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In this paper, we present a novel means of control design for probabilistic movement
primitives (ProMPs). Our proposed approach makes use of control barrier functions and
control Lyapunov functions defined by a ProMP distribution. Thus, a robot maymove along
a trajectory within the distribution while guaranteeing that the system state never leaves
more than a desired distance from the distribution mean. The control employs feedback
linearization to handle nonlinearities in the system dynamics and real-time quadratic
programming to ensure a solution exists that satisfies all safety constraints while
minimizing control effort. Furthermore, we highlight how the proposed method may
allow a designer to emphasize certain safety objectives that are more important than
the others. A series of simulations and experiments demonstrate the efficacy of our
approach and show it can run in real time.
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1 INTRODUCTION

The idea of proximity between robots and humans performing useful tasks, in a shared work space,
inevitably brings up the issue of safety. In fact, safety is a limiting factor for the development of the
autonomous robotic partners (Vicentini, 2021). Furthermore, strict safety requirements pose a major
challenge for system integrators and robotics applications designers. When humans and robots share
a physical work environment, robots must have control laws that make them verifiably safe around
humans. In particular, robot systems need to be capable of detecting task variations, and their motion
planning and control algorithms must be flexible enough to allow for variation while guaranteeing
safety (Kragic et al., 2018).

Robot motion planning is a rich field of study providing myriad approaches to determine robot
trajectories, including in the presence of obstacles (Mohanan and Salgoankar, 2018). Many
approaches, such as rapidly exploring random trees (LaValle, 1998; LaValle et al., 2001),
probabilistic roadmaps (Hsu et al., 1998; Geraerts and Overmars, 2004), and artificial potential
fields (Warren, 1989; Vadakkepat et al., 2000) require predefined static maps for peak performance.
In addition, robot motion planning algorithms often require expert design of cost functions,
potential functions, and random sampling that are outside the expertise of day-to-day users. The
learning from demonstration paradigm can address these shortcomings (Argall et al., 2009;
Chernova and Thomaz, 2014) by leveraging the inherent expertise of a human teacher.

Movement primitives (MPs) are a popular approach to encode and generalize human
demonstrations for training robots. MPs are modeled through a compact representation of the
implicitly continuous and high-dimensional trajectories. For example, dynamic movement
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primitives (DMPs) use demonstrations to learn a model of the
control effort necessary to produce a desired trajectory for a
stabilized dynamic system (Ijspeert et al., 2013; Dahlin and
Karayiannidis, 2019). Capturing the natural variation in
human demonstration of a task can help a robot overcome
uncertainty and deviation between the training regime and
actual task execution (Gomez-Gonzalez et al., 2020). However,
DMPs only encapsulate a single trajectory demonstration and
thus lack this flexibility.

Probabilistic movement primitives (ProMPs) are a concept
in which a distribution of trajectories is learned from multiple
demonstrations. There are several works that have focused on
the construction of ProMP controllers. In (Paraschos et al.,
2018a), the design of a stochastic ProMP feedback controller
was studied by exploiting the property of the covariance
derivatives which can be explicitly computed. A model-free
ProMP controller that adapts movement to force-torque input
was designed in (Paraschos et al., 2018b). In (Calinon and Lee,
2017), the authors designed a model predictive control-based
ProMP controller for a linear discrete time system model.

While they have prominent advantages, ProMP methods still
present notable shortcomings. For example, prior ProMP
approaches require a linearized model of the system in the
controller design. This makes the controller less relevant for
nonlinear systems such as robotics and autonomous vehicles.
Additionally, while ProMPs themselves are fairly simple to
generate, their controllers are difficult to implement,
vulnerable to noise, sensitive to design parameters, and are
variable to initial conditions. These factors limit the ability of
non-experts to employ or tune such controllers. Finally, ProMPs
by definition are stochastic and distributions of trajectories
defined by Gaussian functions have a large support. Thus, the
resulting trajectories can deviate far from the mean of the
training set.

In recent years, real-time safety-critical control of dynamic
systems has received notable consideration (Wieland and
Allgöwer, 2007). One important approach is the use of barrier
certificates/functions, which leverage off-line iterative
optimization algorithms to verify safety for a given dynamical
system (Sloth et al., 2012). The notion has been extended to
synthesizing safe control laws in real-time using quadratic
programming (QP) to find control inputs that satisfy control
barrier functions (CBFs) (Ames et al., 2016).

A powerful property of CBFs is that they are easily combined
with control Lyapunov functions (CLFs) in the same QP such
that the resulting controller guarantees stability while respecting
limits and safe regions of the state space (Ames et al., 2019;
Cortez et al., 2019; Lopez et al., 2020). Additionally, the QP
solved to find a safe, stable control input during run-time can
include other optimization terms such as minimizing control
effort. Other tasks formulated as cost functions or constraints
can be included as well. CBF and CLF based controls have their
own downsides, most notably the advanced knowledge
necessary to define the barriers and trajectories. Efforts to
automate the definition of CBFs and CLFs include mapping
temporal logic statements to barriers and trajectories
(Srinivasan and Coogan, 2020) and training piece-wise

barrier functions for obstacles in the workspace (Saveriano
and Lee, 2019).

