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Detecting changes such as moved, removed, or new objects is the essence for numerous
indoor applications in robotics such as tidying-up, patrolling, and fetch/carry tasks. The
problem is particularly challenging in open-world scenarios where novel objects may
appear at any time. The main idea of this paper is to detect objects from partial 3D
reconstructions of interesting areas in the environment. In our pipeline we first identify
planes, consider clusters on top as objects, and compute their point-pair-features. They
are used to match potential objects and categorize them robustly into static, moved,
removed, and novel objects even in the presence of partial object reconstructions and
clutter. Our approach dissolves heaps of objects without specific object knowledge, but
only with the knowledge acquired from change detection. The evaluation is performed on
real-world data that includes challenges affecting the quality of the reconstruction as a
result of noisy input data. We present the novel dataset ObChange for quantitative
evaluation, and we compare our method against a baseline using learning-based
object detection. The results show that, even with a targeted training set, our
approach outperforms the baseline for most test cases. Lastly, we also demonstrate
our method’s effectiveness in real robot experiments.

Keywords: object detection, object matching, object mapping, open-world detection, autonomous robot, point-
pair-features

1 INTRODUCTION

Industrial tasks such as fetching objects, mobile manipulation, patrolling, or supporting humans in
robot assembly require an understanding of objects relevant for the task in relation to the
environment. When asking people what they wish robots could do at home, cleaning, tidying
up, and picking up items from the floor are top priorities (Bugmann and Copleston, 2011; Cakmak
and Takayama, 2013; Bajones et al., 2018). While there are solutions for vacuuming or mowing the
lawn, maintaining order is largely unsolved. To work towards the open challenges, several
competitions have been started, for example, the ICRA 2018 “Tidy Up My Room” Challenge1 or
the WRS RoboCup@Home (Okada et al., 2019) tidy-up task.

The tidy-up task is complex because a robot must operate in an unstructured and dynamic
environment where it needs to localize known as well as unknown objects. To determine where
objects belong to, the robot needs to have knowledge about the intended storage locations for these
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objects, e.g., in a knowledge base or another form of reference
(Tenorth and Beetz, 2013). The focus of this paper is on the
perception system for the tidy-up task and related applications,
for which we refer to object detection and matching as the object
mapping task.

Many approaches exist that detect objects in an environment
by identifying changes between two visits based on camera data.
A common method is to perform differencing between two single
views using either color images (Furukawa et al., 2020; Sakurada
et al., 2020) or RGB-D frames (Alimi et al., 2012; Mason and
Marthi, 2012). Both modalities are affected by inaccuracies of
view alignment. An alternative pathway is to reconstruct the
environment, which has the benefit of providing a 3D object map
to store object locations (Ambrus et al., 2014; Fehr et al., 2017).
The major difficulty is to first create a consistent map and then
align to this map at later visits given uncertainties in robot
localization, view direction, or odometry. Options to handle
this are to request users to give alignment cues (Finman et al.,
2013) or assume sufficient robot accuracy (Björkman and Kragic,
2010; Ambrus et al., 2014; Song et al., 2015).

Object detection is the prerequisite to find matches. It reduces
the object mapping task to the problem of comparing the
locations of objects in the environment at two time instances.
This definition is generic and independent of the specific robot
task. For example, if the task is tidy up, a comparison is performed
between the present situation and a reference map. If the task is
patrolling, the observant robot will use all object detections to
create a present object map for the new time instance. For fetching
an object, the knowledge where this object was last seen, i.e., in the
present object map, is used to retrieve it and, if not found, to start
a search that may include information where the object has been
found before.

Similarly to the object mapping task, the object rearrangement
task as introduced by Batra et al. (Batra et al., 2020) also deals with
the goal of transforming the current state of the environment into
a target state assuming a closed world. This does not represent the
real world that must consider objects that appear, and are
therefore unknown, or disappear. Today most approaches
assume a given and fixed set of objects, e.g., Bore et al. (2018)
and Weihs et al. (2021). To develop more general methods, the
task of open-world object detection is recently defined by Joseph
et al. (2021). Objects from unknown classes need to be identified
and then learned when label information becomes available. As a
recent example, Kim et al. (2021) tackles the first aspect. They
propose a method that generates class-agnostic object proposals
in an open-world setting, but without classification. These
approaches operate on small image patches and do not yet
generalize to robotics applications in the 3D world.

Towards this goal, we present an approach that copes with all
possible cases of static, moved, removed, and novel objects in
different room settings. We partition a room into local horizontal
surfaces, which is motivated by the fact that objects are typically
found on furniture such as tables or shelves. Furthermore, it is
infeasible for daily use to repeatedly and exhaustively scan an
entire room. Tasks rather need to check if the object is at a specific
location or surface. Finally, local surfaces can be easily extended
to include other structures such as vertical surfaces to locate a

broader variety of objects including pictures, switches, or door
handles. This concept of local surfaces can be easily extended to
multiple rooms. At the core of our approach is a comparison
function to match detected objects to previously seen instances.
To achieve this we represent surfaces where the objects reside as a
3D point cloud in the reference map. To autonomously create the
surface partitioning, we exploit semantic segmentation. Finally,
local surfaces enable high-quality reconstructions of every plane,
which enhances the matching of detected objects using state-of-
the-art methods such as Point Pair Features (PPF) (Drost et al.,
2010). PPF is computationally cheap and runs on CPU only,
which plays a considerable role for approaches running onmobile
robots.

