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Collaborative interactions require social robots to share the users’ perspective on the
interactions and adapt to the dynamics of their affective behaviour. Yet, current
approaches for affective behaviour generation in robots focus on instantaneous
perception to generate a one-to-one mapping between observed human expressions
and static robot actions. In this paper, we propose a novel framework for affect-driven
behaviour generation in social robots. The framework consists of (i) a hybrid neural model
for evaluating facial expressions and speech of the users, forming intrinsic affective
representations in the robot, (ii) an Affective Core, that employs self-organising neural
models to embed behavioural traits like patience and emotional actuation that modulate
the robot’s affective appraisal, and (iii) a Reinforcement Learning model that uses the
robot’s appraisal to learn interaction behaviour. We investigate the effect of modelling
different affective core dispositions on the affective appraisal and use this affective
appraisal as the motivation to generate robot behaviours. For evaluation, we conduct a
user study (n = 31) where the NICO robot acts as a proposer in the Ultimatum Game. The
effect of the robot’s affective core on its negotiation strategy is witnessed by participants,
who rank a patient robot with high emotional actuation higher on persistence, while an
impatient robot with low emotional actuation is rated higher on its generosity and altruistic
behaviour.

Keywords: human-robot interaction, multi-modal affect perception, core affect, reinforcement learning, neural
networks

1 INTRODUCTION

In collaborative Human-Robot Interaction (HRI) scenarios, where robots need to effectively engage
with humans, it is important for them to perceive and understand human behaviour (Breazeal, 2003)
in order to attribute context to their interactions. By adopting a shared perspective of their
conversations with users, robots can not only improve their understanding of how an individual
experiences an interaction but also adapt their own behaviour to match user expectations. Instead of
using static behaviour policies that may fail to engage users over continued interactions (Leite et al.,
2013), such an adaptive interaction strategy can help improve the overall interaction experience of
the users with the robot. To achieve this, much of the current research in Affective Computing and
Social Robotics employs perception models that rely on instantaneous (frame-based or using very-
short sequences) evaluation of human affective behaviour (see (Sariyanidi et al., 2015; Corneanu
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et al., 2016) for an overview). Longer context-driven
conversations, however, require robots to analyse and
understand how human behaviour evolves (Kirby et al., 2010;
Baxter et al., 2011), modelling affective representations (Scherer,
2000; Kirby et al., 2010) that can track their affective behaviour
over an entire interaction, creating a much more dynamic and
robust understanding for the robot.

Depending upon the interaction context, focusing on
developing characteristic behavioural tendencies in robots such
as composure or emotional stability may influence how they
interact with the users, modulating their appraisal as well as their
behaviour (Han et al., 2013). The motivation for embedding such
behavioural tendencies in robots comes from human-human
interactions where specific personality traits of individuals are
shown to impact their interactions with others (Cuperman and
Ickes, 2009). An individual’s temperament, that is, the inherent
inclinations that shape up their behaviour (Rothbart et al., 2000),
influences their subjective appraisal of the environment (Thomas
et al., 1970) as well as their decision-making (Bandyopadhyay
et al., 2013). Additionally, from the early stages of development,
human behaviour is seen to be governed by an affective core
(Emde et al., 1991; Russell, 2003) that develops, initially, as a
procedural understanding of their surroundings, and later, to a
more cognitive representation that influences human agency and
behaviour. Such intrinsic self-regulatory tendencies acquired as a
result of interactions with their environment are essential for
human cognitive development and act as anchors for their
perception and understanding. Furthermore, individualistic
attributes of temperament, evolving into personality, can be
seen as the “basis for dispositions and orientations towards
others and the physical world and for shaping the person’s
adaptations to that world” (Rothbart et al., 2000).

For social robots, such predispositions (or perceptual and
behavioural tendencies) can be achieved by embedding
modulations on their perception and decision-making that
impact their behaviour during interactions. Collaborative HRI
scenarios also require modelling naturalistic interaction dynamics
between humans and robots. Hence, achieving adaptability, such
that a robot shows an improved and evolving understanding of the
dynamics of its interactions with the users becomes a principal
objective. Exhibiting such personal ontogeny (Robins et al., 2005)
also hints at the robot intelligently interacting with users.

In this work, we propose a novel framework for affect-driven
learning of interaction behaviours in collaborative HRI settings
where the robot’s affective appraisal of user behaviour forms the
basis for its learning. Different from existing approaches that mimic
the user’s expressions (Churamani et al., 2017; Paiva et al., 2017),
here we propose forming evolving representations that help track the
users’ expressed affective state allowing for personalised and adaptive
interactions with users. These affective representations are modelled
as the robot’s affective memory (Barros and Wermter, 2017)
summarising the affective impact of past interactions with a user,
as well as itsmood (Churamani et al., 2018; Barros et al., 2020), that
is, its intrinsic state in response to the user’s behaviour. The mood is
further modulated by specifically modelled behavioural inclinations
that govern the affective core of the robot. For this, we examine the
impact of two specific attributes; interaction time and the social

conditioning of the robot, to form its affective core. The robot’smood
is then translated into learning appropriate robot behaviours while
negotiating resources with users during human-robot interactions.
The different components of the proposed framework can be
summarised as the following:

1) Firstly, a deep, multi-channel and hybrid neural model is
proposed for robust multi-modal affect perception, evaluating
the user’s facial expressions and speech. These evaluations
help form the affective memory and the intrinsic mood of the
robot in response to the users’ expressed affective states.

2) We propose modelling the Affective Core of the robot using
recurrent self-organising neural networks to enforce distinct
affective dispositions influencing its mood. For this, we
consider two specific factors namely, “time perception” as
the impact of the duration of an interaction, and the robot’s
“social conditioning” or emotional actuation, that is, the
intensity of the interaction. Both these influences are used
as modulations on the robot’s perception, resulting in
significantly different mood responses towards the users’
affective behaviour.

3) Finally, translating the robot’s mood, that is, its intrinsic
affective response towards the user into interaction
behaviour, we map this mood onto the state-space for the
robot to learn optimal negotiating behaviour in the
Ultimatum Game (Harsanyi, 1961; Güth et al., 1982). The
robot and the user negotiate a split of resources amongst
themselves, underlining the expectations from robots in
collaborative HRI scenarios, particularly concerning
adaptability and naturalistic interaction. An actor-critic-
based (Lillicrap et al., 2015) Reinforcement Learning (RL)
model is employed that learns to negotiate resources with
users, adapting based on their affective responses towards the
robot’s offers.

2 RELATED WORK

The affective impact of one’s interactions with others plays an
important role in human cognition (Jeon, 2017). The core affect in
an individual forms a neurophysiological state (Russell, 2003)
resulting from the interplay between the valence of an experience
and the emotional arousal it invokes. This influences how people
perceive situations and regulates their responses. Understanding
the evolution of human affective behaviour enables us to emulate
such characteristics in social robots. It allows robots to ground
intrinsic models of affect to improve their interaction capabilities.
In this section, we present a brief overview on multi-modal affect
perception (Section 2.1), the representation of affect as an
intrinsic attribute (Section 2.2), and behaviour synthesis
(Section 2.3) in social robots discussing different existing
frameworks that use affective appraisal as the basis for
modelling robot behaviour in HRI scenarios.

2.1 Multi-Modal Affect Perception
Humans interact with each other using different verbal and non-
verbal cues such as facial expressions, body gestures and speech. For
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social robots, analysing user behaviour across multiple modalities
improves their perception capabilities. Furthermore, in case of
masked perception or conflicts, this additional information may
enable the robot to resolve conflicts (Parisi et al., 2017a). Although
various outward signals (Gunes et al., 2011) can be observed to
model affect perception in agents, facial expressions and human
speech are the predominantly used modalities to evaluate human
affective behaviour in HRI settings (Spezialetti et al., 2020).

