1, . . . , Ki, . . . K|K|}, can be
thought of as an element of the assembly problem that is physical
but is not in the form of a component or a location. It represents
the connection between components in an assembly. This will
take the form of welds, bolt joints, etc. If needed, and with a slight
abuse of some terminology, this can also be used to describe
painting or spreading a sealant on components as well. Similar to
the component type, this element contains states and properties
in its definition. For a joint, joined/not joined or completion
percent of being joined are the twomost common state features. If
there is a process to completing a joining method, the percentage
state representation may be necessary. Alternatively, if the
connection is something like a snap connection, having a
simple joined/not joined state representation can be sufficient
to describe the state. Type, locations, and component list are all
examples of the property features that may be included in the
joint definition.

2.1.1.4 Robots
The robot element class is the final of the four and represents the
autonomous operators used to complete the assembly project. A
given robot, represented in the set R = {R1, . . . , Ri, . . . R|R|}, will
have the following state features: idle/busy, current location,
current task, and energy level (if applicable). The idle/busy
state is used to denote if a robot is available for assignment.
The current location, as implied, gives the updating location of
the robot and current task represents what the robot is currently
working on. This state does not remove the need for the idle/busy
state since there are many applications where a robot may not be
tasked but is still not available for a task allocation. Energy level, if
the information is applicable, can be thought of as a projection of
how much longer the robot can operate before it needs to be
retired for charging or replacement. In addition to the states, each
robot will generally have five property features: robot type,
locations, mobility, workspace, and abilities. Mobility and
workspace, when present, provide enough information to
articulate the reach of a robot (the local workspace) without
moving the base, and if a robot is mobile, that is, if the origin of
the local workspace can be moved to a new location in the
environment. The combination of these two properties allows
for a schedule generator to determine if a task is reachable by a
specific robot. To define the abilities feature, a set of operation
types in the project needs to be defined. These are based on the
types of components, joints, and robots in the assembly project
and represents the discretized contribution of a robot in a given
task. These operations, defined as the set O = {O1, . . . , Oi, . . . O|

O|}, will be described in more depth in section 2.1.2.1. For now, it
is enough to say that each robot will have an entry for eachOi ∈O
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in its abilities property describing its capability or limitations in
completing that operation. In its simplest form, this can be
thought of as a processing time, describing how long the robot
will take to complete the operation. In higher fidelity
formulations this entry will include stochastic information in
the form of distributions. The processing time, approximated as a
normal distribution, will describe the variation present in
completing the specific operation by the robot. This can
include variation introduced from a need to adjust the robot’s
grip on a component or correcting for an overshot location.
Additionally, probabilistic information for minor and major
failures can also be included at this point. Minor failures,
defined as failures in completing an operation that do not
break the component or portions of the assembly, can be
separated out of the processing time and modeled as a
separate normal distribution paired with a geometric
distribution to model the number of times the robot might
need to attempt aligning a component and how long each
occurrence may take. The chance of a major failure, one that
damages other elements in the assembly triggering a need for new
tasks to be inserted to undo, replace, or repair the damaged
components can also be modeled with a Bernoulli distribution.
All of these distributions can be replaced to fit the characteristics
for the specific robots and scenarios in a given assembly without
changing the architecture of the SAPD.

2.1.2 Constraints
The constraints portion of the SAPD frames the requirements
describing the criteria for a valid assembly. This will includes a job
shop type formulation to discretize and articulate the steps
needed to complete an assembly, precedence constraints to
ensure tasks are completed in the required order, continuity
constraints and machine validity constraints to ensure that the
correct machines are used on tasks, and finally, distance
constraints to encapsulate the impact of robots traveling
between tasks in the assembly. A preliminary introduction to
some of these constraints was published in Moser et al. (2020),
however the follow sections provide additional details and
constraints necessary to frame the full assembly problem.

2.1.2.1 Job Shop Scheduling Problem Formulation
Variants of the job shop scheduling problem (JSSP)
formulation have been used throughout literature as a way
to describe a project in terms of the tasks that need to be
completed, represented as jobs, and the individual machine
contributions in each of those tasks, represented by operations
(Ozgüven et al., 2010; Chaudhry and Khan (2016)). In this
paradigm, the jobs, represented by the set J = {J1, . . . , Ji, . . . J|
J|}, make up the tasks that must to be assigned and processed
to complete an assembly problem. Each type of job will have a
set of operations (Oj) as sub-elements representing different
robot contributions in completing a job. Therefore, if a job can
be completed by one robot alone, it will contain one operation.
However, if a method of completing a job requires two robots,
that will be represented by two different operations. In some
cases, there may be more than one way to complete a job. This
is represented by a set of process plans (Pj) where each process

plan is a set of operations describing how job j can be
completed.

2.1.2.2 Precedence
Many assemblies require specific task sequences to successfully
reach the completed state. This is reflected in scenarios such as: a
component can not be connected until it has been moved into
position. To represent this constraint set, a Directed Acyclic
Graph (DAG), Gp (Vp, αp), is used to embed the precedence
constraints. Each vertex, Vp, represents a job in the assembly
project and each arc, αp, represents a precedence constraint,
thereby encoding the project precedence constraints in the
structure of the graph. Representing precedence this way
allows for ordering constraints to be described only in terms
of the jobs the must immediately proceed or follow it to provide a
sequence framework that the overall assembly must follow to
reach a valid completion state.

2.1.2.3 Continuity
In an assembly project, there may be occasions where a robot
needs to continue the same operation between two jobs. An
example of this is illustrated by a robot tasked with aligning a part
before it is fixed into position. The same robot must also be tasked
with holding that part during the actual affixing job since the use
of a different robot would result in the loss of alignment. By using
the precedence DAG to require the two jobs to come in direct
sequence and the continuity constraint requiring the robot to be
constant across the two jobs, the resulting assignment will reflect
the requirement of using the same robot for the two tasks without
being assigned something in-between. For this formulation, the
continuity constraint, represented by the set H = {(arcs, O)}, is
framed as arcs from the precedence DAG and operation type
parings. The arcs describe which jobs these constraints apply to
and the operation type represents which operations needs to be
assigned to the same robot across the arcs.