This work addresses the aforementioned weaknesses of ProMPs
and CBFs/CLFs. In our presented approach, the trajectory
distribution provided by a ProMP is used to define a CLF and
one ormore CBFs. Specifically, the ProMPmean is used to define a
CLF, and barriers for the CBFs are defined using the standard
deviation of the distribution. Thus, the CLF and CBFs are
established strictly through human demonstration eschewing the
need for advanced control knowledge. The system will roughly
track the mean trajectory, with a modicum of freedom to optimize
the control effort or other requirements, while guaranteeing that
the system never leaves a known neighborhood of the mean.

Since CLF and CBF controllers are intrinsically based on the
nonlinear model of the system, our approach overcomes the
inherent linearity of ProMP controllers. We demonstrate the
effectiveness and computational efficiency of our approach
through simulations and experiments with a two-link and a
six-link robot. Examples of generated control trajectories by
our method for a Universal Robots UR5 are shown in
Figure 1. In summary, the salient contributions of this paper
are the following.

• We develop a novel means of automating the design of CLFs
and CBFs from the distribution delivered by a ProMP.

• We introduce a new control design for ProMPs by
combining CLFs and CBFs.

• We demonstrate the practical applicability of the proposed
method through experimental validation on a Universal
Robots UR5e.

The remainder of this paper is structured as follows. In Section
2, we review ProMPs, CBFs, CLFs, and robot system dynamics.
We detail our approach for a ProMP to define the CLFs and CBFs
for optimal control in Section 3. Simulation and experiments are
presented in Section 4. Lastly, we conclude with a discussion on
future work in Section 5.

FIGURE 1 | A set of robot trajectories generated by our CLF/CBF-based
ProMP demonstration and control method. The controller guarantees that the
system never leaves a neighborhood defined by the training set and provides a
straightforward way to define trajectories that enforce safety constraints
in the presence of obstacles. Copyright 2021 IEEE. Reprinted, with
permission, from Davoodi et al., 2021.
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2 BACKGROUND

This section presents necessary background information on
ProMPs, CBFs, and CLFs.

Notation: Given a matrix A, we denote its transpose by A⊤. Let
the identity and zero matrices, with appropriate dimensions, be
denoted by I and 0, respectively. We denote + as the symmetric
entries of a matrix. For a vector field fi(x) and vector of vector
fields F(x) = [f1(x), . . ., fn(x)], let Lfi and LF denote, respectively,
the Lie derivative along fi(x) and the vector of Lie derivatives in
the directions fi(x): LF � [Lf1, . . . , Lfn]. A continuous function
β1: [0, a)→ [0,∞), for some a > 0, is said to belong to classK if it is
strictly increasing and β1 (0) = 0. The number of joints for a robot
arm is represented by n, and a zero-mean i. i.d. Gaussian
distribution with mean m and (co)variance Σ is denoted
N (m,Σ).

2.1 Probabilistic Movement Primitives
ProMPs provide a parametric representation of trajectories which
can be executed in multiple ways through the use of a probability
distribution. A set of basis functions are used to reduce the model
parameters and aid learning over the demonstrated trajectories.
The trajectory distribution can be defined and generated in any
space that accommodates the system (e.g., joint space or task
space) (Paraschos et al., 2018a). In this work we consider joint
space trajectories and assume the demonstrations to be normally
distributed.

Let qi(t) ∈ R be the ith state variable. Then qi(k) ∈ R is qi(t)
sampled at time k, where k ∈ {t1, . . . , tK} is a discrete set of
sampling times. Within a ProMP, the execution of a trajectory is
modeled as the set of robot positions, ζi = {qi(k)}. Letwi ∈ R1×L be
a weight matrix with L terms. A linear basis function model is
then given by

xi k( ) � qi k( )
_qi k( )[ ] � Φ k( )wi + ξxi,

whereΦ(k) � [ ϕ(k) _ϕ(k) ]⊤ ∈ R2×L is the time-dependent basis
function matrix and L is the number of basis functions. Gaussian
noise is described by ξxi ~ N (0,Σxi). Thus, the ProMP trajectory
is represented by a Gaussian distribution over the weight vector
wi and the parameter vector θi � {μwi

,Σwi}, which simplifies the
estimation of the parameters.

We marginalize out wi to create the trajectory distribution

p ζ i, θi( ) � ∫p ζ i |wi( )p wi; θi( )dwi. (1)

Here, the distribution p (ζi, θi) defines a hierarchical Bayesian
model over the trajectories ζi (Paraschos et al., 2018a) and
p(wi | θi) � N (wi | μwi

,Σwi). In an MP representation, the
parameters of a single primitive must be easy to obtain from
demonstrations. The distribution of the state p (xi(k); θi) is

p xi k( ); θi( ) � N xi k( ) |Φ k( )μwi
,Φ k( )ΣwiΦ k( )⊤ + Σxi( ). (2)

The trajectory can be generated from the ProMP distribution
using wi, the basis function Φ(k), and (2). The basis function is
chosen based on the type of robot movement which can be either

rhythmic or stroke-based. From (Eq. 2), the mean ~μi(k) ∈ R2 of
the ProMP trajectory at k is Φ(k)μwi

and the covariance Σi(k) is
Φ(k)ΣwiΦ(k)⊤ + Σxi.