Facial expressions can be categorised into several categories
(Ekman and Friesen, 1971) or represented on a dimensional scale
(Yannakakis et al., 2017). Traditionally, computational models
have used shape-based, spectral or histogram-based analysis for
affect perception (see (Zeng et al., 2009; Sariyanidi et al., 2015;
Corneanu et al., 2016) for a detailed analysis), but more recently,
deep learning has enhanced the performance of Facial Expression
Recognition (FER) models by reducing the dependency on the
choice of features and instead, learning directly from the data
(Kollias and Zafeiriou, 2018; Li and Deng, 2020). Although these
work well in clean and noise-free environments, spontaneous
emotion recognition in less controlled settings is still a challenge
(Sariyanidi et al., 2015). Thus, the focus has now shifted towards
developing techniques that are able to recognise facial expressions
in real-world conditions (Kossaifi et al., 2017; Zafeiriou et al.,
2017), robust to movements of the observed person, noisy
environments and occlusions (Zen et al., 2016).

Analysing human speech, either by processing spoken words to
extract the sentiment behind them or understanding speech
intonations, offers another potent way of evaluating human
affective expression during interactions. While spoken words
convey meaning, paralinguistic cues enhance a conversation by
highlighting the affective motivations behind these spoken words
(Gunes and Pantic, 2010). Despite providing information about the
context and intent (Whissell, 1989) in an interaction, it is difficult to
deduce the affective state of an individual using only spoken words
(Furnas et al., 1987). Extracting spectral and prosodic
representations can help better analyse affective undertones in
speech. Different studies on Speech Emotion Recognition (SER)
(see (Schuller, 2018) for an overview) make use of representations
such as Mel-Frequency Cepstral Coefficients (MFCC) or features
like pitch and energy to evaluate affective expression. More recently
(deep) learning is employed to extract relevant features directly from
the raw audio signals (Keren and Schuller, 2016; Tzirakis et al., 2017).

Most of the current approaches (Poria et al., 2017; Tzirakis
et al., 2017; Spezialetti et al., 2020) combine face and auditory
modalities to determine the affective state expressed by an
individual. This combination can either be achieved using
weighted averaging or majority voting (Schels et al., 2013)
from individual modalities (Busso et al., 2004) or feature-
based sensor fusion (Kahou et al., 2016; Tzirakis et al., 2017)
and deep learning (Poria et al., 2017).

2.2 Representing Affect in Social Agents
For long-term adaptation, it is important that robots not only
recognise users’ affective expressions but also model continually
evolving intrinsic representations (Paiva et al., 2014) that track
human affective behaviour. Kirby et al. (2010) explore slow-
evolving affect models such as moods and attitudes that consider

the personal history and the environment to estimate an affective
state for the robot in response to the users. Barros et al. (Barros et al.,
2020) also propose the formation of an intrinsic mood that uses an
affective memory (Barros andWermter, 2017) of the individual as an
influence over the perception model. The WASABI model (Becker-
Asano and Wachsmuth, 2009) represents the intrinsic state of the
robot on a PAD-scale that adapts based on the agent’s interactions
with the user. In the SAIBA framework (Le et al., 2011), the agent’s
intrinsic state is modelled using mark-up languages that model
intent in the robot and use it to generate corresponding agent
behaviour. The (DE)SIRE framework (Lim et al., 2012) represents
this intrinsic affect as a vector in a 4-d space for the robot which is
then mapped to corresponding expressions across different
modalities. Although all these approaches are able to provide the
necessary basis for modelling affective and behavioural dispositions
in agents, they require careful initialisation, across n-dimensional
vector-spaces, to result in the desired effect. It will be beneficial if
these intrinsic representations could be learnt dynamically by the
agent as a result of its interactions.

2.3 Behaviour Synthesis in Social Agents
Recent works on behaviour learning in social agents investigate the
role of affect as amotivation to interact with their environment. Such
strategies may include affective modulation on the computation of
the reward function where explicit feedback from the user is shown
to speed up learning (Broekens, 2007). Alternatively, affective
appraisal can be viewed as an inherent quality of the robot,
motivating it to interact with its environment (Han et al., 2013;
Moerland et al., 2018). Affect is modelled as an evaluation of
physiological changes (changing battery level or motor
temperatures) that occur in the robot, with their behaviour
influenced by homeostatic drives that lead towards a stable
internal state (Konidaris and Barto, 2006). Other approaches
examine different cues such as novelty and the relevance of an
action to the task to appraise the robot’s performance (Sequeira et al.,
2011). In the case of value-based approaches (Jacobs et al., 2014), the
state-space of the robot is mapped onto different affective states and
the value of any state represents the affective experience of the robot
in that state. Reward-based approaches, on the other hand, consider
temporal changes in the reward or the reward itself as the basis of the
robot experiencing different affective states (Ahn and Picard, 2005).

We propose using the robot’s affective perception, modulated by
its past experiences with the users as well as specific affective
dispositions forming its affective core, to govern its responses
towards the users during interactions. Using the robots’ mood as
their subjective evaluation of an interaction, we aim to embed robots
with adaptive interaction capabilities that learn task-specific
behaviour policies by developing a shared perception of the
interaction as well as the users’ expectations from the robots.

3 THE PROPOSED FRAMEWORK

In this paper, we propose a novel framework that combines
multi-modal affect perception in robots with learning adaptive
interaction behaviour in collaborative HRI settings. The proposed
framework consists of four main components (see Figure 1); (i) a
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multi-modal affect perception model (see Section 3.1) that is used
to analyse the users’ facial expressions and speech and continuously
track the user’s affective behaviour, (ii) the affective core of the
robot (see Section 3.2) that models affective dispositions governing
the perception as well as the behaviour of the robot, (iii) the
intrinsicmood of the robot (see Section 3.3) that describes how the
robots affect perception and its affective core impact its intrinsic
responses towards the user, and finally (iv) an RL-based (Lillicrap
et al., 2015) behavioural learning model (see Section 3.4) that
translates the robot’s intrinsic mood into effective negotiating
behaviours while interacting with the users in the Ultimatum
Game (Harsanyi, 1961; Güth et al., 1982) scenario.

3.1 Multi-Modal Affect Perception
The affect perception model, adapted from (Churamani et al.,
2018; Barros et al., 2020), consists of three components, namely
the Multi-Channel Convolutional Neural Network (MCCNN)
network (Barros and Wermter, 2016) for multi-modal feature
extraction and fusion, the Perception- Growing-When-Required
(GWR) Neural Network for prototyping the extracted features to
improve the robustness of the model to changing lighting
conditions and variance within an individual’s expressions,
and the affective memory GWR Neural Network (Barros and
Wermter, 2017) that evaluates how the affective state of the user
evolves during an interaction (see Figure 1).

3.1.1 The MCCNN Network
The MCCNN (Barros and Wermter, 2016; Churamani et al.,
2018) consists of two separate channels for processing facial and
auditory information and then combines the learnt features into a

combined dense representation. Rather than using categorical
labels for classification, the model is adapted to represent affect in
the form of arousal and valence dimensions.

The face channel takes a (64 × 64) greyscaled mean-face image
from every 12 frames (considering a 500 milliseconds window)
recorded at 25 FPS to reduce spurious effects caused due to camera
flickers and refresh-rates. It consists of 2 convolutional (conv)
layers, each followed by (2 × 2) max-pooling. The first layer
performs (9 × 9) convolutions while the second layer consists of
(7 × 7) filters using shunting inhibition (Frégnac et al., 2003) to
obtain filters robust to geometric distortions. The conv layers are
followed by a fully-connected (FC) layer consisting of 512 units.

The audio channel uses Mel-spectrograms1 computed for
every 500 milliseconds of the audio signal, re-sampled to
16 kHz and pre-emphasised to amplify the high frequencies
and balancing the frequency spectrum to improve the Signal-
to-Noise ratio (Picone, 1993). A frequency resolution of 1,024 Hz
is used, with a Hamming window of 10 ms, generating Mel-
spectrograms consisting of 64 bins with 65 descriptors each. The
audio channel consists of 2 conv layers with a filter size of (9 × 10)
and (7 × 7) each followed by (2 × 2) max-pooling. The conv layers
are followed by a FC layer with 512 units.

The FC layers from both the face and audio channels are
concatenated into a single FC layer consisting of 1,024 units and
connected to another FC layer consisting of 200 units. This
enables the network to be trained to extract features that are
able to predict arousal and valence values by combining the two

FIGURE 1 | Proposed Framework: Multi-Modal Affect Perception of the robot combines facial and auditory features using the MCCNN. The Perception-GWR
creates feature prototypes with the BMUs encoding arousal-valence while repeated interactions form the Affective Memory. The Affective Core models affective
dispositions in the robot, resulting from its social conditioning and time perception. Current perception, affective memory and the affective core influenceMood formation
which is used by the Behaviour Generation model to learn negotiating behaviour in the Ultimatum Game.