Our approach is evaluated on the ObChange (Object Change)
dataset, which extends prior work in Langer et al. (2020) with
better local reconstructions. It encompasses multiple visits to five
rooms with a total of 219 annotated objects. Taking all possible
comparisons of visits per room into account, this leads to 961
objects for detection and matching. We report the results
achieved on ObChange compared to a baseline using a
learning-based detection approach as well as highlight possible
failures and remaining challenges. Furthermore, we show the
performance of our proposed approach using a fully autonomous
system working in a real indoor environment.

To summarize, our contributions are:

• A procedure that uses semantic segmentation and surface
fitting to reliably detect objects and that robustly handles all
cases encompassed in an open-world, that is, static, moved,
removed, and novel objects.

• An object mapping approach that does not rely on a trained
classifier or pre-defined 3D models and, thus, works in an
open-world setting by leveraging information extracted
from a 3D representation.

• Presenting the ObChange dataset and an evaluation of
different detection methods to categorize objects into the
four cases.

• An evaluation on a fully autonomous robot that performs
experiments in a real environment.

The remainder of the paper is organised as follows. Section 2
discusses related work for object mapping in open-world settings.
Section 3 details our approach and Section 4 presents the
experiments with ObChange, real experiments with a mobile
robot, and a discussion of the results followed by the
conclusion in Section 5.

2 RELATED WORK

Object mapping and determining object relations across different
time instances requires their detection and association. Our work
focuses on the perceptual part involved for this task. Object
detection in RGB images, as well as 3D data, is an active field
in computer vision and robotics. While most of the single frame,
learning-based detectors are limited by their training dataset,
some methods working on 3D data use only geometric properties
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(Tateno et al., 2015; Furrer et al., 2018) or additional semantics
(Grinvald et al., 2019). Although these methods are useful in
open-world settings, this section reviews work related to object
detection via scene differencing in 3D, which is closer to our
approach as it also uses a reference map. Additionally, this section
explores image-based methods that tackle the open-world
assumption and discusses available datasets useful for the
object mapping scenario.

For object change detection, scene differencing based on 3D
data is a common approach (Finman et al., 2013; Ambrus et al.,
2014; Fehr et al., 2017; Langer et al., 2017) because the only
prerequisite are two aligned reconstructions of the environment.
The methods deal with alignment inaccuracies and falsely
detected objects by requesting human help (Finman et al.,
2013), filter detected objects with morphological operations
(Fehr et al., 2017; Langer et al., 2017), or limit the trajectory
of the robot while creating 3D maps (Ambrus et al., 2014).
Approaches based on scene differencing are in general not
able to detect replaced objects.

Object detection based on learning-based approaches such as
YOLO or Mask R-CNN are very popular, yet are limited to a
closed world and show weakness by assigning unknown objects
mistakenly a learned class with high confidence. Learning-based
open-world object classification is an emerging research field
(Pidhorskyi et al., 2018; Liu et al., 2019; Boccato et al., 2020;
Perera et al., 2020), while the extension to open-world object
detection is only recently defined (Joseph et al., 2021). Only few
works exist for focusing on object detection, which deal with
estimating uncertainty and therefore being able to distinguish
unknown objects (Miller et al., 2018, 2019). Currently, they are
not capable of gradually extending their knowledge when new
classes emerge, which is essential to be useful in real-world
applications. Incrementally extending the knowledge of a
trained detector leads to the problem of catastrophic forgetting
(French, 1999; Kirkpatrick et al., 2017), which is the challenge of
maintaining robust performance on known classes as new classes
are learned.

Only a few suitable datasets exist that not only support object
change detection but also the categorization of different change
types (novel, removed, etc.). Similarly, not many datasets provide
information about object associations between two recordings.
The datasets can be separated into synthetic frames-wise
annotated datasets (Park et al., 2021; Weihs et al., 2021) and
real-world datasets where the 3D map is annotated (Wald et al.,
2019; Langer et al., 2020). Based on the task definitions from Batra
et al.(Batra et al., 2020), Weihs et al. (Weihs et al., 2021)
introduced a new dataset with object rearrangements in a
virtual environment for studying how robots explore their
environment. They set up two different versions of the
rearrangement task. In the easier setting, the robot sees the
current and the goal state at the same time, leading to
perfectly aligned observations. In the advanced version, the
robot must explore the environment in the target state first,
and after the objects are moved, bring them back to their target
location. A limitation of their task definition is that only objects
present in the goal state can be out of place in the current state,
thus assuming a closed world. ChangeSim (Park et al., 2021) is a

synthetic dataset of warehouse scenes with different illumination
and dusty air levels acquired with a drone. This is curated to
support online detection approaches that work directly on
frames. Therefore, first a correct pairing of frames from two
different time instances must be found before change detection
can be computed. For change detection, they define the following
categories: new, removed, replace, rotated, or static. The most
important category for object mapping, moved, is not defined.
This makes it impossible to differentiate between a removed or a
moved object. Wald et al. (Wald et al., 2019). introduce a real-
world dataset acquired with a handheld device. Similar to Weihs
et al. (Weihs et al., 2021), the dataset is designed for object
instance re-localization. Unfortunately no novel or removed
objects are considered. Another drawback is that mainly large
items such as furniture are labeled and not objects that can be
manipulated by a service robot. A real-word robotic dataset for
change detection is acquired by Langer et al. (Langer et al., 2020).
Objects that are labeled have been selected from the YCB object
set (Calli et al., 2017). This dataset is only used for change
detection and we extend it to provide the necessary
reconstructions and ground truth for matching cases for open-
world settings.