2.1.2.4 Valid Robot Section
In an assembly problem, there are instances in which a specific
robot must be used for a job even if other robots are technically
capable of completing it. This constraint can be used to force
certain robots to work on a specific job. It can also be used to
reduce the number of job types. For example, if the robots each
have a specific job reflecting how they are stored at the end of an
assembly, only one storage job type needs to be defined. This
constraint can then be used to require individual robots to
complete the storage job that is applicable to them. To
formulate this constraint, a set of pairs, V = {(J, R)}, is defined
that represents what robots can complete what jobs.

2.1.2.5 Distance
Finally, spatial information, part of the environment
consideration, must be included for many assembly problems.
This consideration is modeled using a fully connected graph
(FCG), Gd (Vd, Ed). There are two different ways that this
constraint can be implemented. The vertices, Vd, can either
represent specific jobs or the locations of points in the
assembly space. In both cases the edges, Ed, represent the
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distances between the features modeled by the vertices.
Depending on what other autonomous capabilities are present
or what additional information is known about the environment,
these edge values can represent direct point to point distance,
such as a Cartesian distance, or they can represent the distance of
a path that must be taken to move between the vertices. In either
case, the functionality of the FCG remains the same and provides
information to the schedule generator allowing it to determine
the time commitment and requirement of moving between
specific jobs or locations for a given robot.

2.1.3 State Representation
The definitions above provide a description method for each
element in the assembly project and their individual states when
applicable. The aggregated states of all these elements form the
basis for a description of the overall state of the assembly. For the
purpose of task assignment, it is necessary to model how the state
of an assembly will change for a particular robot to task (job/
operation) assignment. As noted earlier, a realistic autonomous
assembly problem will often contain stochastic elements that
factor into the state transition of the assembly. To accommodate
this, the SAPD models the autonomous assembly as a Markov
Decision Process (MDP), represented as the tuple (S, A, P (s′|s, a),
R (s′, s)), containing the state set, action set, transition probability,
and transition reward respectively.

2.1.3.1 State Space
In the MDP formulation, S is the set of all possible states the
assembly can take, S = {Sc, SJ, SR}. Each unique state, s ∈ S, is a
different combination of the stateful elements present in the
assembly. Many of these are naturally discretized as in the case of
a component being in position or not. Other states, such as
location and percent completion, must be approximated by a
discretized unit. The level of discretization will be a function of
the schedule generator’s sensitivity to state space size. Regardless
of the level of discretization, the following formulation is
still valid.

2.1.3.2 Action Space
The action space, A, is the space representing all of the possible
actions in the assembly problem. These actions take the form of

assigning different robots to different job/operation pairs: a: r →
(j, p, o) where r ⊆ R, j ⊆ J, p ∈ Pj, o ⊆ Ojp. In an autonomous
assembly scenario, the schedule generator will assign these
actions during the task allocation process.

2.1.3.3 Transition Probability
The transition probabilities, P (s′|s, a), can be thought of as a
measurement of how likely a certain state transition is (s → s′)
given an action assignment (a). These transition probabilities are
a key feature of this problem formulation, allowing it to
encapsulate much of the stochastic nature present in the
assembly problem. These probabilities are sourced from the
abilities in the SAPD formulation for the robot class described
earlier. The model functionality is demonstrated in the simple
MDP graph in Figure 1 panel A where a simple assembly requires
a block to be moved into position and connected to the ground.
Letting J1 represent moving the block and J2 connecting it in
place, state s1 represents the state where the block has beenmoved
into position but has yet to be connected. The other three states
are shown in Figure 1 panel B and represent the block fastened in
the correct location (s2), fastened in the incorrect location (s3),
and finally, not fastened and not in the correct location (s4). Based
on the action assignment a, a robot (R1) is assigned to connect the
block into position. If there is a 25% chance of the robot failing to
complete the connection task (PR1(J×2 ) � 0.25), a 50% chance
that the failure will dislodge the block from its correct location
PR1(J×1 |J×2 ) � 0.50, and a 0.1% chance a successful connection will
dislodge the block (PR1(J×1 |J✓2 ) � 0.001), the transition
probabilities of ending up in the four different states are:

Pa α( ) � PR1 J✓1 |J×2( )PR1 J×2( ) � 0.125
Pa β( ) � PR1 J✓1 |J✓2( )PR1 J✓2( ) � 0.7425
Pa γ( ) � PR1 J×1 |J✓2( )PR1 J✓2( ) � 0.0075
Pa δ( ) � PR1 J×1 |J×2( )PR1 J×2( ) � 0.125

(1)

By structuring the state representation with this MDP
structure, the possibility of failures, restarts, and a need for
backtracking to repair in an assembly project can be quantified
and taken into account by the autonomy. This form also allows
for impossible paths to be blocked by asserting zero probability
for the impossible transitions. In this general form, job insertions

FIGURE 1 | (A) Example Markov decision process state transition graph, (B) States in example Markov decision process.
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are not an issue since they would simply represent a different
action option at states. Unknown states would also not be a
concern since this type of formulation describes every possible
state by design. This is an important element when it comes to
replanning since the required transitions for replanning are
already embedded in this formulation. It should be
acknowledged here that while this is possible in the theoretical
case, in practice, extremely large state spaces are not practical for
many schedule generator methods to handle. Therefore, some
schedule generation formulations will use a reduced set of states
in the MDP model to approximate the entire assembly. However,
the formulation itself is capable of scaling as required for the
specific assembly problem and schedule generation method being
utilized.

2.1.3.4 Transition Reward
The final element of the MDP formulation is the state transition
reward, Ra (s′, s). This represents how beneficial a state transition
(s → s′) is with respect to completing the assembly. This might
take the form of the inverse cost of transition, a value rewarding
specific job completions, a measure of how close the new state is
to project completion, or focusing on elements such as penalizing
the entering of broken states (states where something in the
assembly is broken). The general formulation does not constrain
how this reward is generated, leaving a framework in place to be
utilized by the different schedule generation methods. Some
examples of the reward might be a time cost, or some penalty
value utilized in a schedule generator’s solver.