1http://python-speech-features.readthedocs.io.
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modalities. For training the MCCNN (see Section 4.1.1), the 200-
d FC layer is connected to a 2-unit linear activation-based classifier
layer to predict arousal and valence values. Once trained, the
classifier layer is removed and the 200-d feature vectors are used
to train the rest of themodel. The trainedMCCNN-classifier layer is
used again to classify the feature representations learned by the
Perception-GWR into arousal-valence values. The hyper-
parameters for MCCNN, that is, the number of filters and filter
sizes for each layer of the face and audio-channel as well as the FC
layer sizes are optimised using the Hyperopt2 python library. More
details can be found in Supplementary Material.

3.1.2 Perception-GWR
Even though the MCCNN-classifier layer can be used directly to
predict the affective state of the user (arousal and valence), each
individual expresses differently and this variance may result in
different outputs for the same affective state expressed by different
users. Thus, to allow for a more robust approach, it is beneficial to
adopt a developmental view on affect perception that can account
for the variance with which users express their affective state
(Barros and Wermter, 2016; Churamani et al., 2018). We
achieve this by using a Growing-When-Required (GWR)
network (Marsland et al., 2002) that incrementally prototypes
feature representations, extracted by the MCCNN model as the
agent observes the users, accounting for the variance in audio-
visual stimuli (Barros et al., 2020). The GWR implements a
Competitive Hebbian-Learning-based mechanism (Martinetz,
1993) for adapting the topology of the network, depending
upon the input features. New neurons are added to the GWR
whenever the existing neurons are not enough to represent the
input adequately, that is, the activation of the existing neurons fall
below a given activation threshold. This dynamic growth of the
model results in an optimum mapping of the input space to the
learnt feature representations, starting from two randomly assigned
neurons with new neurons added to adequately represent the input
space with adaptive fine-tuning as the learning progresses.

The Perception-GWR learns, in an unsupervised manner (see
Section 4.1.2), using the multi-modal features extracted as the 200
unit FC layer from the pre-trained MCCNN model. Thus, rather
than considering the output of the MCCNN-classifier, we extract
learnt feature prototypes from the Perception-GWR by taking the
two winner neurons or Best Matching Units (BMUs) (Marsland
et al., 2002) closest to the input, that is, the neurons with weights
closest to the input feature vector in a Euclidean space. These feature
prototypes offer amuchmore effectiveway to represent learnt feature
representations, robust to variation in individual expression and/or
changing lighting and environmental conditions (Barros et al., 2020).
The winner neurons are used to predict the encoded arousal-valence
values using the pre-trained MCCNN-classifier layer.

3.1.3 Affective Memory
To encode how the affective behaviour of the user evolves during
an entire interaction, apart from analysing the users’ expressed
affective state, the robot also needs to account for past encounters

with them, forming a memory model that grows and adapts over
time. Such a personalised affective memory (Barros andWermter,
2017; Barros et al., 2019) (see Figure 1), developing as the robot
interacts with the user, forms an expectation model for the robot
that can reduce the impact of spurious effects in perception due to
misclassifications or noise. As users interact with the robot,
BMUs or winner neurons from the Perception-GWR model,
that is, 200 − d multi-modal feature prototypes for every 500
milliseconds of audio-visual input, are used to train the robot’s
affective memory (see Section 4.1.2). This memory is modelled
using a Gamma-GWR network (Parisi et al., 2017b) (explained in
detail in Section 3.2) consisting of neurons with recurrent
connections to remember the effect of past interactions.

3.2 Modelling the Affective Core of the
Robot
The Affective Core in humans acts as an affective disposition, not
just contributing towards their affective appraisal, but also
governing their behaviour (Emde et al., 1991). Similarly, an
affective core for a robot can be used as the basis for inherent
affective dispositions that may influence its perception and
behaviour. For this, we propose the use of Recurrent Gamma-
GWR models (Parisi et al., 2017b), equipped with a Gamma-
context memory (de Vries and Principe, 1992), for modelling the
affective core of the robot. Yet, rather than focusing on the
temporal evolution of an expression, for example, onset to
offset for a facial expression (Sariyanidi et al., 2015), we focus
on tracking the evolution of the overall affective behaviour over
successive time-steps. Thus, instead of evaluating temporal
dynamics of user behaviour at the feature-level, the encoded
arousal-valence values obtained by classifying the feature
prototypes resulting from the Perception-GWR model are
examined over the entire duration of the interaction. To
account for such temporal dynamics, each neuron is equipped
with a fixed number of context descriptors which increase the
temporal resolution of the model. The Gamma-GWR model
(Parisi et al., 2017b) is equipped with recurrent neurons that
use Gamma-filtering (de Vries and Principe, 1992) for
representing such temporal characteristics of input data. The
learning rule and activation functions for the GWR model
(Marsland et al., 2002) are modified to account for activation
of the neurons from the previous K (number of Gamma filters)
time-steps. The BMU or winner neuron b is computed as follows:

b � arg min
i

{di}, (1)

where di is the distance of the neuron i from the data-point. The
activation takes into account both the distance between the input
and the weights at the current time-step as well as uses the context
activation over the last K gamma filters:

di � αw . ‖x(t) − wi‖2 + ∑
K

k�1
αk . ‖Ck(t) − cki ‖2, (2)

where x(t) represents the current input (in this case, the 200-d
feature prototype for the Perception-GWR and the affective2https://github.com/hyperopt/hyperopt.
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memory, and the encoded 2-d arousal-valence value for the
affective core), wi represents the weight vector of the ith
neuron, αw and αk are constants influencing the modulations
from past activation and the current input, C � [ci1, ci2, . . . , cik] is
the set of context vectors for the ith neuron with k = 1, 2, . . . , K
being the Gamma filter order. Global context Ck(t) is given as:

Ck(t) � β . wb(t−1) + (1 − β) . ck−1b(t−1) (3)
where β controls the influence of the previous activation on the
current processing of input, b (t − 1) is the winner neuron from
the previous time-step and c0b(t−1) ≡ wb(t−1).

Once the BMU is selected, the weight of the winning neuron
and the context vectors are updated as follows:

Δwi � ϵi . ηi . (x(t) − wi), (4)
Δcki � ϵi . ηi . (Ck(t) − cki ), (5)

where ϵi is the learning rate that modulates the updates and does
not decay over time. The firing counter ηi, on the other hand, is
used to modulate learning (Marsland et al., 2002). It is initialised
to 1 (η0 = 1) and decreased according to the following rule:

Δηi � τi . κ . (1 − ηi) − τi (6)
where constants κ and τi control decay curve behaviour.

We explore the influence of two factors, namely time
perception and the social conditioning of the robot, forming
the affective core of the robot (see Figure 1). While time
perception refers to how the robot is impacted by the duration

of an interaction, social conditioning accounts for the
acculturation or emotional actuation of the robot as a result of
its repeated interactions with affective stimuli. These qualities,
amongst others, are also found to have an influence on the
temperament and personality formation in infants (Rothbart
et al., 2000) resulting from engagement with caregivers.

3.2.1 Interaction Time Perception
As the robot interacts with users, it forms an intrinsic affective
response (themood) towards them based on its perception of user
behaviour. This perception can be influenced by the duration of
the interaction based on whether the robot has a patient or
impatient affective disposition. Starting from the same initial
affective state every time, the robot, given its inherent time
perception, tries to maintain its intrinsic state for the entire
duration of the interaction with a user. Assuming that the
robot’s mood develops only as a result of the duration of an
interaction, a core affect based on interaction time perception can
be modelled in the robot. For this, we use a modulation function
(y = exp (−τt)) that impacts how the robot evaluates its
interactions with the user at any given time. The affective
impact of the current perception of the robot, depicted by x(t)
in Eq. 2, is replaced by y(t) = exp (−τ.x(t)) to model the core affect
based on the interaction time. With no external input provided,
that is, if x(t) is used to represent only the current mood of the
robot, this will result in a decay in the robot intrinsic mood over
time, which is used to train the Patient or Impatient Affective
Core for the robot. For simulating patience, this decay is modelled

FIGURE 2 | Patient (A) and Impatient (B) Mood Modulation results in Affective Cores encoding corresponding Patient (C) and Impatient (D) Time Perception for
the agent.
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to be slow and gradual (τ = 0.01), such that the robot maintains its
affective state for a longer duration while in case of impatient time
perception, this decay is rapid (τ = 0.08). The decay function
dynamics can be seen in Figure 2A,B, respectively. The empirical
choice of τ values assures smooth decay curves over a minimum
of 90 time-steps. These values can be adapted as per the desired
impact of time perception in the robot.