Only a few works exist that can be applied to the object
mapping task. Bore et al. (Bore et al., 2018) detect objects based
on the change detection approach of Ambrus et al. (Ambrus et al.,
2014) and additionally track the movement of detected objects
over time by defining a two-stage movement model, which is
limited to a closed world. Also the baselines introduced by Weihs
et al. (Weihs et al., 2021) work with a closed-world assumption,
where at both time instances the same objects occur. The best
performing method evaluated on their proposed dataset achieves
a success rate of 8.2% when exploring the goal and current state
subsequently and 17.9% when seen simultaneously. This is in line
with the observation from Park et al. (2021), that pairing frames is
a non-trivial task. It has to be noted that they propose an end-to-
end learned approach for a robotic systemwithout any knowledge
of the environment. Finman et al. (Finman et al., 2013) discover
objects through differencing of reconstructions. The focus of their
work is on learning segmentation methods to re-discover objects
in future visits, which are then used to segment the whole
environment at the next visit. The result is used to find
segments that overlap with the object. The biggest limitation
of their work is the need of well aligned room reconstructions,
where they rely on human input to define the overlapping parts
between two reconstructions. This overlapping part is then
aligned using ICP, which tends to fail if big parts in the
overlapping area have changed. The approach closest to our
work is by Song et al. (Song et al., 2015). By assuming that
the robot stays in the same environment, their goal is to
determine a global instance-based labeling and to further
recognize individual objects. The method requires a high-
quality reconstruction that is generated by an RGB-D camera
array. Based on the full semantic labeling generated by a crowd-
sourcing marketplace, objects are either classified as movable or
non-movable. Non-movable objects are considered as
background and used to align frames from different
timestamps. For the remaining environment parts, a SIFT
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descriptor is computed and used for matching. Their approach
heavily relies on the quality of manually labeled instance
segmentation for the whole environment. In contrast, we
propose a fully autonomous system using a surface concept to
more efficiently partition an environment for different object
mapping applications.

3 OBJECT MAPPING USING LOCAL
SURFACES FOR MATCHING

This section formally defines the problem of object mapping in
arbitrary environments in Section 3.1. An overview of the
perception components for this task is given in Section 3.2.
Finally, the details for reconstruction, object detection, and object
matching are described in Sections 3.3–3.5.

3.1 Problem Definition
The goal of this work is to detect objects in an environment and to
further assign each object a category depicting its relationship to

previous detections. The focus is on objects, which are detachable
from the surface they are placed on and can be manipulated by a
service robot. To remain task-independent, we compare objects
present in an environment at time t0 and objects detected at a later
time t1. We refer to objects detected at t0 as models and denote the
set of detections as M. Objects detected at t1 are referred to as
candidates and the set is denoted C. Detected objects are matched
across the time instances, then categorized into static, moved,
removed, and novel; see also Table 1. A static object is a candidate
c ∈ C that has a matching model m ∈ M and where the distance
between c and m is less than a threshold d. This threshold is
selected depending on the uncertainty in robot localisation, the
reconstruction, object detection, object placement, etc. The value
may be different depending on specific applications. We use d =
20 cm throughout the paper. A moved object is a candidate that
has a matching model but where the distance between the objects
is greater than d. An object is considered removed if it exists inM
but has no matching candidate in C. Novel objects are any
candidates in C that have no matching model in M. The set
of models M is the union of all static, moved, and removed

TABLE 1 | Definition of the different categories an object gets assigned to when comparing an environment at two different timestamps.

Object category Description

Static Object did not move or only less than a distance d at time t0 compared to t1
Moved Object is detected at time t0 and at time t1, but at different locations
Removed Object is detected at time t0 but not at time t1
Novel Object is detected at time t1 but not at time t0

FIGURE 1 | System overview of our approach. The setup of the reference is performed only once.
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objects while the intersection of these must be empty. Likewise,
the set of candidates C is the union of static, moved, and novel
objects while their intersection must be empty.

3.2 System Overview
An overview of the proposed perception system for autonomous
object change detection and mapping is given in Figure 1. The
approach is composed of two phases: setup of the reference map
(blue), which needs to be preformed only one time, and every run
through the environment to visit all or a subset of surfaces (green
and orange). If the larger structure of the room or the main
surfaces (such as furniture) are significantly moved, phase one
must be repeated to generate a new reference map.

This work leverages the concept of surfaces to focus object
comparisons, which ultimately leads to improved object
detection. Technically, this is achieved by first combining the
reconstruction of the room and semantic segmentation to create a
list of relevant surfaces; see Section 3.3. Then a more detailed
scan of every surface is performed to improve the reconstruction.
This high-quality reconstruction of each surface is used to detect
objects (see Section 3.4), which are stored in a database as the
reference object map for future change detection requests. When
the robot revisits rooms and surfaces for its specific task, for
example, tidying up a kitchen counter, a new detailed
reconstruction is generated. Objects are extracted and then
matched to those in the reference. The matching process is
performed in three different ways to handle different cases as
outlined in Section 3.5.

In this work we use only change as a cue for segmentation,
which is fully applicable to open-world settings. If change occurs
multiple times, then a heap of objects may become disentangled;
otherwise, the heap will be considered as a single object. In the
following sections, we refer to each detection as an object, both for
single standing items or heaps of objects.