Multiple demonstrations are needed to learn a distribution
over wi. To train a ProMP we use a combination of radial basis
and polynomial basis functions. From the demonstrations, the
parameters θi can be estimated using maximum likelihood
estimation (Lazaric and Ghavamzadeh, 2010). However, when
there are insufficient demonstrations this may result in unstable
estimates of the ProMP parameters. Therefore, similar to
(Gomez-Gonzalez et al., 2020), our method uses a
regularization to estimate the ProMP distribution. We
maximize θi for the posterior distribution over the ProMP
using expectation maximization,

p θi | xi k( )( )∝p θi( )p xi k( ) | θi( ). (3)
In addition, we make use of Normal-Inverse-Wishart as a

prior distribution p (θi) to increase stability when training the
ProMP parameters (Gomez-Gonzalez et al., 2020).

2.2 System Modeling
Consider the following control affine nonlinear system

_x � f x( ) + ~G x( )u, (4)
where x ∈ Rn denotes the state, u ∈ Rm is the control input,
~G � [g1, . . . , gm], and f: Rn → Rn and gi: R

n → Rn are locally
Lipschitz vector fields. It is assumed that the system in (Eq. 4) is
controllable.

The model (4) encompasses the dynamic model of robotic
manipulators. We consider the following description of robot
motion given by the general form by the Euler-Lagrange
equations,

D q( )€q +H q, _q( ) � Eu, (5)
where q ∈ Rn are generalized coordinates of the robot,
D(q) ∈ Rn×n is the inertia matrix, Rn×n ∋ H(q, _q) � C(q, _q) _q +
K(q) is a vector containing the Coriolis and gravity terms, and
E ∈ Rn×p is the actuationmatrix that determines the way in which
the inputs u actuate the system. In this work, we consider the
system to be fully actuated (i.e., p = n), which is typical for robot
manipulators. Then, the system description in (Eq. 5) may be
converted to an ODE of the form in (Eq. 4) where x � [q, _q]⊤ and

f x( ) � _q
−D−1 q( )H q, _q( )[ ], ~G x( ) � 0

D−1 q( )E[ ]. (6)

2.3 Control Barrier and Control Lyapunov
Functions
2.3.1 Control Barrier Functions
Let C be a set for which we wish to verify that x(t) ∈ C, ∀t. Then, C
defines a safe set. A smooth function h(x): Rn → R is defined to
encode a constraint on the state x of system. The constraint is
satisfied if h(x) ≥ 0 and violated if h(x) < 0. Concretely, C is
defined as

Frontiers in Robotics and AI | www.frontiersin.org March 2022 | Volume 9 | Article 7722283

Davoodi et al. Safe Robot Trajectory Control

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


C � η: h η( )≥ 0{ },
zC � η: h η( ) � 0{ },
Int C( ) � η: h η( )> 0{ }, (7)

where Int(C) and zC denote the interior and boundary of C,
respectively.

Existing approaches to define CBFs include exponential CBFs,
reciprocal CBFs, and zeroing CBFs (Ames et al., 2016; Nguyen
and Sreenath, 2016). Yet, these methods have trade-offs with
respect to ease of definition, boundedness of velocities, speed of
convergence, etc. In this work we investigate the use of a
reciprocal CBF. This type of CBF has a small value when the
states are far from the constraints and it becomes unbounded
when the states approach the constraints.

Definition 1. (Ames et al., 2014) Given C and h, a function
B: C → R is a CBF if there exists class K functions α1, α2, and α3,
and a constant scalar γ > 0 such that

1
α1 x( )≤B x( )≤ 1

α2 x( ),
LfB x( ) + L ~GB x( )u − γ

B x( )≤ 0.
(8)

Remark 1. It is worth noting that based on the definition of the safe
set (7), if the initial state of the system is inside the safe set (i.e., h(x0) >
0 when the system’s trajectory gets close to the safety boundary) then
the CBF condition forces the systems’ trajectories to go back inside the
safe set. This is due to the fact that the derivative of h(x(t)) is negative
on the boundary which leads the value of B(x) (h(x)) to start
decreasing (increasing). Moreover, the constant value γ determines
how fast the states of the system can reach the safety boundary.

2.3.2 Control Lyapunov Functions
CLFs can be used to model and design dynamical control system
inputs to ensure objectives such as stability, convergence to the
origin (or other set point), or convergence to a desired trajectory.
In order to have a construction similar to CBFs, we consider
exponentially stabilizing CLFs (Ames et al., 2014).