2.2 Mixed Integer Programming
Formulation
Now that a framework has been developed to describe the ISAAP,
different solution methodologies can be developed and
implemented to produce assignment schedules to describe task
sequences and robot to task allocations that lead to a valid
assembled state. These solutions can take many different
forms depending on the objective behind the schedule, the
capability of the scheduling algorithm, and the specifics of a
given ISAAP problem being modeled. In this work, a mixed
integer programming (MIP) methodology will be presented to
generate optimal schedules to the ISAAP. A benefit to using a
MIP formulation is the ability to quantify how close a generated
schedule is to an optimal schedule. The branch and bound solving
method naturally bounds the optimal solution between the
current best integer solution and the linearly relaxed solution.
Using these bounds, and optimal solution can be verified or some
measure of how far a solution is from optimal can be quantified.
Current mixed integer programming formulations for robot task
assignment include considerations for distance (Booth et al.
(2016)), job sequence considerations (Gini (2017)), and cross
robot dependencies (Korsah et al. (2012)). The formulation
presented below expands the concepts in these formulation to
include considerations for robotic task assignment by framing the
constraint set to account for sequence dependent operation
requirements and local workspace considerations with respect
to the robots.

2.2.1 Formulation Elements
The developed MIP formulation can be thought of in three main
sections: variables, objective function, and constraints. The
variables will describe the binary and continuous elements
being modified by the MIP solver as it seeks, in this case, to
minimize the objective function within the limitations of what
makes a valid assembly sequence and task allocation described by
the constraints. First, a mathematical representations of the SAPD
elements must be mapped for use in the MIP formulation.

2.2.1.1 Sets
The sets of robots, jobs, process plans, and operations sets from
the SAPD are all used directly in the MIP formulation.
Additionally, a set of arcs from the precedence DAG must be
defined to include the precedence information into the MIP
formulation domain. Using these arcs, the continuity
constraint information is also included. In the MIP
formulation, all of these sets are defined as:

R Set of all robots
J Set of all jobs
Pj Set of all process plans for job j
Ojp Set of all operations for a given process plan Pj

A Set of all precedence arcs
Oa Set of all operations that require continuity for a given a ∈ A

2.2.1.2 Parameters
In addition to the sets, several parameters (values that will not
change within the model during solving) must be defined. The
first is the processing time, a representative value pulled from the
robot ability information. This value is used by the scheduler to
model how long it will take a given robot to complete a certain
operation. In addition to the process time, a time for traversing
distance must be defined. This value, noted as the setup time since
it is the time a given robot will take to move from one job to
another, is derived from the distance between two jobs, pulled
from the FCG in the SAPD and the given robot’s ability to move
around the environment. Additionally, parameters describing if a
robot is mobile, if a job begins within a robot’s local workspace,
and if a specific job can be allocated to a specific robot are also
defined from the SAPD. Finally, a very large constant number
must be established for use in the MIP constraint definition to
allow for certain constraints to be “turned off” under certain
conditions. This will be explained further in section 2.2.1.5. The
definition of these parameters take the form:

Tjpor The processing time of operation o in the process plan p for job j by robot r
Sjj′r Setup time of robot r moving from job j to jobj′
mr 1 if robot r ismobile and 0 if it is not
gjr 1 if job j is within the local workspace grasping range( )of robot r
vjr 1 if robot r canwork on job j and a 0 if it can not
L Avery large number used to help toggle constraint equations

2.2.1.3 Variables
Binary. The binary variables represent decisions. These can be
thought of as a 1 or 0 switch, a 1 if the decision was a yes and a 0 if
the decision was a no. These decisions include if a robot is
assigned to a specific job, if a specific process plan is chosen
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for a given job, and what operation a robot is assigned to for a
given job, process plan, and operation configuration. They also
include what job a robot starts working on, what jobs it
transitions between, and what job it ends on. The definition
for each of these binary variables take the form:

xjr 1 if job j was assigned to robot r, 0 otherwise
xjp 1 if process plan p is chosen for job j, 0 otherwise
xjpor 1 if robot r is assigned to operation o in process plan p for job j, 0 otherwise
xstart
jr 1 if robot r starts project with job j, 0 otherwise

xjj′r 1 if robot r moves from job j to j′, 0 otherwise
xend
jr 1 if job j is the last job that robot r works on in the project, 0 otherwise

Continuous. In addition to the binary variables, there is a set of
continuous variables used to note important time quantities
that the model must set. These include when a job is started,
when it is completed, when a specific operation is completed
within a job, and when a robot completes its work on a job.
Additionally, the times when a robot starts traveling between
two jobs and finishes traveling between two jobs are also
modeled. Finally, the overall project duration (the project
makespan in job shop terms) is defined. In this formulation,
these take the form:

sj The start time of jobj
cj The completion time of jobj
cjpo The completion time of operation o in process planp for jobj
cjr The time robot r completes jobj
sjj′r The start time for robot rmoving from jobj to jobj′ forj ≠ j′
cjj′r The completion time for robot rmoving from jobj to jobj′ for j ≠ j′
cmax The upper bound on completion time the projectmakespan( )

2.2.1.4 Objective
For this formulation the objective is to minimize the overall time
it takes to complete the assembly project. This will drive the
model to minimize the amount of time a robot is idle and it will
encourage the solver to choose robot assignments that pick the
best robot for a given job/operation while taking into account
how long it will take the robot to move to the job it has been
assigned. This is defined as:

min cmax (2)

2.2.1.5 Constraints
To enforce all of the constraints present in the problem formulation a
series of linear constraints must be defined. These can be broken into
five different groups: Assignment constraints, continuity constraints,
robot flow constraints, mobility and workspace constraints, and
finally, timing constraints.

Assignment Constraints. In the first set of constraints, the fact
that a job can only be performed one way across the whole
assembly is enforced. This means only one process plan can be
used per job in the assembly (Eq. 3). When a robot is assigned to a
job it must also be assigned to one and only one operation in that
job (Eq. 4) and (Eq. 5), which must be included in the list of
operations in the process plan the scheduler selected (Eq. 6) and
(Eq. 7). If the robot is not assigned to a job it can not work on any

operations in that job (Eq. 8). These principles are enforced by the
following constraints:

∑
p∈Pj

xjp � 1 ∀j ∈ J (3)

∑
p∈Pj

∑
o∈Ojp

xjpor ≤ 1 ∀j ∈ J, r ∈ R (4)

xjp � ∑
r∈R

xjpor ∀j ∈ J, p ∈ Pj, o ∈ Ojp (5)

xjpor ≤xjp ∀j ∈ J, p ∈ Pj, o ∈ Ojp, r ∈ R (6)
xjpor ≤xjr ∀j ∈ J, p ∈ Pj, o ∈ Ojp, r ∈ R (7)

xjr � ∑
p∈Pj

∑
o∈Ojp

xjpor ∀j ∈ J, r ∈ R (8)