Given a patient or impatientmodulation, an affective core bias
is modelled using the Gamma-GWRmodel. The initial state of the
robot is set to a mean positively excited state with arousal and
valence values of (0.5, 0.5) and then modulated over time in the
absence of any external input. At each time-step, the Gamma-
GWR model receives this modulated input state and forms
intrinsic prototypes following the process described in Eqs. 1–6.
This dynamically models the robot’s intrinsic state at different
time-steps, forming a time perception bias that encodes a patient
(Figure 2C) or impatient (Figure 2D) affective disposition.

3.2.2 Social Conditioning
In their growing years, the interactions with care-givers and their
surroundings, in general, have a lasting impact on the personality
and temperamental development of humans (Rothbart et al.,
2000). Their ability to apprehend and appraise their
environments is influenced by such interaction experiences,
forming anchors for their affective appraisal. Such a social
conditioning impacts their personality and behaviour in the
long run and has a huge impact on how they interact with
others. Such a form of social conditioning can also be used to
formulate anchors for a robot’s affective appraisal. The robot,
through continued and repeated interaction with affective
stimuli, can get acculturated, developing affective dispositions
central to its personality and temperament. Such a conditioning
can be either excitatory (high-arousal), amplifying the impact of
its perception, or inhibitory (low-arousal), diminishing it.

To model such a core affect, we present the model with videos
encoding different emotional intensities (see Section 4.2 for
details). To model an excitatory effect, videos encoding high
arousal are used whereas, for the inhibitory effect, low arousal
videos are used. This is done to simulate affective acculturation in

the robot so as to model contrasting modulations on the robot’s
intrinsic mood. The videos are processed using the MCCNN-
Perception-GWR model where BMUs from the Perception-
GWR, for every 500 milliseconds of audio-visual input, are
classified (using the MCCNN-classifier) into the corresponding
arousal (A) and valence (V) values they encode and prototyped
using a Gamma-GWR model. The resultant, prototypical,
excitatory core affect (Figure 3A) represents only high-arousal
information (A > 0.3), while the inhibitory core affect (Figure 3B)
encodes only low-arousal information (A < 0.05). As a result,
when this affective core modulation is applied to the robot’s
affective perception, the resultant impact on its intrinsic mood is
either excitatory (high-arousal) or inhibitory (low-arousal) based
on the social conditioning of the robot.

3.3 Mood Formation for the Robot
The mood of the robot constitutes its intrinsic affective response
towards the user during interactions. Such an affective response
should take into account several intrinsic (robot-centric) as well as
extrinsic (user or context-centric) attributes to evaluate the robot’s
interactions with a user. In this work, we propose the robot to use its
multi-modal perception to evaluate the user’s current affective state,
modulated by its affective memory of the user, providing context.
Additionally, this affective response is driven by the robot’s inherent
affective core dispositions, that is, social conditioning and time-
perception, defining how the robot experiences an interaction. Thus,
mood formation in the robot (see Figure 1) accumulates several
contributing factors that may impact the affective appraisal of the
robot during interactions and forms the basis for the robot’s
behaviour in response to these factors.

We model the robot’s mood as a Gamma-GWR (Parisi et al.,
2017b) (following Eqs. 1–6) that describes the intrinsic response of
the robot based on how it experiences an interaction. The mood is
modelled in an online and continuousmanner not only considering
the current behaviour of the user (perception), modulated by past
experiences (affective memory), but also the robot’s affective core
that governs whether the robot over or under-estimates the
affective impact of its perception. For this, multi-modal feature-
representations of the user behaviour are extracted every 500 ms

FIGURE 3 | Affective Cores encoding Excitatory or High-arousal (A) and Inhibitory or Low-arousal (B) modulation to form the Social Conditioning of the agent.
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using the MCCNN model and the 2 BMUs from the Perception-
GWR are computed as a representation of the users’ current
behaviour. These feature-representations are passed to the
affective memory model updating the robot’s experiences with a
particular user. To encode the robot’s perception in terms of the
arousal-valence values it represents, the Perception-GWR
BMUs as well as the affective memory neurons are passed to
the MCCNN-classifier to encode them into the arousal-valence
values they represent. All the neurons from the affective
memory are encoded into a mean arousal-valence value for
the entire GWR memory, representing the net affect of past
experiences with a user. The encoded Perception-GWR BMUs
are also passed to the social-conditioning affective core
(excitatory or inhibitory) and five BMUs are chosen,
representing the social conditioning of the robot. To encode
the impact of time-perception, following the respective
modulation (see Section 3.2.1), 2 BMUs from the time-
perception affective core (patient or impatient) are chosen.
Since the social conditioning affective core modulates the
current perception directly, more weight is given to it by
selecting a higher number of BMUs to flood the mood input
with the corresponding effect. All these inputs, that is, (i) the
affect-encoded Perception-GWR BMUs and the mean affective
memory arousal-valence value representing the agent’s
perception and (ii) the social conditioning and time-
perception affective core modulations are processed
asynchronously to allow for the evolution of the robot’s mood
even when they are sparsely available. The resultant mood of the
robot, at any given time, is computed as the mean arousal-
valence value for all the neurons in the mood Gamma-GWR
model. The robot thus forms an organic affective response
towards the user rather than merely mimicking them as the
different affective core biases in the robot result in the same
stimulus being evaluated differently. For example, a patient
robot with an excitatory conditioning is seen to retain its
positive mood for longer, even if it receives a series of
negative inputs (see Section 4.2 for a detailed analysis). This
is important as it can be used to integrate different affective and
behavioural dispositions in the robot, with different
combinations of the affective core influences expected to
impact the robot mood, and thus its behaviour towards the
user, differently.

3.4 Behavioural Learning for the Robot
The intrinsicmood of the robot forms the affective response of the
robot towards the user during an interaction. This mood can be
used as the basis to learn task or context-specific behaviours,
intrinsically modulated by the affective core of the robot. In this
work, we explore the Ultimatum Game (Harsanyi, 1961; Güth
et al., 1982) to embed different negotiating behaviours in the
robot using its intrinsicmood, modulated by its affective core. We
propose, a Deep Deterministic Policy Gradients (DDPG)-based
actor-critic model (Lillicrap et al., 2015) that learns to interact
with human participants, incorporating the robot’smood, both in
the state-value function as well as in the reward received by the
robot. The proposed model aims to evaluate how the robot, given
its intrinsic mood, can learn to successfully negotiate resources
with human participants. Furthermore, evaluation of the robot by
the participants under different affective core conditions can
highlight the contribution of modelling specific affective and
behavioural dispositions in the robot towards its negotiation
capabilities.

3.4.1 The Interaction Scenario: The Ultimatum Game
The traditional design for the Ultimatum Game (Harsanyi, 1961;
Güth et al., 1982) involves two participants namely, a proposer
and a respondent, negotiating a split of resources (usually money).
The proposer offers a split, based on which the respondent either
accepts or rejects the offer. Only if the offer is accepted, resources
are shared as per the agreed split. We extend this design by
incorporating a “continuous” negotiation between the
participants (see Figure 4) and the Neuro-Inspired
Companion (NICO) robot (Kerzel et al., 2017) acting as the
proposer. A similar negotiating strategy is proposed in the
Rubinstein alternate-offers bargaining game (Rubinstein, 1982)
with the key difference being that both the players in the game
take turns as the proposer, proposing splits of the resources until
one of them accepts the other’s offer. In this work, however, we
enforce the NICO robot to be the proposer in all the negotiation
rounds, making our implementation different from the
Rubinstein alternate-offers bargaining game. NICO and each
participant are given 100 points that can be exchanged for
20 bonbons, with every five points fetching them one bonbon.
Bonbons are used to give a visual motivation for the negotiation.
As NICO makes offers to the respondent, if they accept the offer,

FIGURE 4 | Participant and the NICO robot negotiating in the Ultimatum Game scenario.
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the interaction culminates with both receiving the agreed split.
In case of a rejection, NICO asks the participants for reasons for
their rejection and based on their affective responses, it
appraises their affective state as an evaluation of the offer,
eliciting a change in its own mood. This mood (or change in
the mood over successive negotiations) is used to update its
offer in a way that the participant may accept the new offer,
without NICO losing a lot of points. The participant and NICO
thus negotiate a split of the 100 points with NICO updating its
offer upon each rejection. To assure that negotiations come to a
conclusion, the negotiation is aborted with no one getting any
points after the participant rejects 20 consecutive offers. The
participants are requested to communicate clearly using facial
expressions and speech, expressing their affective response to
NICO’s offers.