Definition 2. In a domain X ⊂ Rn, a continuously differentiable
functionV: X → R is an exponentially stabilizing CLF (ES-CLF) if
∀x ∈ X there exists positive scalar constants c1, c2, c3 > 0 such that

c1‖x‖2 ≤V x( )≤ c2‖x‖2,
LfV x( ) + L ~GV x( )u + c3V x( )≤ 0. (9)

Having established a CBF to accomplish safety and a CLF to
achieve control performance objectives, the two may be unified
through a QP. As a result, safe control laws can be computed
using the QP to solve the constrained optimization problems at
each point in time (Ames et al., 2016).

3 CONTROL DEVELOPMENT

Our main goal is to design a controller such that the system
output tracks a trajectory within the distribution generated by

a ProMP. To this end, we first construct a nonlinear inner-loop
control law based on the feedback linearization of (Eq. 5).
Then, an outer-loop controller established by a CLF-CBF
is designed using the distribution parameters ~μi and Σi.
We summarize this process as the following problem
objectives.

1. Use the demonstrated trajectories of a robot to train and
estimate a ProMP distribution. The ProMP provides the time-
varying mean and variance of a trajectory.

2. Develop a feedback linearization controller to obtain a linear
and decoupled input-output closed-loop relationship for the
error signal.

3. Design a CLF to stabilize the system such that ∀i, qi → μi,
where μi is the i-th element of ~μi.

4. Create a CBF to ensure that the error ei = qi − μi satisfies
the safety constraint ∀i, |ei| < σi, where σi is the (1, 1) element
of Σi.

The general structure of our proposed system is shown in
Figure 2.

3.1 Feedback Linearization Controller
First, we define the trajectory and error vectors as μ �
[μ1, . . . , μn]⊤ and e � [e1, . . . , en]⊤, respectively. Using (Eq. 4)
and taking the derivative two times along f(x) and ~G(x), we
obtain

€e x( ) � L2
fe x( ) + L ~GLfe x( )︸����︷︷����︸

Γ

u x( ) − €μ,

€e x( ) � L2
fe x( ) + Γu x( ) − €μ.

(10)

Next, assume that the decoupling matrix Γ is well-defined and
has full rank (Hsu et al., 2015)1. This implies that the system in
(Eq. 4) is feedback linearizable and we can prescribe the following
control law,

u x( ) � Γ−1 −L2
fe x( ) + €μ + v( ), (11)

FIGURE 2 | The overall structure of the proposed system.

1A control designer would confirm that the system has the same number of inputs
as outputs and verify that e satisfies a vector relative degree (Kolavennu et al., 2001)
condition, typically vector relative degree 2. This implies that the decoupling
matrix Γ is well-defined and nonsingular.
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where v is an auxiliary feedback control value. This yields the
second order linear system from input v to output e,

€e � v. (12)
By defining η � [e, _e]⊤, (Eq. 12) can be written as a linear time

invariant system

_η � 0 I
0 0

[ ]η + 0
I

[ ]v. (13)

From there, n decoupled systems can be obtained from
(Eq. 13),

_ηi � Fηi + Gvi, i � 1, . . . , n, (14)
where ηi � [ei, _ei]⊤, F � 0 1

0 0
[ ], and G = [0 1]⊤.

It should be noted that the derivative of the tracking error in
(Eq. 14) can be obtained from _q and _μ. Indeed, we can measure _q
and we know μ from the ProMP. Since μ is a stored trajectory
there is no noise in this signal. Therefore, _μ can be calculated via
backwards difference and it can be made as smooth as necessary
(i.e., by creating spline curve from fit points in μ). Moreover, the
backward difference method is again used for approximating €μ, in
(Eq. 10) and (Eq. 11).

To accomplish problem objective 3, it is sufficient to ensure ei
→ 0. This is accomplished by designing an appropriate CLF. To
satisfy problem objective 4, it is adequate to make |ei| < σi. This
objective is satisfied by defining suitable CBFs. In the following
subsections, the CLFs and CBFs are defined for the system in (Eq.
14). Moreover, the ith controller for each system in (Eq. 14) is
designed by combining the corresponding CLFs and CBFs via a
QP problem.

3.2 Control Lyapunov Function
Consider the following rapidly exponentially stabilizing-CLF
(RES-CLF) (Zhao et al., 2014),

Vϵi ηi( ) � η⊤i
1/ϵi 0
0 1

[ ]P 1/ϵi 0
0 1

[ ]ηi, (15)

where ϵi is a positive scalar and P ∈ R2×2 is a symmetric positive
definite matrix that can be obtained by solving the continuous
time algebraic Riccati equation

F⊤P + PF − PGG⊤P + I � 0. (16)
In order to exponentially stabilize the system, we want to find

vi such that

_Vϵi ηi( ) � LFVϵi ηi( ) + LGVϵi ηi( )vi ≤ − c3i
ϵi
Vϵi ηi( ), (17)

where c3i is a positive constant value. To guarantee a feasible
solution for the QP, the CLF constraint can be relaxed by δi > 0
(Ames et al., 2014) resulting in

LFVϵi ηi( ) + LGVϵi ηi( )vi + c3i
ϵi
Vϵi ηi( )≤ δi. (18)

This relaxation parameter will be minimized in the QP cost
function. It is worth mentioning that by providing a weighting

factor on the relaxation parameter δi, the QP can prioritize how
close the system should track of a specific trajectory while
ensuring that safety is always satisfied.