Continuity Constraint. If there is a continuity requirement, that
is, if the same robot must work the same operation between two
jobs, that is enforced with the constraint:

xj′p′or ≤xjpor ∀p′ ∈ Pj′, p ∈ Pj, o ∈ O j′,j( ), j′, j( ) ∈ A, r ∈ R

(9)

Robot Workflow Constraints. In addition to the assignment
considerations above, the manner in which robots work on
jobs must also be enforced. In a robot’s workflow, there must
only be one start and one end node (Eq. 10) and (Eq. 11). A robot
must only start and stop working on a given job once in its
workflow before moving on to the next job (Eq. 12) and (Eq. 13),
and it must not loop back to the same job after completing it
(Eq. 14):

∑
j∈J

xstart
jr � 1 ∀r ∈ R (10)

∑
j∈J

xend
jr � 1 ∀r ∈ R (11)

xj′r � xstart
j′r +∑

j∈J
xjj′r ∀j′ ∈ J, r ∈ R (12)

xjr � xend
jr + ∑

j′∈J
xjj′r ∀j ∈ J, r ∈ R (13)

xjjr � 0 ∀j ∈ J, r ∈ R (14)

Mobility andWorkspace Constraints.A robot cannot be assigned
to a job unless the robot is a valid machine for that job (Eq. 15). It
must also have access to the job, either having it within its local
reach or having the ability to move around the assembly
environment (Eq. 16):

xjr ≤ vjr ∀j ∈ J, r ∈ R (15)
xjr ≤gjr +mr ∀j ∈ J, r ∈ R (16)

Timing Constraints. Finally, timing constraints are necessary
to ensure that the jobs are started and completed in a valid
manner adhering to the limitations for the assembly. Jobs can
not be completed until after all of the operations in the job are
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completed (Eq. 17) and the completion time of a job must
equal the start time plus the time it takes to process the job
(based on the assigned robots) (Eq. 18). The start time of a job
can not be less than the completion time of the previous job
worked on by that robot plus the amount of time it took the
robot to get to the current job (Eq. 19). Additionally, a job can
not be started until all the jobs prior to it in the precedence
DAG are completed (Eq. 20). A robot can not finish working
on a job until the job is completed (Eq. 21), the time a robot
starts moving to a new job can not be before it finishes the job
it is working on (Eq. 22), and it can not complete the travel
time until the amount of time to move between jobs has passed
(Eq. 23). Finally, the overall project completion time (the
makespan) can not be less than the largest job completion
time (Eq. 24). As noted in section 2.2.1.2, a very large
constant (L) can be used to turn off constraints when
applicable. This is common practice for MIP models since
it shifts the value of one side of the constraint based on the
configuration of a binary variable. The two constraints using
this technique along with the other timing constraints take the
form:

cj ≥ cjpo ∀j ∈ J, p ∈ Pj, o ∈ Ojp (17)
cj ≥ sj + Tjpor( )xjpor ∀j ∈ J, p ∈ Pj, o ∈ Ojp, r ∈ R (18)

sj′ ≥ cj + Sjj′rxjj′r − L 1 − xjj′r( ) ∀j ∈ J, j′ ∈ J\ j{ }, r ∈ R (19)
sj′ ≥ cj ∀ j′, j( ) ∈ A (20)
cjr � cj ∀j ∈ J, r ∈ R (21)

sjj′r � cj − L 1 − xjj′r( ) ∀j ∈ J, j′ ∈ J\ j{ }, r ∈ R (22)
cjj′r � cj + Sjj′rxjj′r − L 1 − xjj′r( ) ∀j ∈ J, j′ ∈ J\ j{ }, r ∈ R (23)

cmax ≥ cj ∀j ∈ J (24)

3 EXPERIMENT

As a validation for the SAPD and the MIP schedule
generation method, a multi-robot assembly problem to
build an arch structure was developed. This validation
included a three part experiment set to evaluate three
different factors. The first experiment takes the optimal
schedule that was generated by the MIP and compares it
to a hardware implementation following the optimal
schedule to evaluate how well the scheduler models the
assembly and to provide insight for improvement in the
MIP formulation. The second experiment compares the
hardware implementation of the optimal schedule against
an alternative allocation policy that might be used in an in-
space autonomous assembly problem where an autonomous
scheduler has not been developed. Finally, the third
experiment attempts a reschedule in the middle of the
assembly to replicate a realistic condition where
something may go wrong and the scheduler will need to
be reran to determine a new set of robot to task allocations to
finish the assembly.

3.1 Assembly Problem
The assembly project used in this work consists of taking seven
blocks from a storage area, bringing them to a staging area where
three subassemblies are made into two columns and the arch
crossmember. Next, the three subassemblies are moved to the
final assembly location where they are assembled into the finished
arch. The workforce of these experiments consisted of two
teleoperated robots. It should be noted that, while this system
has been developed with full autonomy in mind, the scope of this
experiment set is the evaluation of the optimization process. In
this scope, teleoperated units are more than adequate to validate
the optimization formulation. Additional, future fully
autonomous experiments will be discussed in section 5.3. The
following sections will fully describe the different elements in the
assembly and the three experiments.

3.1.1 Workspace
The assembly workspace for this experiment took place in a 200in
× 110in rectangular space. As pictured in Figure 2 panel A, there
are two storage bays where the parts for the columns and
horizontal crossmember are stored respectively. Both types of
subassemblies (column and crossmember) have their own staging
areas where they are assembled before they are brought to the
final assembly area to be combined into the completed arch. In
addition to these five locations, each of the robots have a starting
location defined in the workspace. Table 1 provides the SAPD
formulation for each of the seven reference locations.

3.1.2 Components
The components in this project consist of the seven blocks that
make up the arch structure. There are two large blocks (lb1 and
lb2) that will be combined with two medium blocks (mb1 and
mb2) to construct the two column subassemblies. The final three
blocks, two small corner blocks (sbc1 and sbc2) will combined
with one small middle block (sbm1) to make the horizontal
crossmember. The SAPD representation for each of these
components is given in Table 2.