3.4.2 Learning Negotiating Behaviour
While negotiating with the participants, the intrinsic mood of
the robot after each rejection, concatenated with the rejected
offer value, is mapped to the state-space of the robot to generate
actions in the form of increments or decrements on the previous
offer. This results in a continuous, high-dimensional action-
space making the use of traditional Q-learning approaches
difficult as they become intractable in such high-dimensional
spaces (Lillicrap et al., 2015). Also, it is desirable that these
updates to the offer are not modelled as fixed increments or
decrements to enable a more naturalistic negotiation between
participants and NICO. Thus, int this work we employ a
DDPG-based actor-critic model (Lillicrap et al., 2015) to
learn an optimal negotiating behaviour that can update the
offers made to the respondents based on the robot’s affective
appraisal of their responses.

The model consists of two separate networks (see Figure 5) for
the actor and the critic, respectively. The actor network takes the
robot’s current mood (mean arousal-valence vector computed
from all the neurons of the mood Gamma-GWR model, see
Section 3.3) as well as the previously rejected offer3 as inputs and
concatenates them into a single 4-tuple representing the state of
the robot. This state is passed to the actor, predicting a real-valued
update step-size over the previous offer. The critic network takes
the current state 4-tuple for the robot as well as the actor-
generated update step-size value as inputs to evaluate the
actor’s “performance,” predicting a Q-value ∈ R for the state-
action pair. This predictedQ-value and the reward received by the
robot (see Section 4.3 for details) are used to update both the
critic and the actor (Lillicrap et al., 2015).

The actor and critic are modelled as Multilayer Perceptron
(MLP) networks (see Figure 1). The input 4-tuple for the actor is
connected to an FC layer consisting of 50 units which is further
connected to an output neuron, predicting real-valued updates on
the offer. For the critic, the state 4 − tuple and the predicted
update value are connected to individual FC layers of 50 units
each. These FC layers are then concatenated and connected to
another FC layer of 10 units combining the representations.
Finally, a single output neuron predicts the Q-value ∈ R for
the state-action pair. The hyper-parameters for the DDPG-based
actor-critic model are detailed in Table. 1.

4 TRAINING AND EVALUATION

4.1 Multi-Modal Affect Perception
To evaluate the multi-modal affect perception model employed in
the proposed framework, we train and evaluate the different
components separately to ensure that the model is able to extract
meaningful feature representations than can be used for training
the rest of the framework.

4.1.1 The MCCNN Network
Training a multi-modal continuous affect perception model
requires datasets that provide good quality samples for both
vision and speech modalities with continuous arousal-valence
annotations. Most of the available multi-modal datasets rely on

FIGURE 5 | Actor-Critic model for Learning Robot behaviour.

TABLE 1 | Training Parameters for the DDPG algorithm learning to negotiate in the
Ultimatum Game.

Parameter Value

Batch size 10
Replay Buffer Size 100
Actor Learning Rate 0.001
Critic Learning Rate 0.005
Discount Factor (γ) 0.9
Soft-update Rate (τ) 0.001

3(r, h)-vector where r is the robot’s share and h is the participant’s share.
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the visual information as the dominant modality deciding
affective labels. This is seen in the Aff-Wild (Zafeiriou et al.,
2017) and AFEW-VA (Kossaifi et al., 2017) datasets where the
audio samples are affected by background music or noise. On the
other hand, datasets like RAVDESS (Livingstone and Russo,
2018) and SAVEE (Haq and Jackson, 2010) provide clean
audio and video samples but use categorical labelling.

Thus, we pre-train the face-channel of MCCNN combining
Aff-Wild and AFEW-VA datasets with normalised arousal-
valence labels ∈ [ − 1, 1] for each frame. The face-channel is
trained with a 60 : 20: 20 (train, validation, test) data split
reaching competitive Concordance Correlation Coefficient
(CCC) scores of 0.68 for arousal and 0.57 for valence
(compared to baselines provided by Zafeiriou et al. (2017) and
Kossaifi et al. (2017)). The training details for the face-channel
can be found in Supplementary Material. The face-channel is
then used to classify facial images from the RAVDESS and
SAVEE datasets, generating arousal and valence labels. These
labels are then used to train the combined MCCNN network
using audio-visual information. This approach is inspired from
Lakomkin et al. (Lakomkin et al., 2017) who conclude that
augmenting datasets using labels from one modality
contributes positively towards improving the overall
performance of the model. The MCCNN is trained for 200
epochs with the Adam optimiser converging to CCC scores of
0.75 for arousal and 0.53 for valence. The hyper-parameters for
MCCNN are optimised using the Hyperopt4 python library.
More details such as search-space for hyper-parameter tuning
and the selected hyper-parameters (see SupplementaryMaterial)
as well as the training dynamics (see Supplementary Material)
can be found in the Supplementary Material.

4.1.2 Perception-GWR
For training the Perception-GWR model, feature vectors from
the 200-d FC layer of the MCCNN are extracted. The GWR
model is trained for 50 epochs with a maximum age of 50 for
each neuron to allow for a neuron to be retained even if it fires
only once per epoch. The habituation threshold (see Table 2
for details) controls the frequency of weight updates while the
insertion threshold controls when a new neuron needs to be
added. This results in a total of 458 neurons which sufficiently
represent the entire training set (≈ 20k data points). More
details can be found in Supplementary Material. These

neurons act as feature prototypes for the entire dataset,
enabling a robust evaluation of the arousal-valence
represented in the data samples. Figure 1 shows the
Perception-GWR with each neuron plotted according to the
arousal and valence it encodes by processing them using the
MCCNN-classifier. The choice of the different thresholds is
determined empirically, given the resultant GWR’s ability to
represent the training set.

4.1.3 Affective Memory
The affective memory Gamma-GWR model consists of 10
context descriptors, implementing a temporal resolution of
10 time-steps. The model is trained following Eqs. 1–6. The
chosen parameters (see Table 2) allow the model to map and
remember the affective context for at least one complete
interaction (5–8 s). Figure 1 shows the affective memory for
the user with each neuron plotted according to the arousal and
valence it encodes. The insertion and habituation thresholds
control the update of existing neurons and add new neurons
only when needed. A separate affective memory is created for
each user interacting with the robot. More details can be found
in Supplementary Material.

4.2 Mood Formation Under Affective Core
Influences
To evaluate the impact of the different affective core influences
on the mood formation of the robot, a separate test-set is
generated consisting of 20 videos each from the KT Emotion
Dataset (Barros and Wermter, 2017) and the OMG-Emotion
Dataset (Barros et al., 2018) as both these datasets consist of
clean audio-visual samples encoding different affective
contexts. Each video is split into data-chunks representing
500 milliseconds of audio-visual information. The pre-trained
Face Detector from the Dlib python library5 is used for
extracting faces while the python speech features library6 is
used to generate mel-spectrograms for each data-chunk. The
data is input sequentially to the MCCNN and perception-
GWR for feature extraction and representation providing
inputs for the different Gamma-GWR networks for the
affective memory and affective core biases.

TABLE 2 | Training parameters for the GWR Models.

Model Habituation
threshold

Insertion threshold Max. Age Context vectors BMUs computed

Perception-GWR 0.2 0.5 50 – 2
Affective Memory 0.5 0.8 5 10 Mean Value
Time Perception Core 0.5 0.9 5 5 2
Social Conditioning Core 0.5 0.9 5 5 5
Robot Mood 0.5 0.9 5 10 Mean Value

4https://github.com/hyperopt/hyperopt.