3.3 Reconstruction of the Indoor
Environment and Plane Extraction
The first step for detecting objects is to identify the regions where
objects are commonly located, in other words, the surfaces.
Similar to our previous work (Langer et al., 2020), the search
space for objects is reduced according to the assumption that
objects are most often placed on horizontal planes in home
environments (Björkman and Kragic, 2010; Marton et al.,
2010). To extract horizontal planes, the environment is
reconstructed using Voxblox (Oleynikova et al., 2017). This
method runs on CPU only and is tightly coupled with ROS
(Quigley et al., 2009), both great qualities when working with a
robot. The coarse reconstruction of the environment, which is a
result of the voxelized representation, is used to geometrically
search for planes. To do so, the reconstruction is transformed into
a point cloud by extracting the centroids of all voxels. In addition,
SparseConvnet (Graham et al., 2018) is applied to the
reconstruction to retrieve a semantic label of each point and
consequently to exclude non-relevant regions for the plane
search; all points are removed that are not assigned any of the
following classes: cabinet, bed, chair, sofa, table, bookshelf,

counter, desk, shelves, nightstand, other props, other structure,
and other furniture. Since we focus on horizontal planes, only
points with a normal facing upward are retained. Finally, for each
semantic class the remaining points are downsampled and input
to RANSAC (Fischler and Bolles, 1981) to fit to a plane. Each
iteration generates one plane and these points are removed from
the input to enable further plane fitting. The loop ends when the
extracted plane consists of less than a certain number of points.

For each plane, descriptive information such as the plane
coefficients, convex hull points, and centroid are stored in a
database. Additionally, waypoints for the robot to navigate to
when inspecting the plane are computed. Waypoints are equally
distributed positions around the plane at a fixed distance to the
edge of the convex hull. The pose of each waypoint is described by
its position and an orientation that faces the center of the plane.
All the surface information is used for subsequent visits.

3.4 Reconstruction of the Surface and
Object Detection
Once the global reconstruction of the environment is created, a
higher-quality local reconstruction is generated for each surface
to enable more precise object detection. In this work we use
ElasticFusion (Whelan et al., 2015) for the local surface
reconstruction. It uses both photometric and geometric pose
estimation, which is configured using a relative ICP/RGB
tracking weight parameter. While ElasticFusion is more precise
than Voxblox, it still suffers specific failure cases that need to be
addressed for robust operation on a mobile robot. Firstly,
viewpoints focusing on large planar and low-textured surfaces
have too few features to track the camera pose, which results in
misalignment (see Figure 2 [top]). Secondly, changing lighting
conditions resulting in over- and underexposured images is
problematic for registration as can be seen in Figure 2
(middle). Another source of error are geometric symmetries as
well as low depth disparity. Figure 2 (bottom) shows an example
reconstruction using RGB and ICP registration but suffers from
duplicated and misaligned objects or smeared objects.

To countermeasure those real-world problems, we propose a
computationally simple solution. Our idea is to assist the tracking
method whenever the estimated trajectory begins to significantly
diverge from the reported robot odometry data. Clearly,
odometry data has inaccuracies; thus, using it directly is not
sensible.Whenever the registration fails completely (e.g., Figure 2
[top]) the estimated pose and the odometry pose differ
significantly. Resetting the estimated pose to the odometry
data is not feasible either because this can lead to smeared
reconstructions. Our approach is to blend the poses from the
camera tracking and odometry data to repair drift and
misalignment error in the running reconstruction. For each
frame, before running ElasticFusion’s frame processing, we
recompute the pose given the last estimated pose and the
robot pose from odometry data. To this end we first compute
the difference between the last estimated pose E and the current
robot pose P.

More specifically, the poses are represented by transformation
matrices:
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E � RE|tE[ ], P � RP|tP[ ] ∈ SE3 (1)
with rotation components RE, RP ∈ SO3 and translation
components tE, tP ∈ R3. Next the matrix is computed:

D � P−1E � RD|tD[ ]. (2)
Given this, we compute the angular difference:

ϕ � |arccos trace RD( ) − 1
2

( )|, (3)

to derive the mixing term:

λ � max min 1.0,
ϕ

zr
( )2( ),min 1.0,

|tD|
zt

( )2( )( ), (4)

where zr and zt are constant scaling factors. This allows the
modified E′ to be used as replacement for E through a linear
combination of the poses:

E′ � λP + 1 − λ( )E. (5)
The more the two poses disagree (i.e., the estimated pose

diverges from the pose measured by the robot), the more the
odometry pose is used in hope for future agreement. Clearly, if
odometry is less accurate, the results will degrade. However, it still

prevents ElasticFusion from completely failing in difficult scenes.
In our experiments we found good results with zr = 0.2 and zt =
0.2, which is used for all experiments.

Integrating the tracked camera and robot poses generates
high-quality reconstructions in real-world scenarios from the
robot trajectory. This adaption is used to create a reconstruction
for each extracted plane that is stored in the database before each
is processed separately. For each plane, its parameters and
waypoints derived in the setup stage are queried from the
database. Based on this information, the robot navigates
around the plane while the camera is directed to the center of
the plane. Before ElasticFusion transforms the camera stream into
a reconstruction, the depth images are pre-processed by cropping
them such that only the plane is retained. Cropping the depth
input prevents ElasticFusion from trying to align the background
(e.g., walls) at the expense of reconstruction accuracy of objects
placed on the plane. Benefiting from the local surface concept,
trajectories to create plane reconstructions are comparably short
and result in precise reconstructions. From these generated plane
reconstructions, objects are extracted by removing the points of
the plane according to the known plane parameters. The
parameters αmax, to allow deviation from a perfect horizontal
plane, and dplane, which defines the maximum distance of inlier
points to the detected plane, have to be chosen to take into

FIGURE 2 | Each row shows a surface of one of the environments in our dataset. The first column is the result of ElasticFusion using RGB and ICP information to
estimate the camera pose, the second row shows results using only ICP, and the last column shows the result of fusing the robot poses with the estimated camera poses
from ElasticFusion (only ICP).
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account small inaccuracies. The remaining points within the
convex hull are clustered using Euclidean distance. All points
up to 0.3 m above the plane are considered; however, this value
can be chosen depending on the application. We use a minimally
shrinked convex hull to reduce the number of false positive
detections such as walls or arm rests. At this stage, we do not
try to separate objects in clutter and treat each cluster as an object.