3.1.3 Joints
In this assembly project, all of the joints are of a snap connector
type. Pictured in Figure 2 panels B–D, these clips are
androgynous and include self-aligning posts that help fine
tune the alignment after a course alignment takes place. After
the course alignment, force along the clip face axis will snap two
clips together. There are six of these joints in the entire assembly,
each of which is defined in Table 3.

3.1.4 Robot Workforce
The robot workface consists of two Mobile Assembly Robot
Collaborator (MARC) units designed custom in the Field and
Space Experimental Robotics (FASER) laboratory. For the
experimental work reported here, the teleoperators for each
MARC remained constant to reduce the chance of processing
time variation that might be introduced due to different skill
levels or a difference in control interface familiarity. To model the
processing time for different tasks, each task type was repeated
thirty six times by each operator/robot to form a distribution. The
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expected value of each distribution was used to inform the MIP
processing time and setup time information in the model. The
distributions for each of these processing times will be discussed
in section 4.4. The expected values, along with the rest of the
robot formulation description are shown in Table 4.

3.1.5 Assembly Constraint Formulation
To ensure a valid assembly, components could not be assembled
into subassemblies unless they were in their designated staging

areas. In a similar fashion, the subassemblies could not be
assembled into the final structure until they were in the final
assembly area. The only robot to job restrictions were those
applying to the two start jobs. These start jobs were used to insure
that the robots started in the right positions. Additionally, there
were no continuity constraints in this assembly problem. Four
different job types were used in this assembly: idle start (S), move
part (M), connect part and connect assembly (C). To complete
these jobs, eight different operations were defined: idle, locomote,

FIGURE 2 | (A) Arch assembly workspace with location, component, and robot labels, (B) One side of the androgynous connector, (C) Both sides of the
androgynous connector about to be connected, (D) Androgynous connector in the connected state.

TABLE 1 | SAPD point definitions for the arch assembly project.

Point A (WA) Point B (WB) Point C (WC) Point D (WD)

Column component storage
area

Horizontal crossmember components storage
area

Column component staging
area

Horizontal crossmember components staging
area

Properties: Properties: Properties: Properties:
• Reference • Reference • Reference • Reference
• (70, 185) • (70, 155) • (70, 115) • (70, 85)

Point E (WE) Point Sr1 (WSr1) Point Sr2 (WSr2) —

Final assembly area MARC 1 starting location MARC 2 starting location —

Properties: Properties: Properties: —

• Reference • Reference • Reference —

• (70, 40) • (20, 185) • (20, 140)
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connect component, co-op connect component, connect
subassembly, co-op connect subassembly, pick and place, and
finally place. These operations are defined as:

• idle: is a very short waiting time for a robot. This is only
used to initialize the robot at the correct starting location.

• locomote: is the motion contribution a robot can make.
This is the only operation that is a velocity and is utilized
anytime a robot has to move locations.

• connect component: is the action of picking up a
component and connecting it to another component.

• connect subassembly: is the action of connecting both sides
of the crossmember to the columns.

• co-op connect component: is the action of connecting one
component to another with the help of a second robot.

• co-op connect subassembly: is the action of connecting one
side of the crossmember to one column (each robot
connects one of the two sides).

TABLE 2 | SAPD component definitions for the arch assembly project.

Component lb1 (Clb1) Component lb2 (Clb2) Component mb1 (Cmb1) Component mb2 (Cmb2)

First large block Second large block First medium block Second medium block
Properties: Properties: Properties: Properties:
• Large block • Large block • Medium block • Medium block
• Start: WA • Start: WA • Start: WA • Start: WA

State: State: State: State:
• Not in position • Not in position • Not in position • Not in position
• Not broken • Not broken • Not broken • Not broken
• current: (70, 185) • current: (70, 185) • current: (70, 185) • current: (70, 185)

Component sbc1 (Csbc1) Component sbc2 (Csbc2) Component sbm1 (Csbm1) —

First small corner block Second small corner block Small middle block —

Properties: Properties: Properties: —

• Small corner block • Small corner block • Small middle block —

• Start: WB • Start: WB • Start: WB

State: State: State: —

• Not in position • Not in position • Not in position —

• Not broken • Not broken • Not broken
• current: (70, 155) • current: (70, 155) • current: (70, 155)

TABLE 3 | SAPD joint definitions for the arch assembly project.

Connection 1 (K1) Connection 2 (K2) Connection 3 (K3)

Connection between lb1 and mb1 to form the
first column

Connection between lb2 and mb2 to form the second
column

Connection between sbc1 and sbm1 to form part of the
crossmember

Properties: Properties: Properties:
• Clip • Clip • Clip
• [Clb1, Cmb1] • [Clb2, Cmb2] • [Csbc1, Csbm1]
State: State: State:
• Not joined • Not joined • Not joined

Connection 4 (K4) Connection 5 (K5) Connection 6 (K6)

Connection between sbc2 and sbm1 to form
part of the crossmember

Connection between sbc1 and mb1 to connect the
crossmember to the first column

Connection between sbc2 and mb2 to connect the
crossmember to the second column

Properties: Properties: Properties:
• Clip • Clip • Clip
• [Csbc2, Csbm1] • [Csbc1, Cmb1] • [Csbc2, Cmb2]
State: State: State:
• Not joined • Not joined • Not joined

TABLE 4 | SAPD robot definitions for the arch assembly problem.

MARC 1 (Rm1) MARC 2 (Rm2)

State: State:
• Idle • Idle
• Current: (20, 185) • Current: (20, 140)
• Task: none • Task: none
Properties: Properties:
• Gripper • Gripper
• Mobile: Yes • Mobile: Yes
• Abilities • Abilities
• Idle: 0.01 (s) • Idle: 0.01 (s)
• Locomote: 6.64 (in/s) • Locomote: 6.16 (in/s)
• Connect component: 94.33 (s) • Connect component: 106.14 (s)
• Connect subassembly: 90.1 (s) • Connect subassembly: 86.14 (s)
• Co-op connect component:

165.11 (s)
• Co-op connect component:

165.11 (s)
• Co-op connect subassembly:

79.58 (s)
• Co-op connect subassembly:

79.58 (s)
• Pick and Place: 41.67 (s) • Pick & Place: 66.72 (s)
• Place: 15.61 (s) • Place: 20.56 (s)
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• pick and place: is the action of picking up and setting down
a component. This is often used in conjunction with the
locomotion velocity to describe the time it takes a robot to
complete a move job type.