5http://dlib.net.
6http://python-speech-features.readthedocs.io.
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The mood Gamma-GWR model is trained for 10 epochs
taking as input, for every 500 milliseconds of audiovisual
input, (i) 2 BMUs from the Perception-GWR encoded into the
arousal-valence values they represent, (ii) the mean arousal-
valence vector from the affective memory, (iii) five BMUs from
the social conditioning Gamma-GWR and (iv) 2 BMUs from
the time perception Gamma-GWR. Higher number of BMUs
from the social conditioning Gamma-GWR increase the
influence of social conditioning on the mood formation of
the robot. Different combinations of affective core influences
are explored to evaluate how these influence mood formation
in the robot. A Two-Sided Mann-Whitney U test (Mann and
Whitney, 1947) shows significant differences (see Table 3) in
the resultant mood under different affective cores, compared
to when no affective core (No Core) is used. The model is
shown the same video sequences changing only the affective
core between repetitions. Keeping all other variables
constant, any change in the resultant mood can be
attributed to the affective core used for computation. More
details, with examples, can be found in Supplementary
Material.

As can be seen in Figure 6A for arousal and Figure 6B for
valence, the model, for the same input stimuli, results in different
intrinsic mood for the robot based on the affective core influences
used compared to theNo Core condition which considers only the

agent’s current perception and its affective memory. The arousal
values show more deviation from the baseline due to the
excitatory or inhibitory effect of the affective core. Since these
biases predominantly affect the intensity of the robot’s intrinsic
mood, the corresponding plots for the valence show much less
deviation. On the other hand, the patient or impatient biases
impact both the valence and arousal.

4.3 Pre-training Negotiating Behaviour for
the Ultimatum Game
As discussed in Section 3.4.2, we propose to use the mood of the
robot during the interactions as the basis to learn how to negotiate
with the users, updating the robot’s offers based on the user’s
responses. As the interaction with a particular user is limited and
may not provide enough experience for the robot to learn an RL
policy from scratch, we pre-train the negotiation model using
synthetic data to emulate user behaviour during interactions.

We encode 20 video samples from the KT Emotion dataset
(Barros and Wermter, 2017) using the multi-model affect
perception model to generate arousal-valence encodings for
each 500 ms of audio-visual data. This synthetic data is
augmented by adding 500 randomly generated arousal-valence
vectors, drawn from a standard normal distribution sliced to
range ∈ [ − 1, 1], to cover the entire state-space. To match video

TABLE 3 | Two-sided Mann-Whitney U-test results with the alternative hypothesis that the resultant mood under different affective cores is different from the No Core
condition.

Affective core Time perception Social conditioning Arousal Valence

U-statistic p-value U-statistic p-value

Patient Patient None 703.0 0.352 559.0 0.020
Impatient Impatient None 186.0 <0.0001 211.0 <0.0001
High-arousal None Excitatory 317.0 <0.0001 793.5 0.952
Low-arousal None Inhibitory 500.5 0.003 709.0 0.384
Patient High-arousal Patient Excitatory 488.0 0.002 766.5 0.748
Impatient High-arousal Impatient Excitatory 674.5 0.230 251.0 <0.0001
Patient Low-arousal Patient Inhibitory 412.5 0.0002 694.5 0.312
Impatient Low-arousal Impatient Inhibitory 57.5 <0.0001 52.5 <0.0001

Bold values signify statistical significance (p < 0.05).

FIGURE 6 | Arousal and Valence distributions for different Affective Core biases. All distributions are compared to the No Core condition to measure significant
differences due to the Affective Core of the robot. A * denotes a significant variation compared to the No Core condition.
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dynamics, each added sample undergoes an interaction decay7

(forming a trajectory) emulating affective responses from a
respondent that witnesses consecutive unfair offers from the
robot and rejects them. Furthermore, the acceptance of the
offers made by the robot is modelled in a stochastic manner
(see Eq. 7) based on the fraction of the resources being offered to
the participant.

p(acceptance) �
1, if offer≥ 0.7
offer, if 0.7 > offer≥ 0.5
0.1, if 0.5 > offer≥ 0.4
0, otherwise

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(7)

For effectively training the DDPG-based RL model to
negotiate with the users we modelled the reward function with
two objectives; (i) trying to win the negotiation by keeping a
higher share for the robot and (ii) maintain a positive intrinsic
mood for the robot. The two components of the reward are
explained as follows:

• Offer Reward: The robot is given intermediate positive
rewards if the new offer increases the respondent’s share (h)
while keeping its share (r) > � 50%. These rewards
smoothen the learning curve, guiding the robot to an
optimal behaviour. The robot, cumulatively, receives
positive rewards if it increases the respondent’s share but
starts getting penalised if it reduces its own share below 50%.

• Mood Reward: The robot computes a (cosine) distance
measure between its previous and new mood state and
receives a positive reward for a positive change in its
mood. As the robot’s mood reflects its appraisal of the
respondent’s affective state, the robot should learn to evoke
positive responses to its offer. An alternate to this could be
to directly use the user’s affective state to compute themood
reward but this does not take into account intrinsic
influences such as affective memory or the affective core
of the robot which may modulate its perception of the user.

The net reward for the robot for each negotiation round is the
summation of the offer reward and the mood reward balancing
the two goals of improving its offers to the respondent while
keeping a higher share for itself. The model learns to balance both
the offer and mood reward and converges to offering 40–60%
points, yielding an optimal reward for the robot (see Figure 7B).
The average number of interactions reduce to ≈ 10 as the model
learns to find an optimal offer that faces fewer rejections (see
Figure 7A).

5 USER STUDY: NEGOTIATING WITH
PARTICIPANTS

Motivated by the results presented in Table 3, where the choice of
affective core influences results in a significant difference in the
robot’s mood, we investigate whether this difference can be
translated into different negotiation strategies in the Ultimatum
Game scenario (see Section 3.4.1). We conduct a user study
assessing how different participants evaluate the NICO robot’s
behaviour during negotiations under specific affective core
influences. In addition to the participants’ subjective experience
interacting with the robot, we quantitatively measure objective
performance metrics like success-rate (acceptance of the robot’s
offer), mean accepted offer value, and the average number of
interactions needed to negotiate a split of resources.

The user study was conducted with 31 (n) participants (20
male, 11 female) from 16 countries in the age-group of 18–49,
with a majority (n′ = 24) of the participants in the age group of
25–34. All participants, recruited amongst university students
and employees, reported conversational proficiency in English
(the language used to model interactions). The participants
were briefed about the objectives of the experiment and the
interaction procedure and they provided informed consent for
their participation. The consent form and the experiment
protocol were approved by the Ethics Commission8 of the
Department of Informatics, University of Hamburg.

FIGURE 7 | Robot learning to negotiate, converging an offer >45% of the resources in ≈ 10 interactions.

7({a, v} = exp(−τt); τ = 0.02). 8https://www.inf.uni-hamburg.de/en/home/ethics.html.
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The experiment set-up (see Figure 4) consists of an artificially
well-lit room to exclude effects of changing natural lighting
conditions. The participants and NICO are positioned across a
round-table, opposite to each other with the Bonbons placed on
the table along with a microphone.

5.1 Experiment Conditions
The user study is conducted as a between-group study with two
condition groups. Each group consists of two sub-conditions
implementing the No Core condition as the baseline, along with
one of the measured conditions. In the No Core condition, the
robot is not embedded with any affective core and considers only
the perception input for its intrinsic mood. For each participant,
the two condition groups are:

• Patient High-arousal: In this group, the measured
condition involves the robot with patient time perception
and excitatory social conditioning biases to influence its
mood formation. A total of 16 participants (10 male and six
female) were randomly assigned to this condition group.

• Impatient Low-arousal: In this group, the measured
condition involves the robot embedded with an impatient
time perception and inhibitory social conditioning bias that
influence mood formation. The second condition group
consisted of 15 randomly assigned participants (10 male and
five female).

Each participant in either of the condition groups witnessed
both the sub-conditions, that is, theNo Core condition and one of
the measured conditions, one after the other. Within a particular
condition group, the order in which the two sub-conditions were
shown was randomised to reduce the effect of any bias arising
from the ordering of these conditions. The choice of Patient
High-arousal and Impatient Low-arousal conditions is motivated
by the results presented in Table 3 where a significant difference
in the resultant robot mood is witnessed compared to theNo Core
condition. Even though there are significant results witnessed for
other conditions as well, these two conditions modelled both
time-perception and social conditioning biases in opposite
directions thus, serving as a good basis for comparing mood
formation in the robot. The No Core condition acts as the anchor
against which the other two conditions are measured.