3.5 Object Matching and Categorization
To support high-level robot tasks, objects are assigned one of the four
categories, which is an indicator for what action should be performed
with the object. For example, a static object should be left alone while
a moved object should be returned to its original location.
Performing the categorization requires the determination of
which objects are present in different visits and additionally
finding those that are matched. The following subsections explain
the different stages of matching, which are also depicted in Figure 1.

3.5.1 Local Matching
For each detected object, a check is performed to determine if it is
still approximately located at the same position. If there exists a
model and a candidate within a distance less than d, they are
considered a potential match. A confidence score for the match
is computed by aligning their point clouds with ICP, which is
suitable in this case as their close proximity provides a good
initial registration. Two scores are then computed if ICP
converges: one for the model Sm and one for the candidate Sc
due to the object potentially not being symmetric. Themodel and the
candidate are a match if min (Sm, Sc) > τicp for a given threshold τicp.

Formally, we consider the model point cloud Pm and
candidate point cloud Pc. For each point pm ∈ Pm, a set of
points Qm,c ⊂ Pc is determined as the collection of all
corresponding points in Pc that have a distance to pm less
than the inlier threshold τ after alignment. A score is then
computed for pm and each pc ∈ Qm,c, which is composed of
the geometric and color similarity. Given the point normals, nm
and nc, the geometric score is given by:

sgeo � nm · nc if nm · nc ≥ τgeo,
0 otherwise.

{ (6)

The color score is computed as:

scol �
0 if κm ⊖ κc ≥ τcol

1 − κm ⊖ κc
τcol

otherwise,

⎧⎪⎨⎪⎩ (7)

where κm and κc are the color values of the points pm and pc in
LAB-space and ⊖ is the CIEDE2000 color difference (Luo et al.,
2001). τgeo and τcol are thresholds. The similarity score between
pm and pc in the correspondence set is the weighted combination
of the geometric and color scores:

sm,c � 0 if sgeo � 0 ∨ scol � 0
wsgeo + 1 − w( )scol otherwise,{ (8)

where w balances the contribution of the geometric and color
similarity.

The overall fitness score for the model is defined as:

Sm � 1
|Pm| ∑

pm∈Pm

sm,c* , (9)

where sm,c* is the best similarity score for pm given all the scores
computed for the points in its correspondence setQm,c. Likewise,
the overall fitness score for the candidate is computed:

Sc � 1
|Pc| ∑

pc∈Pc

sc,m* . (10)

A match is recorded if at least one of the scores Sm or Sc is
greater than the matching threshold τicp. If only a subset of the
points match, it is necessary to examine if either or both of the
model and candidate need to be split into independent objects. A
split based on the overlapping points is insufficient due to
possible over or under segmentation of the objects. Therefore,
to generate more precise object boundaries we perform region
growing based on color and normal similarity where only points
that contributed to the score are seed points. For all seed points,
points within a certain radius are added if color and normal are
similar enough compared to the seed point. The maximum
allowed color difference rgcol is computed with the CIEDE2000
formula using the color values in the LAB-space of both points.
The dot product from the normal vectors is used to check if the
angle difference is not greater than rggeo. Points that fulfil both
criteria are added and act as new seed points. If no more points
can be added, the region growing stops. All points in the result
that belong to the model or candidate are categorized as static.
The remaining points form a new object in the respective set.

3.5.2 Semi-local Matching
ICP alignment detects static objects in case of close proximity
between the two instances. For other objects in the environment,
where the initialization is poor, a more robust matching scheme is
required that is independent of the pre-alignment. We propose to
match objects by using the PPF global descriptor. PPF is a simple
learning-free descriptor, nevertheless top-ranked in pose
estimation challenges (Hodaň et al., 2018). In our system, PPF
is computed for each unmatched object and the pipeline returns
for each candidate between zero and ten hypotheses for each
model. For each hypothesis we compute a confidence score for
the model and the candidate as formulated in Eq. 9 and Eq. 10
and then compute the average. Only the best fitting hypothesis
from each model is retained per candidate. Note that planar and
small objects are filtered before applying PPF matching. All
objects are downsampled to achieve a unified point density
with a voxel size v and only objects with more than objmin

points and where less than τplane of the points can be
explained by a plane model are kept. Otherwise their
geometric characteristic is too generic and would result in
many false matches.

More concretely, the matching problem is simplified by
eliminating objects that match with a high certainty. To
unravel the hypothesis we use a bipartite maximum matching
graph (Edmonds, 1965). The nodes on one side are the models
and on the other side the candidates. A connecting edge exists if
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the model hypothesis for a candidate fulfils min (Sm, Sc) > τhigh,
where τhigh is a fixed threshold. The weight of an edge is the
average of the two scores. The maximum weighted matching of
the graph is then computed. For each model-candidate pair in the
graph solution we compute the spatial distance and categorize it
either as static or moved. These models and candidates are
considered as fully matched and are not processed any further.

With the reduced set of models and candidates, a new graph is
built where the condition for an edge is relaxed. An edge is created
if min (Sm, Sc) > τmin and avg (Sm, Sc) > τlow. With τlow≪ τhigh it is
possible to match models and candidates in heaps. In such cases it
is often infeasible to achieve a very high confidence because of
objects that are clustered together and increase the number of
points used to normalize the score. This concept also helps to
overcome deficits arising from incomplete reconstructions
caused, for example, by few viewpoints or occlusions. The
extracted matching results from the graph are then processed
the same way as described in Section 3.5.1: starting from the
matched points region growing is performed to extract all points
from the reconstruction belonging to the matched model/
candidate. These points are then categorized as static or
moved depending on their spatial distance. Remaining points
are considered as an additional model/candidate.