3.3 Control Barrier Functions
We propose two safety constraints for each system in (Eq. 14).
More specifically, each system should satisfy − σi < ei < σi.
Consequently, we have the following two safety constraints,

hi1 � ei + σ i,
hi2 � −ei + σ i.

(19)

In this work, we assume that the initial conditions satisfy the
safety constraints, i.e., the initial tracking errors are in the safe
region. From (Eq. 19), it is clear that we havemultiple time-varying
constraints that should be satisfied simultaneously. Moreover, it is
trivial to verify that LGei = 0 and LFLGei ≠ 0, thus the safety
constraint has a relative degree of 2. For relative degree-two
constraints, the reciprocal CBF is defined as (Hsu et al., 2015),

Bj ηi( ) � −ln hij ηi( )
1 + hij ηi( )( ) + aEij

bEij _hij ηi( )2
1 + bEij _hij ηi( )2, (20)

where j ∈ {1, 2} and aEij, bEij are positive scalars. The following
control barrier condition should be satisfied for time varying
constraints which leads to time varying CBFs,

LFBj ηi( ) + LGBj ηi( )vi + zBj ηi( )
zt

− γi
Bj ηi( )≤ 0. (21)

Remark 2. Note that by choosing small values for aEij and bEij, the
systemwill stop far from the constraint surfaces. On the other hand, by
choosing large parameters the systemwill stop close to the constraints.
In some cases, especially in the presence of uncertainties, choosing aEij
and bEij to be too largemay cause constraint violations (i.e., no solution
exists to the QP problem). As a result, based on the given application, a
compromise must be considered for choosing these parameters.

3.4 Quadratic Program
As shown in (Eq. 19), two safety constraints need to be satisfied
simultaneously for each linearized, decoupled system. Due to this
fact, a single controller can be obtained in such a way that
guarantees adherence to both constraints (Rauscher et al.,
2016). In this subsection, n QPs are proposed to unify RES-
CLF and CBFs for each system in (Eq. 14) into a single controller.
The n QPs for i ∈ {1, . . . , n} are defined as

min
vi� vi , δi[ ]⊤∈R2

v⊤i Hivi,

subject to

LFVϵi ηi( ) + LGVϵi ηi( )vi + c3i
ϵi
Vϵi ηi( )≤ δi CLF( )

LFBj ηi( ) + LGBj ηi( )vi + zBj ηi( )
zt

≤
γi

Bj ηi( ) CBFs( )

(22)

where Hi � 1 0
0 psci

[ ] and psci ∈ R+ is a variable that can be

chosen based on the designer’s assessment of weighting the
control inputs. Based on the QP problem, if the system states
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ηi are far away from the boundary of the safe set, then the control
objective that is represented by RES-CLF will be satisfied.
However, as the states get close to the boundary the control
performance will be violated by the CBF.

Remark 3. If feedback linearization is not feasible, or in the case
that feedback linearization does not result in independent
systems, we should encode the coupling between the joints to
train a single ProMP for the multidimensional system. Our
proposed approach can be extended to address such cases by
defining the safety constraints based on the entire ProMP
covariance matrix, not just the diagonal elements. This is an
avenue of future exploration.

4 SIMULATIONS AND EXPERIMENTS

In this section, we demonstrate different aspects and capabilities of
our methodology for the ProMP control of a robotic system via
simulations and experiments. The systemmodels and proposed real-
time controller were implemented in a MATLAB 2019a
environment. All computations were run on a Dell OptiPlex 7050
machine with an Intel Core i7-7700X CPU and 8 GB of memory.

4.1 Case Study 1: Two-Link Robot
We consider a rigid, two-link robot with the dynamic model of
(Eq. 5) and the following parameters (Kolhe et al., 2013),

D q( ) � m1l
2
1 +m2 l21 + l22 + 2l1l2 cos q2( )( ) +

m2 l22 + l1l2 cos q2( )( ) m2l
2
2

[ ],
C q, _q( ) � −m2l1l2 sin q2( ) _q2 2 _q1 + _q2( )

m2l1l2 _q
2
1 sin q2( )[ ],

K q( ) � m1 +m2( )gl1 sin q1( ) +m2gl2 sin q1 + q2( )
m2gl2 sin q1 + q2( )[ ],

where m1 and m2 are the link masses, l1 and l2 are the lengths of
the links, and g is the gravitational acceleration. For the
simulations, the values of these variables are selected as m1 =
1, m2 = 1, l1 = 1, l2 = 1, and g = 9.8.