• place: is the place portion of the pick and place operation.
This is used during the reschedule experiment when the
damaged crossmember needs to be set down for repair.

The first of the four types of jobs, idle start, was a first job for each
robot to insure they began in the right position. This job is analogous
to the robots coming out of storage and for this experiment, it took
negligible time to complete this job type. The move job type, as the
name implies, was used when a component needed to be moved
from one location to another. This type is unique in that the
scheduler calculated the processing time for a move job as the
time it took to complete the robot operation contribution (pick
and place) plus the time it took the robot to traverse the distance
between the starting and ending points in the job. The connect type
reflected components or subassemblies being connected. This type
had the sub-elements of connect component or connect
subassembly. Connect component represented the time it took a
robot to place and engage the clips between two components.
Connect subassembly, like connect component, involved the robot
connecting the clips between blocks. However, in the subassembly
type, the time includes the robot having to connect both sides of the
crossmember. Tables 5 and 6 provide a list and description of the
different jobs that make up the assembly project and how each one
could be completed, respectively. The DAG describing the
precedence constraints, the initial state of the assembly, and the
final state of the assembly are all shown in Figure 3.

3.2 Experiment Implementation
As noted above, the processing time information for each of the
operations in the assembly project was generated through thirty
six instances of each robot completing each type of operation.
Each set of thirty six contained slight variations likely to be seen in
the actual assembly project. For example, to evaluate the connect
component processing time, combinations of the three different
block sizes (small, medium, and large) and three different
spacings between pre-connected blocks were used. This
experimentally generating the processing times to inform the
SAPD, providing the stochastic variation information present due
to operator control and slight changes present due to different
grips required for the three block types to be modeled. Each robot
was controlled by the same operator through all of the
experiments to preserve the distributions acquired for the
SAPD. The MIP scheduler was implemented using the Gurobi
Python API (Gurobi Optimization, 2021) on a Windows 10
computer with 16 GB of RAM and a 2.20 GHz i7 CPU. The
solution generated by the MIP was used as the optimal schedule
in all three experiments. The optimal schedule was solved for in
9.58 s. Figure 4 provides a picture of the optimal schedule. The
bottom two rows in the graph show which robot worked one what
job at what time in the assembly project. The black lines between
jobs show when a robot would need to travel between jobs and the
blank gaps represent when a robot is waiting to start its next task.
The upper portion of the graph shows when each job was

processed in the assembly project. The jobs times in the upper
and lower portions of the graph are color synced to clarify task
allocation when two robots are working at the same time. The
projected completion time for the assembly was 679 s.

3.2.1 Full Assembly
The full assembly experiment consisted of two complete runs of the
assembly project following the task sequence and allocation in the
optimal schedule. During the assembly runs, there were a few
instances of unexpected errors. In a deployed scenario, these errors
would lead to a reschedule and reallocation of the robots. Since the
third experiment tests this ability, the other experiments focused on
other evaluations. For the first two experiments, if an unexpected
error occurred, such as a battery running low or a connection clip
breaking, all of the operators were immediately notified and the
experiment was paused while the issue was resolved. Once resolved,
everything continued from the point where the error occurred,
allowing for the down time due to the error to be factored out of the
processing times making the comparison between the schedule and
the hardware implementation valid. It should be noted that failures
in the experiment, such as a gripper needing to be readjusted or a
second attempt at making a clip connect, were left in the experiment
since they are realistic elements in the assembly problem.

3.2.2 Alternative Policy Task Allocation
To evaluate how the completion time of a hardware implementation
of the optimal schedule compares to an assignment method that did
not have the task sequencing and allocation analysis capability, an
alternative assignment policy was chosen that reflects a realistic
strategy to complete a new assembly project. This alternative
policy allocated tasks based on their type to a specific robot.
MARC 1 was faster at completing the connect component
operations than MARC 2 so all of the connection type jobs were
given to MARC 1. Similarly, MARC 2 was given all of the move job
types. To give this policy the best chance against the optimal policy,
the jobs were completed in a way that would minimized the amount
of time one robot was waiting on the other. While this changed the
task sequencing slightly in the alternative policy hardware
implementation, it allowed for the best comparison between the
optimal task allocation and the alternative policy allocation.

3.2.3 Replanning Error Correction
To test the ability of this scheduler to reschedule, one of the
motivations in the development of the task assignment
framework, a failure was forced near the end of the assembly.
Once the crossmember arrived at the assembly location, the end
of the crossmember was removed from the other two components.
This required a reassignment with a new starting configuration
reflecting the current state of the assembly. Jobs were inserted to
set the crossmember down, repair it, and then finish the assembly.

4 RESULTS

The following sections will report the results from the
experiments. Due to the teleoperated nature of the
experiments, the hardware runs were video recorded and the
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processing times were pulled from the timestamps in the video.
For each robot working on each job, the timestamp was recorded
for when a robot started and finished traveling between jobs and
when it started and completed working on each job. The
following sections report the results from the three experiments.

4.1 Full Assembly
Two full assembly runs following the optimal schedule were
completed. In the first, part way through the assembly, one of
the connection clips broke requiring the experiment to be paused
and the component replaced. In the second assembly, an
electronics issue occurred also requiring the experiment to be
paused. The presence of these errors further highlight the
necessity of a system capable of articulating the states needed
for repair and reallocating robots autonomously. As described
above, both of these pauses were removed from the data in post-
processing and the resulting data was verified against the footage.

4.1.1 First Full Assembly Run
In Figure 5 panel A the comparison between the first full assembly
run and the optimalMIP schedule is shown. This assembly took 801 s

to complete, an 18.14% error in overall completion time of the
project. A job by job break down of the differences and percent errors
between the optimal projected schedule and this hardware trial is
shown in Figure 5 panel B. The largest two errors occurred when
dealing with the horizontal crossmember. As shown in the same
figure and panel, all of the jobs moving components from the storage
to the staging area took a few second less than the predicted time, on
average. Alternatively, all of the jobs dealing with the subassemblies
took longer than predicted aside from the final job where the two
robots connected the horizontal crossmember to the two columns.

4.1.2 Second Full Assembly Run
Similar to the first full assembly run, the second assembly took
814 s to complete, a 20.06% error from the optimal schedule. Like
the first assembly, the schedule comparison shown in Figure 6
shows similar error trends where the moving of parts between the
storage and staging areas were slightly faster than predicted and
the jobs dealing with the subassemblies took longer than
projected. In the second assembly run, the largest difference
between actual and projected comes from moving the
crossmember into place.