For all unmatched candidates, new hypotheses with the
unmatched models are computed. The matching process
restarts by building a graph with the relaxed edge condition.
This procedure is repeated until no more matches are found.

3.5.3 Global Matching
The final matching procedure considers objects that have been
moved between different surfaces. This is performed by collecting
all models and candidates from all surfaces that were not matched
in the local or semi-local checks. Technically, the same approach
as described in Section 3.5.2 is applied but now all objects from
all surfaces are pooled together to perform global matching. The
PPF descriptor is the basis for hypotheses creation and computed
confidence scores are used as edge weights for a maximumweight
bipartite graph. In the case that there is no match for a candidate
or a model in the entire environment, the candidate is considered
new or a model is considered removed.

The advantage of our approach is that the robot does not need
to learn object models in a cumbersome process, but inherently
extends its knowledge through change detection. Figure 3 shows
an example of the clutter dissolving capabilities of our system on
an example from the real-world dataset. At timestep t0 a pitcher
and a mug are detected next to each other. They are treated as one
object. At timestep t1 the pitcher is a single standing object, while
the mug belongs to a pile together with the bowl. First the pitcher
is matched and with that information the mug is separated from
the pitcher in t0. Now the separated mug is matched with the mug
in t1. The result of the matching process is that all heaps are
disentangled and instead of three object clusters the robot is now
aware of five individual objects.

4 EXPERIMENTS

This section evaluates the performance of our approach for
detecting and categorizing object changes. It is compared to
two variants of a learning-based method as baselines and
quantitative experiments are conducted with the newly created
ObChange dataset, consisting of recordings from a real
autonomous robot (see Section 4.1). Additionally, we
qualitatively demonstrate the applicability of our method in
real-world scenarios with online experiments using a real
robot (see Section 4.2). Finally, we discuss the indication of
our experimental results and the consequent open research
questions in Section 4.3. For reproducibility we give an
overview of all parameters used for the dataset and real-world
evaluation in Table 2.

4.1 Evaluation on the Robotic Dataset
ObChange
Since no suitable dataset to evaluate object mapping exists, we
extend the dataset from Langer et al. (2020). Its description is
given in Section 4.1.1. Section 4.1.2 introduces the metrics to
measure the performance for the evaluation. In order to analyze
our approach quantitatively, we compare it to two learning-based
baseline using state-of-the-art methods as outlined in Section

FIGURE 3 | Example showing how objects are separated using PPF matching. Objects next to each other having the same shadow color are recognized as one
object by the robot. After objects are matched they have the same shadow color in both recordings.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8287328

Langer et al. Object Mapping in Open-World Settings

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


4.1.3. In Section 4.1.4 we show overall performance and discuss
in detail the results and open challenges in Section 4.1.5.

4.1.1 The ObChange Dataset
For the quantitative evaluation of the object mapping task, we
create the ObChange dataset, which consists of RGB and depth
images acquired with the onboard Asus camera mounted on the
head of the Human Support Robot from Toyota (Yamamoto
et al., 2019). Additionally, the transformation matrices between
different coordinate frames are recorded. The dataset is recorded
for five different rooms or parts of rooms, namely a big room, a
small room, a living area, a kitchen counter, and an office desk.
For each room a version in a clean state exists that is used to
extract surfaces. Each room is visited by the robot at least five
times while between each run a subset of objects from the YCB
dataset (Calli et al., 2017) is re-arranged in the room. For each
setup between three and 17 objects are placed. Furthermore,
furniture and permanent background objects are slightly
rearranged compared to the reference. These rearrangements
are small so that the moved furniture does not interfere with
the robot’s navigation and that the moved objects are considered
irrelevant in a tidy-up task. We use all rooms and all different
recordings, which include YCB objects, in total 26 recordings.

The ObChange dataset extension from the data used in Langer
et al. (2020) is for the reconstructions necessary for object
matching. For each room a 3D semantically labeled
reconstruction is created, which is used to identify horizontal
planes as described in Section 3.3. For each detected surface,
images from the recorded stream where the surface is visible are
extracted, depth images are masked according to the plane
parameters, and ElasticFusion is used to reconstruct the area.
Only with the combination of odometry pose and camera
tracking pose as in Eq. 4, suitable reconstructions for all
surfaces are achieved. In this dataset, the robot drives
exhaustively through an environment, leading to surfaces of
interest being seen several times. Unfortunately, ElasticFusion
cannot handle non-continuous input data. To overcome this

problem, we create several reconstructions and merge them
using ICP. We visually check the results and have adjusted
them manually if needed. This manual step is not needed in
the real world where the robot moves around the surface only
once. The collection of all surface reconstructions together with
their point-wise labeling of all YCB objects form the ObChange
dataset. It is available at https://doi.org/10.48436/y3ggy-hxp10.

Compared to our previous work (Langer et al., 2020) we are
not only interested in detecting all objects, but also to assign them
to one of the four categories: static, moved, removed, and novel.
To create a more meaningful evaluation of the possible categories,
we compare each recording with all other recordings of the same
room, leading to 961 objects in total. For each comparison the
objects of both recordings are counted, meaning that static and
moved objects are counted at t0 and t1. Table 3 gives an overview
of the data for each room.

4.1.2 Metrics
In ObChange only YCB objects change, i.e., are novel, moved, or
removed. All other objects are static and therefore irrelevant for
change detection. Given that, we apply the following metrics:

• Detected objects: The number and percentage of detected
YCB objects on surfaces.

• Correctly categorized objects: The number and percentage of
YCB objects that are correctly categorized as static, moved,
removed, or novel.