We generated 50 trajectories that achieve a goal position from
various starting positions while avoiding three obstacles. Using this
dataset, we trained a ProMP with Algorithm 1 from (Gomez-
Gonzalez et al., 2020). We used L = 2 basis functions consisting of
five radial basis parameters. The results of the ProMP training are
presented in Figure 3, where the 50 input trajectories are shown in
red. The ProMP mean joint trajectories, μi, are shown in dark green,
and in a light-green fill we show μi ± σi. A visualization of the ProMP
in theworkspace, based on (Sakai et al., 2018), is displayed inFigure 4,
where the black circles indicate the location of obstacles. The robot
link positions over time are highlighted in red, with different colors
representing key end-effector trajectories from the ProMP. The green
trajectory is the mean of the ProMP distribution. The other four
trajectories result from combinations of μi ± σi, i ∈ {1, 2}.

Three sets of simulations were conducted. In each simulation,
the CLF parameters were selected as ϵi = 0.1 and c3i = 0.5. In
scenario 1, greater priority was given to the CLF than CBF by
choosing a high weight, i.e., psc1 = psc2 = 200. Moreover, the CBF

design parameters were set to aE11 = aE12 = 20.1, aE21 = aE22 = 20,
bE11 = bE12 = 1, bE21 = bE22 = 0.9, γ1 = 10.1, and γ2 = 9. In scenario
2, psci was chosen as psc1 = psc2 = 0.02 which implies that less
priority was given to the CLF in comparison with the CBF.
Moreover, the CBF parameters in this scenario are the same
as the first scenario. To show the effects of changing the CBF
parameters aEij, bEij, and γi, we consider another scenario. In
scenario 3, aE11 = aE12 = 1.1, aE21 = aE22 = 1.1, bE11 = bE12 = 0.4,
bE21 = bE22 = 0.5, γ1 = 1.3, and γ2 = 1.51, with psci = 0.02 as in the
second scenario. Consequently, the effects of changing the CBF
parameters can be analyzed by comparing the second and third
scenarios.

The simulation results are exhibited in Figure 5. In scenario 1,
by choosing a large value for psci (more priority given to the CLF
than CBF), the system output remains close to the mean
trajectory. However, in scenario 2, by considering a small
value for psci (more priority given to the CBF than CLF), the
system remains safely inside the distribution but does not
necessarily stay close to the mean. In scenario 3, it can be
seen that by choosing smaller values for aEij, bEij, and γi, the
system output will maintain more distance from the constraint
surfaces, resulting in remaining closer to the mean trajectory. In
short, our proposed method provides a valuable option to the
system designer by permitting fine-grained administration of the
trajectories while ensuring safety.

The primary computational cost of our controller, with respect
to time, comes from the fact that it must solve a set of QPs at every
time step. In the evaluation simulations, two QP problems are
solved in real time (one for each link). The average required time
(Tave), maximum time (Tmax), and the standard deviation (std)
for solving the QP problems are Tave = {0.0 015s, 0.0 011s}, Tmax =
{0.1 148s, 0.0 119s}, std = {0.0 053s, 0.0 006s}. From these results,
it is clear that the expected execution time of the QP problems is
very small (e.g., in the range of 1 ms). The large maximum times
correspond to instances of a single outlier. Hence, the controller is
applicable for real-time implementation.

4.2 Comparison With Conventional ProMP
Control
One specific aspect of the CLF/CBF-based ProMP controller
developed in this work is minimizing the control effort in the
optimization problem (Eq. 22) at each time step. This leads to a
lower control effort in comparison with a traditional ProMP
controller. Another set of simulations were conducted to compare
our proposed methodology with the results of (Paraschos et al.,
2018a; Mathew, 2018), which is representative as one of the
primary works in this field. To provide a fair comparison with our
method, the ProMP controller is also applied to the feedback
linearizable model of the two-link robot.

We conducted three sets of simulations (designated as the
fourth, fifth and sixth scenarios). In scenario 4, we implemented
the CLF/CBF-based controller with more priority accorded to the
CLF rather than the CBF (similar to scenario 1). In scenario 5, we
considered the CLF/CBF-based controller with more priority
bestowed to the CBF instead of the CLF (similar to scenario
2). The ProMPs in scenarios 4 and 5 were trained using the library
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in (Gomez-Gonzalez, 2019). However, we were not able to
successfully implement the original controller in (Gomez-
Gonzalez, 2019). Therefore, in scenario 6, we trained and
implemented the traditional ProMP controller presented in
(Paraschos et al., 2018a) using the library presented in
(Mathew, 2018). While the ProMPs for our CLF/CBF-based
ProMP controller and traditional ProMP controller used the
same training set, the resulting ProMP mean and covariance
are slightly different. For each scenario, the simulations were run
for 100 different initial conditions that were randomly selected

within the bound [μ1 ± 0.12, μ2 ± 0.12], where μ1 (0) = − 1.292 5,
and μ2 (0) = 0.6.