5.2 Experiment Protocol
Once the participants are assigned to a condition group, they are
introduced to the experiment set-up where NICO greets them by
modelling a short interaction with the participants informing
them about the rules of the game. Google Text-To-Speech python
library9 (ver. 1.1.8) is used to generate NICO’s voice. During this
interaction, NICO asks the participants about their excitement
towards participating in the experiment.With this data, it builds a
model of its affective memory and intrinsic mood as a starting
point for both sub-conditions. After the introduction round,
NICO starts negotiating with the participant, randomly

loading the first sub-condition. The negotiations progress in
two distinct phases:

• Offer phase:NICOmakes an offer to the participants which
they can accept (saying ‘Yes’) or reject (saying ‘No’). If the
offer is accepted, the interaction culminates while a rejection
results in NICO asking the participant to explain their
rejection while monitoring their affective responses as
they describe their opinion about the offer.

• Update phase: Observing the participants’ responses,
NICO models its mood, as a response. The mood
represents the current state of the robot and is used to
compute a new offer for the participants using the RL
model (see Section 4.3).

Although the sub-game perfect Nash equilibrium prediction
for the Ultimatum Game is achieved when the proposer offers an
infinitesimal (smallest non-zero value; in this case 1) share to the
respondent, which they accept, many studies have shown that this
is not in agreement with experimental observations (Oosterbeek
et al., 2004; Schuster, 2017) and accepted offers may vary around
40%. To encourage negotiations (at least once) between the robot
and the participants, we enforce the first offer made by the robot
to be a random unfair offer between 1–20 points. Negotiations
continue until the participant either accepts the offer or rejects 20
consecutive offers (empirically defined limit). The participants
are told that the robot shall abort the negotiation if a stalemate is
reached, blinding them from this limit to avoid any behavioural
conditioning. No significant difference (H = 0.85, p = 0.65) is
witnessed using the Kruskal-Wallis H-test (Kruskal and Wallis,
1952) in the First Offersmade by the robot between the conditions
and thus, has no measurable effect on the number of interactions
between the conditions.

After each sub-condition, the participants fill out a
pseudonymised 3-part questionnaire about their experience
with the robot. Finally, participants are debriefed and
informed about the condition group they were assigned. In the
absence of any monetary compensation, as a reward for their
participation, the participants are offered all the bonbons.

5.3 Objective Evaluations
To evaluate the robot’s performance under different conditions,
we measure several objective metrics (see Table 4). The success
rate denotes the fraction of participants that accepted the
robot’s offer. The number of interactions denotes the number
of rejections, on average, before an offer was accepted while the
average accepted offer represents the average offer value
accepted by the participants. In the case, no split could be
negotiated, we examine the final offer before the negotiation was
aborted by the robot. Table 4 also reports the fraction of offers
where the participants were offered 50% or more of the points
by the robot.

As each measured condition is evaluated with respect to the
baseline (No Core) condition, the two measured conditions
cannot be compared to each other directly, as such. This is
possible only if the respective baseline measurements in the
two groups do not vary significantly. A Two-sided Mann-9https://pypi.python.org/pypi/gTTS.
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Whitney U test (Mann and Whitney, 1947) shows no significant
difference (p > 0.05) across any dimension between the two
baselines, either in the above-mentioned objective metrics or the
user evaluations across the different questionnaires (see Section
5.4). This allows for the two measured sub-conditions to be
compared to each other, directly.

The Patient High-arousal condition, on average, took longer
(9.35 ± 1.13) than the baseline condition (8.71 ± 0.64) to get the
participant to accept an offer with a large effect size (G = 0.77)
shown using the Hedges’ G test measuring the effect of the
condition on the different metrics. The Impatient Low-arousal
condition however, needed fewer interactions (8.33 ± 1.20) than
the baseline condition with a medium effect size (G = 0.44) in the
other direction. Comparing the two measured conditions directly
thus, shows a large effect size (G = 0.87) for the number of
interactions where the robot under the Patient High-arousal
condition negotiated for longer than under the Impatient Low-
arousal condition. Although pair-wise comparisons did not show
significant differences (p > 0.05), the above-mentioned Hedges’G
values show a medium-to-large effect size of the condition on the
length of the negotiations. Furthermore, under the Impatient
Low-arousal condition, the robot was able to reach an offer > �
50% of the points for 80% of the participants as compared to 62%
for the Patient High-arousal condition, further indicating how the
condition assigned impacted the robot’s offers. Despite reaching a
higher offer more often, the success rate (80%) and the mean
accepted offer (43.00 ± 2.00) for the robot in the Impatient Low-
arousal condition was lower than the success rate (87%) and
accepted offer value (45.00 ± 1.60) for the Patient High-arousal
condition. Yet, this difference was not significant (p > 0.05). As
participants increasingly received more points in the Impatient
Low-arousal condition, they exhausted the 20 offers, anticipating
the robot to increase the offer further. This observation is
validated by the Final Offer value, that is, the offer before
aborting the interaction, being higher for the Impatient Low-
arousal condition (50.00 ± 0.30) as compared to the Patient High-
arousal condition (47.00 ± 0.90) with a large effect size (G > 2.0)
between the two measured conditions.

5.4 Subjective Evaluations
Since the participants’ subjective evaluation of the robot’s
negotiation strategy influences their acceptance or rejection,
objective factors provide only partial information about the
robot’s overall performance. Thus, participants’ evaluations on
the 3-part Likert-scale questionnaire, based on the GODSPEED
(Bartneck et al., 2008), Mind Perception (Gray et al., 2007) and

Asch’s Personality Impression tests (Asch, 1946), are
examined.

5.4.1 GODSPEED
The GODSPEED test (Bartneck et al., 2008) is used to measure
participants’ impression of the robot on anthropomorphism,
animacy, likeability, perceived intelligence and perceived
safety. A one-sided Mann-Whitney U test is conducted for all
dimensions with an alternative hypothesis that the Impatient
Low-arousal condition is rated higher than Patient High-arousal.
The results show no significant differences (p > 0.05) in any
dimension despite some evidence for the robot rated as more
natural (U = 154.5, p = 0.07), human-like (U = 158.0, p = 0.053)
and conscious (U = 158.0, p = 0.061) under the Impatient Low-
arousal condition. More details on the GODSPEED evaluations
can be found in Supplementary Material.

5.4.2 Mind Perception
TheMind Perception test (Gray et al., 2007) measures agency and
experience for attributing amind in an entity (in this case, NICO).
The robot is evaluated on its ability to experience fear, exercise
self-control, feel pleasure, remember the participant, feel hunger
and to act morally. Based on these factors, the robot’s agency and
experience under different conditions is concluded. A one-sided
Mann-Whitney U test is conducted with the alternative
hypothesis that the Impatient Low-arousal condition is rated
higher on agency and experience. No significant difference (p >
0.05) can be concluded between the two conditions across any
dimension. More details on the Mind Perception evaluations can
be found in Supplementary Material.

5.4.3 Asch’s Formation of Impressions of Personality
Asch’s study (Asch, 1946) measures the impact of independent
behavioural traits on the overall impression of an individual.
Here, participants evaluate NICO on 10 different parameters.
Their impressions for the robot under the two measured
conditions can be seen in Figure 8. For all dimensions, except
wisdom and persistence, the Impatient Low-arousal condition is
rated higher, while in these dimensions, the Patient High-arousal
condition is rated higher. A one-sided Mann-Whitney U test
conducted on all dimensions shows significant results (p < 0.05)
for the generous (U = 67.0, p = 0.018) and altruistic (U = 74.0, p =
0.033) dimensions in favour of the Impatient Low-arousal
condition (see Table. 5). Post-hoc analyses reversing the order
of effect shows a significant difference between the measured
conditions for the persistence (U = 75.0, p = 0.034) dimension

TABLE 4 | Quantitative Analysis of Objective Measures on NICO’s performance in the Ultimatum Game under different experimental conditions.