• False positives: The number of background objects that are
not categorized as static plus the number of objects that are
correctly classified, but parts of it have an incorrect category
assigned.

4.1.3 Baseline
To the best of our knowledge, no other work exists to categorize
objects into static, moved, removed, and novel by comparing two
time instances. Thus, in order to compare our approach for
solving object mapping, we extend the recent work of Oliveira

TABLE 2 | Parameters used for evaluation.

Method Parameter Value

Local plane extraction Maximum angle αmax between plane normal and upward-directed axis 5°

Local plane extraction Inlier distance threshold dplane for plane model 0.015 m
Matching score Inlier threshold τ for radius search 0.01 m
Matching score Color threshold for point-wise matching τcol 20
Matching score Dot product threshold between two normal vecots τgeo for point-wise matching 0.95
Matching score Linear weight factor ω for combined score 0.7
Object filtering Voxel size v for object downsampling 0.005 m
Object filtering Minimum number of object points objmin 200
Object filtering Proportion of object points to count as plane τplane 0.9
Region growing Point inlier radius r 0.01 m
Region growing Maximum allowed angle between normal vectors of neighboring points rggeo 5°

Region growing Maximum allowed color difference between neighboring points rgcol 15
Local matching Minimum score for candidate match τicp 0.7
Semi-local matching Low score threshold τlow for graph edge 0.4
Semi-local matching High score threshold τhigh for graph edge 0.8
Semi-local matching Minimum score for model and candidate τmin 0.2
PPF Distance sampling rate as defined in Drost et al. (2010) 0.025
PPF Orientation sampling rate as defined in Drost et al. (2010) 5
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et al. (de Oliveira et al., 2021) for the task. Their proposed method
detects objects with Yolov3 (Redmon and Farhadi, 2018) trained
on the COCO dataset (Lin et al., 2014) in each frame. These object
detections are used to create a 3D object map by temporal and
spatial associations. We utilize this 3D object map to perform
object matching. Thus, based on their work we develop two
baselines. Instead of Yolov3 we use Mask R-CNN(He et al., 2017),
another state-of-the-art object detector, because it is not only
readily available for the established COCO dataset but also for the
YCBV dataset (Xiang et al., 2017). We refer to the baselines as
COCO-baseline and YCBV-baseline.

For both baselines we create 3D object maps for all dataset
recordings using the standard parametersmentioned in deOliveira
et al. (2021) with the following exceptions: (1) use Mask R-CNN
instead of Yolov3, (2) decrease the distance threshold for the
bounding box center distance to 0.0001 (which equals to 30
pixels) and decrease the spatial association to 0.3m for better
results. The RGB images from the recordings and the estimated
poses from ElasticFusion, which are more accurate than pure robot
poses, constitute the input for 3D object maps. For the COCO-
baseline we do not include detected objects from the following
COCO categories in the 3D object map because they cover classes
not relevant for indoor object change detection: person, vehicle,
outdoor, animal, furniture (except potted plant), and appliance.
The example in Figure 4 shows the detected objects with their
assigned classes overlayed on the reconstruction.

Based on the generated 3D object maps, we compute the
changes between two visits to a room using the assigned labels
from the object detector. An object with a class label that exists in
the visit at time t0, but not at time t1, is considered removed and
vice versa as novel. If there is exactly one object of a specific object
class in both visits, it is either categorized as static or moved
depending on the distance between the object’s bounding box

centers compared to the threshold d. In the case that several
objects from the same class are detected, we find an association by
utilizing the feature vector of the second last layer of Mask
R-CNN. This is inspired by Qiu et al. (Qiu et al., 2020) who
extract the features from the last layer as instance-level features.
However, in our experience features from the last layer are
already too class-specific, whereas the second last layer is more
suitable for instance comparisons. Because an object is usually
detected in several frames, the feature vector is extracted for each.
To find the best matching instances from the same class within
two visits, we compute for each object at t0,the dot-product
between all its feature vectors with all feature vectors of all
objects from t1, then match the object that achieves the
highest value. Depending on the distance between the two
matched objects, they are either categorized as static or moved.

The baseline using Mask R-CNN trained on the YCBV dataset
(Xiang et al., 2017) is evaluated to analyze the performance when
provided a tailored training set in comparison to the more general
COCOdataset. Park et al. (Park et al., 2019) provide the weights for
Mask R-CNN, which they trained for their pipeline to participate
in the BOP challenge (Hodaň et al., 2018) on the YCBV dataset.

4.1.4 Evaluation
Our evaluation is based on manually labeled data. In ObChange all
YCB objects are point-wise labeled in all plane reconstructions for all
the recordings. Besides the object point indices, the object name is
stored as ground truth data. The categories (static, moved, removed,
novel) are extracted given two recordings and the ground truth: If the
object name exists only in one of the two recordings, the object is
novel or removed. If it occurs in both recordings, we compute the
centroid of both objects and, depending on the Euclidean distance,
assign the category static or moved.

Our method works directly on the plane reconstructions and
therefore the resulting object points match directly to the labeled
data, and no further processing is needed. We consider an object
as detected if at least 50% of the points in the result overlap with
the labeled points. Each point in the result has one of the four
categories assigned. The object matching stage may erroneously
assign different labels to data points from the same object due to
imprecise region growing. Therefore, we use the maximum voted
category per object and compare it against the ground truth. If the
categories match, the object is correctly categorized. Otherwise, it
counts as a wrongly categorized object. For the categories static and
moved, the correct association of the two involved objects must be
given to be counted as correct. For example, it is not enough that an

TABLE 3 |Overview of the dataset used for the quantitative evaluation. Except for the first two columns the numbers state the sum over all possible comparisons per room.