The simulation results corresponding to these three
scenarios are, respectively, shown in Figures 6–8, where the
mean of ProMP is highlighted by a dashed orange line, and the
mean ± variance bounds are shown with dotted black lines.
These results show that all the controllers are robust against
uncertainties in the initial conditions. From Figure 6, it can be
concluded that by using the CLF/CBF-based controller with
high psci, the system quickly converges and tracks the mean
trajectory. The system deviates from the mean to take a shorter
path in Figure 7, but it is clear that by considering small values
for psci the system remains safely inside the distribution. Based
on Figure 8, it can be seen that when using a traditional ProMP
controller, the system tracks the mean with an error larger than
scenario 4. Moreover, the second joint does not remain inside
the distribution during certain periods. We posit that the
ProMP controller has some lag, akin to a PID controller
with proportional gains that are too low. The feedback and
feedforward gains of the ProMP controller are determined as
functions of the system parameters and ProMP parameters,
and they cannot be tuned to reduce tracking error. The ProMP
can be “tuned” through the use of via points. To this end, we
have added a via point as the last element of the mean
trajectory to ensure convergence. These results show that
the CLF/CBF-based ProMP controller has better tracking
performance when compared to a traditional ProMP
controller.

Figure 9 and Figure 10 summarize the root mean square
(RMS) values of the control variables for scenarios 4, 5, and 6 in
the form of a boxplot. In these figures, 50% of all the RMS values
are placed in the boxes and the median is shown by a red line that
divides the box into two parts. The black bars indicate the
maximum and minimum values, and the dashed “whiskers”
indicate 25% of the values between the box and max/min.
Outliers, if any, are indicated by red crosses. From Figure 9, it
can be concluded that scenario 4 has larger control values in
comparison to scenario 5, i.e., more control effort is needed to

FIGURE 3 | Training of the CLF/CBF-based ProMPs for the first joint (left) and second joint (right). The 50 input trajectories are shown in red, and the ProMP mean
joint trajectories (μi) are shown in dark green. A light-green fill shows μi ± σi. Copyright 2021 IEEE. Reprinted, with permission, from Davoodi et al., 2021.

FIGURE 4 | A visualization of the two-link CLF/CBF-based ProMP joint
trajectories in the robot workspace. The robot link positions over time are
shown in red, while the end-effector trajectory following the mean ProMP joint
trajectories is shown in green. The four trajectories of the end effector
with joint combinations μi ± σi, i ∈{1,2} are illustrated in cyan, blue, yellow and
magenta. The black circles correspond to obstacles. Copyright 2021 IEEE.
Reprinted, with permission, from Davoodi et al., 2021.
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be able to effectively track the ProMP mean. This indicates one
strength of leveraging trajectory distributions over a single
trajectory; the system is given more freedom to reduce the
control effort while maintaining safety. Moreover, in contrast
with a traditional ProMP controller our methodology has a
remarkably lower control effort as shown in Figure 9 and Figure 10.

4.3 Case Study 2: Universal Robots
UR5 Six-Link Robot
The equation of motion of the UR5 robot can be written in the
form of (Eq. 5), with the following parameters (Spong and
Vidyasagar, 2008),

D q( ) � ∑6
i�1

miJ
⊤
vi
Jvi + J⊤wi

RiImiR
⊤
i Jwi

⎡⎣ ⎤⎦, (23)

wheremi ∈ R is the mass of ith link, and Jvi ∈ R3×6 and Jwi ∈ R3×6

are the linear and angular part of the Jacobian matrix Ji, respectively.
Ri ∈ R3×3 is the rotation matrix and Imi ∈ R3×3 is the inertia tensor.
The elements of C(q, _q) are obtained from the inertia matrix as

cij � ∑6
k�1

1
2

zmij

zqk
+ zmik

zqj
− zmkj

zqi
( ) _qk, (24)

where mij are the entries of the inertia matrix. Moreover, the
elements of the gravity vector are obtained from

Ki q( ) � zP
zqi

, (25)

where P is the total potential energy of the robot. Additional
information on these equations can be found in (Katharina,
2014).

FIGURE 5 | The results of the CLF/CBF-based ProMP controller for the first joint (left) and second joint (right). The safe region of μi ± σi, i ∈{1, 2} is shown as a filled
“tube.” The control results in different trajectories for distinct values of the weight psci, however all trajectories remain safe. Copyright 2021 IEEE. Reprinted, with
permission, from Davoodi et al., 2021.