TABLE 5 | Jobs in the arch assembly project.

Job Type Component(s) Location(s) Description

Sr1 Start N/A Wsr1 Used to ensure MARC 1 starts at the right location
Sr2 Start N/A Wsr2 Used to ensure MARC 2 starts at the right location
Mlb1 Move lb1 WA → WC Move the first large block from storage to staging
Mlb2 Move lb2 WA → WC Move the second large block from storage to staging
Mmb1 Move mb1 WA → WC Move the first medium block from storage to staging
Mmb2 Move mb2 WA → WC Move the second medium block from storage to staging
Msbc1 Move sbc1 WB → WD Move the first small corner block from storage to staging
Msbc2 Move sbc2 WB → WD Moving the second small corner block from storage to staging
Msbm1 Move sbm1 WB → WD Moving the small medium block from storage to staging
Cmb1lb1 Connect

C
mb1 and lb1 WC Connecting the first large and medium blocks to make the first column

Cmb2lb2 Connect
C

mb2 and lb2 WC Connecting the second large and medium blocks to make the second column

Mmb1lb1 Move mb1 and lb1 WC → WE Move the first column from staging to the final assembly location
Mmb2lb2 Move mb2 and lb2 WC → WE Move the second column from staging to the final assembly location
Csbm1sbc1 Connect

C
smb1 and sbc1 WD Connecting the small middle block with the first small corner block to make part of the horizontal

crossmember
Csbc2sbm1 Connect

C
sbc2 and sbm1 WD Connecting the small middle block with the second small corner block to make part of the

horizontal crossmember
Msbc1sbm1sbc2 Move sbc1 and sbm1 and

sbc2
WD → WE Move the crossmember to the final assembly location

Csbc1sbm1sbc2 Connect S sbc1 and sbm2 and
sbc2

WE Connect both sides of the crossmember to the two columns

TABLE 6 | Process plans and operations for each of the types of jobs.

Job type Process plan(s) Operation(s)

Start p0 (Idle)
Move p0 (Pick and Place)
Connect C p0 (Connect component)

p1 (Co-op connect component, Co-op connect component)
Connect S p0 (Connect subassembly)

p1 (Co-op connect subassembly, Co-op connect subassembly)
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4.2 Alternative Policy
As stated in section 3, the alternative assignment policy where
MARC 1 completed only the connecting type jobs and MARC 2
completed all of the move type jobs, was used to evaluate the
benefit of using the optimal schedule against an alternative,
realistic assignment policy in an autonomous scenario. The job
completion time results for this hardware trial are compared
against the optimal schedule and the first hardware
implementation of the optimal schedule in Figure 7 panel A
and panel B respectively. Even with the reordering of task
sequencing to complete the alternative policy in the optimal
way, the alternative policy makespan was 901 s, yielding an
error of 32.89% from the optimal schedule projection and a

12.48% error longer from the first hardware run implementing
the optimal schedule.

4.3 Replanning
Using the same computer that generated the original
schedule, the reschedule was solved in 0.066 s (negligible)
time and the assembly proceeded with MARC 1 being
retasked (since it was the closest to the damaged part) to
set the partial crossmember down, repair the broken joint,
and finish the assembly. After the repair portion of the jobs,
the new schedule matched the original task allocation,
completing final job with both MARCs to attach the
crossmember to the two columns.

FIGURE 3 | Precedence DAG for arch assembly project, Initial assembly state, Final assembly state.
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FIGURE 4 |Optimal schedule generated by themixed integer program. The bottom portion of the graph shows the robot to task allocation and the upper portion of
the graph shows the task sequencing. The job times between the two portions are color coded and spatially synced.

FIGURE 5 | (A)Hardware vs. MIP optimal schedule for the first full assembly run, (B): Job by job breakdownwith error for the first full assembly run. The job key is as
follows: J1: Mlb2, J2: Mlb1, J3: Mmb2, J4: Msbm1, J5: Mmb1, J6: Msbc2, J7: Msbc1, J8: Cmb1lb1, J9: Csbm1sbc1, J10: Cmb2lb2, J11: Mmb1lb1, J12:
Csbc2sbm1, J13: Mmb2lb2, J14: Msbc1sbm1sbc2, J15: Csbc1sbm1sbc2.
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4.4 Processing Times
When applicable, the processing times measured during the
hardware experiments were plotted over the distributions of
the data used to generate the expected values in the
scheduler’s processing time entries. Figure 8 contains the
processing time distributions for the connect component,
connect subassemblies, co-op connect component, and co-op
connect subassemblies operations for both of the robots. The
hardware processing times for MARC 1’s connect component
appear to be in the upper range of those seen in the data taken for
ability property. As shown in panel A, it took about 35 seconds
longer, on average, than the value used in the scheduler. This
corresponds to the higher error in the connect component job
types shown in the schedule. In contrast, MARC 2, which only
had a few instances of connecting a component throughout the
hardware trials, had a processing time very close to the expected
value of the input data when completingCsbm1sbc1. Panels C and

D show only one and no hardware data points for MARC 1 and 2,
respectively, since the optimal scheduler used both robots to
connect the subassemblies together. The one entry for MARC 1
reflects the alternative policy requiring MARC 1 to handle all of
the connection job types on its own. Similarly, the only co-op
operation utilized was connecting the subassembly shown in
panel F. The final three operations, locomote, pick and place,
and place, show similar results in Figure 9. The locomote
instances for both robots, shown in panels A and B, are
similar to those used by the scheduler. The hardware
processing times have not been corrected for the extra
distance the robots had to travel to avoid colliding (since path
planning was not part of this experiment set). The similar
distributions between the hardware trials and abilities data
indicates that this was not a large contributor to the error
seen between the optimal schedule and the results. The pick
and place operations, panels C and D, show that the distribution

FIGURE 6 | (A) Hardware vs MIP optimal schedule for the second full assembly run, (B) Job by job breakdown with error for the second full assembly run. The job
key is as follows: J1: Mlb2, J2: Mlb1, J3: Mmb2, J4: Msbm1, J5: Mmb1, J6: Msbc2, J7: Msbc1, J8: Cmb1lb1, J9: Csbm1sbc1, J10: Cmb2lb2, J11: Mmb1lb1, J12:
Csbc2sbm1, J13: Mmb2lb2, J14: Msbc1sbm1sbc2, J15: Csbc1sbm1sbc2.
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ranges are about the same but with instances 20–30 s faster and
slower than the expected value of the input data.