Measured value Baseline (N = 31) Patient
high-arousal (N = 16)

Impatient
low-arousal (N = 15)

Number of Interactions 08.71 ± 0.64 09.35 ± 1.13 08.33 ± 1.20
First Offer 15.00 ± 0.90 14.00 ± 1.20 15.00 ± 1.00
Accepted Offer 44.00 ± 2.00 45.00 ± 1.60 43.00 ± 2.00
Final Offer (If rejected) 49.00 ± 0.30 47.00 ± 0.90 50.00 ± 0.30
When Offered > � 50% 77% 62% 80%
Success Rate (Offer Accepted) 90% 87% 80%
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(highlighted in Table 5) as well, albeit in favour of the Patient
High-arousal condition. These results underline the effect of the
condition on the participants’ perception of the robot. The robot
under the Patient High-arousal condition negotiates for longer
(see Section 5.3) and thus is witnessed as more persistent as it
tries to keep a higher share for itself. On the other hand, under the
Impatient Low-arousal condition, it offers higher increments on
successive offers, giving away more points easily. As a result, it is
rated to be more altruistic and generous in its negotiation. Despite
some evidence supporting the alternative hypothesis for the good-
natured dimension (U = 79.0, p = 0.052), no other significant
difference is witnessed between the conditions.

6 DISCUSSION

In this work, we propose a novel framework that explores a
robot’s appraisal of its interactions with individuals to ground
evolving affective representations that not only consider the
behaviour of the participant during an interaction (see Section
3.1), but also understand its impact on the conversation (see
Section 3.3), learning how to respond to them (see Section 3.4).
This is guided by the affective and behavioural disposition of the
robot (see Section 3.2) which has a significant impact on its
affective appraisal.

Quantifying the affective impact of the duration of an
interaction is beneficial for a robot, particularly in
collaborative HRI scenarios. A patient time perception can be

helpful in dealing with negative situations as it will allow the robot
to maintain a positive outlook during the interaction. This can be
beneficial for robots acting as companions for humans in
different collaborative scenarios such as being caretakers for
the elderly and tutors for the young. Conversely, impatience
may result in a significantly lower intrinsic state of the robot,
rapidly decaying its mood as the interaction progresses. This may
enhance spontaneity in robot behaviour as it finds ways to resolve
a negotiation quickly, to avoid negative intrinsic states. In our
experiments, we see evidence for this as the robot average number
of interactions under the Patient High-arousal condition is higher
than in the Impatient Low-arousal condition (see Table 4). High
arousal interactions can cause the robot to form excitatory (or
high-arousal) tendencies that amplify its affective state. While
interacting with the users, the robot is easily excitable,
experiencing every situation in the extreme. An inhibitory (or
low-arousal) conditioning, on the other hand, results in a
subjugated behaviour of the robot, diminishing the impact of
affective interactions and adopting an inert approach towards its
interaction with the users. Combining time perception and social
conditioning allows for modelling specific affective and
behavioural dispositions in the robot with the two influences
either complementing each other, for example, Patient high-
arousal and Impatient low-arousal, or contrasting each other,
for example, Patient low-arousal and Impatient high-arousal
conditions. These conditions have a distinct impact on the
affective appraisal of the robot (see Table 3) as the resultant
mood does not merely mimic the user’s affective state but reflects
the robot’s intrinsic dispositions.

The robot’s intrinsic mood, modulated by specific affective
core dispositions, as well as history with a user, governs its
negotiations with the user. This allows the robot to share a
common view of the interaction with the user and yet, have a
distinct response towards it rather than merely mimicking the
users’ behaviour. In our experiments, the patient high-arousal
robot is witnessed to be more persistent, driving a harder bargain
with users while the impatient low-arousal robot, on the other
hand, is more giving and generously offers more points. This is
highlighted in the objective metrics (see Section 5.3) evaluating

FIGURE 8 | Asch’s Test results with mean and 95% CI for individual dimensions comparing the two measured conditions. A * denotes a significant difference
between the two conditions.

TABLE 5 | One-sided Mann-Whitney U test for Asch’s Test with alternative
hypothesis that the Impatient Low-arousal condition is rated higher.

Dimension U-statistic p-value Dimension U-statistic p-value

Generous 67.0 0.018 Reliable 120.5 0.516
Wise 142.5 0.825 Humane 119.0 0.492
Happy 95.0 0.161 Persistent 165.0 0.969
Good Natured 79.0 0.052 Altruistic 74.0 0.033
Sociable 112.5 0.387 Honest 123.5 0.564

Bold values signify statistical significance (p < 0.05).
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the robot’s performance as well as the subjective evaluations by
the participants (see Section 5.4).

During interactions, based on the robot’s behaviour, the
participants were witnessed adopting different negotiating
strategies. While some approached the interaction donning a
more commanding role, strongly arguing with the robot to yield,
others followed a fawning approach trying to manipulate the robot
by smiling more often and requesting more points. Both strategies,
given the experiment condition and the expressiveness of the
participants, worked to some extent with the robot offering, more
points to the user (as high as 52%) in some cases. Furthermore, at
the beginning of the interactions, some participants were more
conscious and distant, but as the interaction progressed, they
became more open and proactive in the interaction. This is seen
in the reasoning provided by them for their rejection which
ranged from a cold and direct “I want more points” later to a
more expressive and layered “Come on, NICO. This isn’t fair.
You can do better”. This suggests that as the interaction
progressed, the robot was able to engage the users by
understanding and sharing their view of the negotiation. It
exhibited responsiveness towards the users’ negotiating
strategies, initially yielding to their demands for more
points but, as the interaction progressed, it adapted its
negotiation strategy, encouraging the users to also adapt.

Learning appropriate negotiating behaviour for the robot was
premised upon two factors; affective responses of the participants
towards the robot and the factoring in rejected offers to learn to
make acceptable updates on the offers. The reward function
design for the RL model assigned equal weights to both these
objectives such that the robot tried to offer a “fair” split of the
resources keeping a sizeable share for itself while, at the same
time, learning an update strategy that will evoke positive
responses from the participants. Future works and extensions
will focus on dynamically learning to prioritise these two
objectives while also establishing their individual contributions
towards learning acceptable negotiating behaviours in social
robots.

To simplify the HRI evaluation, in this work we compared
only two affective core biases; Patient High-arousal and
Impatient Low-arousal, where the effect of time perception and
emotional actuation complemented each other. Although we
investigate how each individual core influence impacts mood
formation in the robot, it will be interesting to also evaluate if
and how these influences are translated to the negotiation
behaviour adopted by the robot. This will also help illuminate
individual contributions of these underlying influences on realising
appropriate negotiation behaviour for the robot.

Despite the participants noticing significant differences in
its negotiating strategy (see Table 5), the general perception of
the robot did not change under different conditions. This
could be due to the fact that the only difference between
conditions is in how the robot updates its offers. The
interaction structure, what is said and robot’s facial
expressions remain the same between conditions. This
difference is perhaps too subtle to induce an overall change
in perception towards the robot. In future, we would also like
to modulate the dialogues and the robot’s facial expressions to

reflect the robot’s mood as well as adding phrases that reflect
the affective core condition.

7 CONCLUSION

In this work, we present a comprehensive framework for
modelling affect-driven modulations on robot behaviour in
collaborative HRI scenarios. Using a multi-modal affective
appraisal model, it forms an evolving understanding of
human behaviour, yielding intrinsic responses in the
robot towards the user that constitute its own affective
state. This intrinsic state is used to learn negotiating
behaviour in the Ultimatum Game. The affective core of
the robot realises specific behavioural dispositions in the
robot that influence its intrinsic state as well as its
behaviour. This is beneficial for the robot to dynamically
interact with users rather than following static, pre-
determined behaviour policies.

The results from the user study show that the participants were
able to notice the effect of the affective core on factors such as
generosity and persistence which directly evaluated the robot’s
behaviour in the UltimatumGame. The general impression of the
robot, however, did not change significantly. Further
experimentation is needed, involving longitudinal studies with
more participants, to conclude any significant impact on the
overall impression of the robot. Furthermore, in the user study,
the affective core models are pre-trained and used after freezing
the weights for the Gamma-GWR model. This was done to
simplify the training and eliminate the effect of changing
affective core biases on the performance of the robot. It will be
interesting to let these models to grow and adapt as the robot
interacts with more users, allowing the robot to change its outlook
on the users as it interacts with them.
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