FIGURE 6 | The results of the CLF/CBF-based ProMP controller with more priority given to the CLF than the CBF for the first joint (left) and second joint (right).
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We generated 90 joint-space trajectories with defined goals,
obstacles, and starting positions. The 90 UR5 trajectories were
then used to train a joint-space ProMP using the same parameters
as in the two-link robot case study. The following set of CLF and
CBF parameters were chosen: ϵ1 = ϵ2 = ϵ3 = ϵ4 = ϵ5 = 0.1, ϵ6 = 0.01,
and c3i = 1.1, aEij = 20.1, bEij = 1, and γi = 10.1, i ∈ {1, . . . , 6}, j ∈ {1,
2}. The simulation environment is depicted in Figure 1 and
Figure 11. We consider two different scenarios. In scenario 1, psci
= 200, which gives higher importance to the CLF. For scenario 2,
psci = 0.001, which implies that the design interest and priority is
on the CBF. As is clear from Figure 11, in both scenarios the
robot can effectively track the mean of ProMP and
simultaneously avoid colliding with environmental obstacles.
The running time statistics for solving the QP problems are
Tave = [0.001 4, 0.001 1, 0.001 0, 0.001 0, 0.001 1, 0.001 0], Tmax =
[0.119 3, 0.012 0, 0.012 8, 0.005 8, 0.031 4, 0.002 8], std = [0.005 3,
0.000 5, 0.000 5, 0.000 3, 0.001 4, 0.000 2]. The large maximum
values are again due to a single outlier. Thus, the expected
operational time is well within the demands of a robotic

system. The cause of the outlier occurrences is an avenue of
future research to offer improved performance guarantees.

4.4 Case Study 3: Universal Robots UR5e
Six-Link Robot
To conclude this section, we evaluated our CLF/CBF-based
ProMP controller using a physical robot with static obstacles.
The robot used was a Universal Robots UR5e six-link
manipulator with a Robotiq two-finger gripper. In addition to
the robot, our environmental setup included the following three
static obstacles: a robotic arm, box, and the table that the robot
was mounted on.

We tasked a human teacher with demonstrating a pick-and-
place procedure to the robot. In our setup, the robot must move
from a starting bin to a goal bin located on the other side of a box.
We installed a gravity compensation controller on the robot
enabling the teacher to directly affect the robot’s joints via
kinesthetic teaching. Using this directed learning from

FIGURE 7 | The results of the CLF/CBF-based ProMP controller with more priority given to the CBF than the CLF for the first joint (left) and second joint (right).

FIGURE 8 | The results of a traditional ProMP controller for the first joint (left) and second joint (right).
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demonstration approach allows us to bypass the correspondence
problem (Argall et al., 2009). Additionally, kinesthetic teaching
retains parity between the demonstration, learning, and execution
space of the trajectories. In all, seven demonstrations of the task
were conducted. From these demonstrations, we collected the
joint angles, velocities, and the associated time steps. It is worth
mentioning that care must be taken to collect data that is roughly
Gaussian, or at least unimodal. Methods to handle non-Gaussian
or multimodal data is an issue to be addressed in future work.

Using this demonstration data, we trained a joint-space
ProMP using the same parameters as described in the
previous sections. In Figure 12, we see the demonstration data
(in green), the respective ProMP mean (red), and one standard
deviation of the ProMP (light red). Note that q6, which
corresponds to the final wrist joint, was not purposefully
actuated by the teacher and is largely static during training.
We implemented the CLF/CBF-based ProMP controller with
psci = 0.5. The other parameters were selected to be the same
as the previous simulations in Section 4.3. Figure 13 depicts the

FIGURE 10 | The RMS values of control inputs corresponding to a traditional ProMP controller for the first joint (left) and second joint (right).

FIGURE 11 | The results of the CLF/CBF-based ProMP controller for a
UR5 robot. Copyright 2021 IEEE. Reprinted, with permission, from Davoodi
et al., 2021.

FIGURE 9 | The RMS values of control inputs corresponding to the CLF/CBF-based ProMP controller for the fourth scenario (left) and the fifth scenario (right).
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FIGURE 12 | The UR5e robot joint trajectories recorded from the human demonstration of the pick-and-place task are shown in green, while the ProMP mean
trajectory and one standard deviation of the ProMP are colored red and light red, respectively.

FIGURE 13 | A human teacher demonstrating the pick-and-place task to a UR5e robot.
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demonstration operation as the human teacher moves the robot
arm during the task. The trajectory from the CLF/CBF-based
ProMP controller on the UR5e robot is shown in Figure 14.

5 CONCLUSION AND FUTURE WORK

In this work we solved a ProMP robot guidance problem using
a CLF/CBF-based controller. Our approach stabilizes the
robot and guarantees that the system output is always
inside the distribution generated by a ProMP. The time-
varying nature of the ProMP ensures the robot is guided
along the distribution at the desired rate. Moreover, our
technique allows for prioritizing between strict tracking of
ProMP mean and loose but safe tracking of mean trajectory,
which is not possible in the native ProMP control design. It
was shown, in Section 4.2, that this can reduce control effort
at the risk of getting closer to barriers. Simulation and
experimental studies on a two-link and six-link robot
confirm the viability of our method for designing the
controller.

As part of ongoing work, we are investigating the trade-offs of
various different CBFs (e.g., zeroing versus reciprocal), other
choices of cost functions, and constraints in the QP.
Additionally, we are seeking novel methods that automatically
define additional barriers to ensure the safe movement of a co-
robot around dynamic obstacles (e.g., humans and other robots).
This includes the exploration of an active learning framework
whereby a co-robot has the capability to select informative

trajectories from the ProMP distribution that can then be used
for autonomously retraining itself.
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