5 DISCUSSION

The developed SAPD was able to successfully articulate all of
the elements present in the assembly problem that were
important to task assignment and successfully encode the
constraints in a way that could be passed to a schedule
generator to generate task sequences and allocations. The
MIP schedule generator was then able to take these elements
and constraints to solve for an optimal schedule which proved
to be more optimal to follow than an alternative, less informed,
viable scheduling policy. The below sections will discuss
advantages and limitations present in the formulations and
will end with future work suggestions.

5.1 Advantages
The SAPD is capable of describing the elements present in an
assembly problem. It has a flexible formulation that allows to
adapt between simple, small scale, assembly projects, up to large,
stochastic projects. The ability to record both state and property
information allows it contain information that may be needed by
other elements of an autonomy suite used in in-space assembly
scenarios. TheMIP formulation proved to be capable of modeling
distance considerations, continuity constraints, and the other
core constraint requirements to ensure a valid assembly
schedule. By the nature of the branch and bound solving
method, used for MIP formulations, it was able to guarantee
an optimal schedule based on the input data and contained the
ability to give a measure of how far from the optimal solution the
generated schedule might be. At the experimental scale presented
in this work, schedule generation was very fast, making it usable
for rescheduling, an important consideration for in-space

FIGURE 7 | (A) Hardware experiment following alternative policy compared against the optimal MIP scheduled, (B) Hardware experiment following alternative
policy compared against hardware experiment following the optimal schedule. The job key is as follows: J1: Mlb2, J2: Mlb1, J3: Mmb2, J4: Msbm1, J5: Mmb1, J6:
Msbc2, J7: Msbc1, J8: Cmb1lb1, J9: Csbm1sbc1, J10: Cmb2lb2, J11:Mmb1lb1, J12: Csbc2sbm1, J13: Mmb2lb2, J14: Msbc1sbm1sbc2, J15: Csbc1sbm1sbc2.
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applications where the delay or lack of communication can make
teleoperated rescheduling impractical or impossible.

5.2 Limitations
Using the MDP formulation in the SAPD may reach intractable
state numbers for very large assemblies. While this is not a direct
limitation to the formulation, additional work may need to be
done to determine the best way to approximate the states or
downsample to the a smaller, important state set. This is
additional work that would need to feed the problem
definition, adding another capability requirement in the overall

autonomy system. TheMIP formulation, in its current form, does
not take into account the spatial footprint of the robots. While it
did not greatly impact the overall assembly runs above, it did
cause some of the robot interactions to go unaccounted for in the
model. One possible mitigation is to factor in path routing in the
MIP. This, however, leads to the second limitation. The MIP
treats the whole assembly problem all at once, instead of solving it
temporally from beginning to end. If a change is made, the overall
assembly changes and the solving process needs to start over.
While this can be mitigated by feeding in the previous solution to
“warm start” the solver, it could cause limitations if the solving

FIGURE 8 | (A) MARC 1 connect component processing times for scheduler and hardware instances, (B) MARC 2 connect component processing times for
scheduler and hardware instances, (C) MARC 1 connect subassembly processing times for scheduler and hardware instances, (D) MARC 2 connect subassembly
processing times for scheduler (there were no hardware instances), (E) Co-op connect component processing times for scheduler (there were no hardware instances),
(F) Co-op connect subassembly processing times for scheduler and hardware instances.
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time is too large. This is a potential concern for large projects
since the addition of jobs or robots will increase the problem
space significantly thereby increasing the computation time
required to produce a schedule. Future experiments need to be
done to determine the scale limitations of the MIP formulation.

5.3 Future Work
Future work for the SAPD will include additional scenarios with
variations in assembly constraints to provide an extended
evaluation into the flexibility of the formulation to describe
the wide range of assembly projects present in the in-space
assembly domain. Ongoing work is being done to generate
experiments that will have similar features to building support

structures for Martian or Lunar bases. Future work for the MIP
formulation will include constraints that allow additional spatial
consideration. One possible way to do this is to insert required
delays between start times when robots are set to occupy the same
location based on the expected completion time between the
incoming and outgoing units. This will need to be paired with a
consideration for when two robots are working on the same job at
the same location. Another addition to the MIP could be to map
locations to the operations rather than just the jobs. This will
allow the formulation to handle instances where two robots need
to collaborate on a job from locations that are spatially separate.
Additionally, alternative methods to generate schedules should be
explored, including a stochastic mixed integer program, to better

FIGURE 9 | (A)MARC 1 locomote velocity for scheduler and hardware instances, (B)MARC 2 locomote velocity for scheduler and hardware instances, (C)MARC
1 pick and place processing times for scheduler and hardware instances, (D)MARC 2 pick and place processing times for scheduler and hardware instances, (E)MARC
1 place processing times for scheduler and hardware instances, (F) MARC 2 place processing times for scheduler (there were no hardware instances).
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incorporate the stochastic distributions from the SAPD into the
schedule generation. An interesting hybrid approach might be to
use the MIP formulation to generate an initial optimal schedule
paired with a faster, less optimal algorithm tomodify the schedule
to fix issues that may arise during the assembly. Finally, making
the teleoperated robots autonomous and running additional
assembly experiments will allow for a clearer analysis of how
the model handles the stochastic characteristics present in the
hardware systems and state estimation algorithms in an
autonomous robotic system.

5.4 Conclusion
A key element in the expansion of space exploration is the use of
autonomous robots to build and maintain structures for the arrival of
humans or to handlemissions humans can not. To accomplish this in
a realistic, stochastic environment, one of the necessary elements of
autonomy is the ability to generate good task sequences and task
allocations. The novel work presented here developed a formulation
capable of articulating the necessary elements present in an
autonomous assembly problem and a framing that is capable of
including state transitions during amid-assembly repair. Additionally,
this work developed a formulation to generate optimal schedules and
provided a preliminary validation of the developed methodology
using teleoperated hardware assembly experiments to build a
structure and reallocate mid-assembly to repair a broken
component. The continued development of this work has promise
to provide an important piece of the puzzle in using autonomous
robots in the overall quest of space exploration and colonization.
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