Rooms #Visits #Surfaces #Objects #Static #Moved #Removed #Novel

Big Room 6 12 425 28 260 50 87
Small Room 5 5 208 72 62 25 49
Living Area 5 11 108 0 54 30 24
Office Desk 5 4 100 12 28 24 36
Kitchen Counter 5 2 120 10 66 14 30

26 34 961 122 470 143 226

FIGURE 4 | 3D object map of detected objects using Mask R-CNN
trained on COCO created with the approach from de Oliveira et al. (2021).
Besides some background objects, all YCB objects are detected, except for
the gelatin box (marked with cyan rectangle).
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object at time t0 and t1 is categorized as moved; also, the association
that the object at t0 moved to the location of the object at t1 must be
given. The sum of false positives combines two different failure
cases: (1) a YCB object where parts of it are wrongly classified. An
object is therefore counted as correctly classified and at the same
time it is a false positive. (2) Points in the result that are categorized
as moved, removed, or novel but do not belong to any YCB object
are from a static background object.We cluster the points and each
cluster is counted as one false positive object. Equally to Langer
et al. (2020), this metric is an approximation because no ground
truth labeling for background objects exists.

Both baselines, in contrast, cannot be evaluated point-wise. Each
detected object is described by a single 3D location and a label.
Therefore, for each object in the ground truth, the centroid is
computed and the closest object in the result is identified. If the
distance is less than 10 cm, we count it as a detected object; otherwise,
it is a false positive. Further, we check for each detected object if there is
a nearby ground truth object with the same category, which was not
alreadymatched. If so, the detected object is correctly categorized. The
associations for moved and static detected objects must correspond to
the ground truth. For the evaluation of the YCBV-baseline, we remove
objects from the ground truth that do not appear in the YCBV dataset
and are therefore not used for training.

We provide an additional evaluation based on the fact that if a
static or moved model-candidate pair is not detected, a subsequent
failure may occur. For example, if a moved mug is detected at t0, but

not at t1, it can never be categorized correctly as moved. Therefore, we
re-evaluate the methods based on an adapted ground truth. Only
detected objects are considered when re-computing the categorization
for the ground truth objects. The correct categorization for themug in
the previously mentioned example would then be removed. This way
we evaluate the categorization process stand-alone and independent of
the preceding detection performance.

4.1.5 Results
A summary of the performance on ObChange of our proposed
method as well as the two baselines is given in Table 4. Our method
detects 91.8% of all the labeled objects in the dataset while achieving
the lowest number of false positive objects. Inspecting the detection
rates of the two baselines, the result is surprising. Applying Mask
R-CNN trained on the COCO dataset outperforms Mask R-CNN
trained on the YCBV dataset by a significant margin although the
ground truth objects inObChange are selected from the YCB objects.
Recently, Dhamija et al. (Dhamija et al., 2020) investigated state-of-
the-art object detectors and their performance in open-world
settings. They showed that all methods detect objects from classes
not presented during training with high confidence, despite the fact
that object detectors should only detect objects from known classes.
This could explain the good performance of COCO-baseline,
although trained on different classes. We conjecture that the
detection performance of YCBV-baseline is only about 43%
because of two reasons: (1) although the objects used in

TABLE 4 | Results of the baseline trained on COCO and YCBV compared to the results of our method evaluated on ObChange and averaged per room.

Result using Mask R-CNN trained on COCO dataset

Rooms #Total objects #Detected objects #Correctly
categorized

#Correctly categorized
in detected
objects

#False positives

Big Room 425 340 (80.0%) 117 (27.5%) 130 (38.2%) 218
Small Room 208 164 (78.8%) 102 (49.0%) 106 (64.6%) 10
Living Area 108 72 (66.7%) 61 (56.5%) 65 (90.3%) 20
Office Desk 100 64 (64.0%) 50 (50.0%) 55 (85.9%) 64
Kitchen Counter 120 88 (73.3%) 50 (41.7%) 57 (64.8%) 22

Overall Performance 961 728 (75.8%) 380 (39.5%) 413 (56.7%) 334

Result using Mask R-CNN trained on YCBV dataset

Rooms #Total objects #Detected objects #Correctly categorized #Correctly categorized in detected objects #False positives

Big Room 215 95 (44.2%) 48 (22.3%) 75 (78.9) 219
Small Room 100 32 (32.0%) 14 (14.0%) 18 (56.3) 75
Living Area 56 20 (35.7%) 12 (21.4%) 18 (90.0) 22
Office Desk 40 24 (60.0%) 18 (45.0%) 24 (100) 36
Kitchen Counter 100 48 (48.0%) 24 (24.0%) 34 (70.8) 49

Overall Performance 511 219 (42.9%) 116 (22.7%) 169 (77.2%) 401

Result of our approach

Rooms #Total objects #Detected objects #Correctly categorized #Correctly categorized in detected objects #False positives

Big Room 425 419 (98.6%) 286 (67.3%) 290 (69.2%) 66
Small Room 208 183 (88.0%) 131 (63.0%) 136 (71.6%) 13
Living Area 108 92 (85.2%) 75 (69.4%) 78 (84.48%) 10
Office Desk 100 88 (88.0%) 76 (76.0%) 78 (88.6%) 24
Kitchen Counter 120 100 (83.3%) 49 (40.8%) 56 (56.0%) 28

Overall Performance 961 882 (91.8%) 617 (64.2%) 638 (72.3%) 141
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ObChange are from the official YCB object set, some have a slightly
different texture than the objects used in the YCBV dataset and (2)
the training data is captured from a certain distance range, while the
robot did not always get as close to the objects in the dataset.
Therefore, we assume that the object detector overfits to the training
data, which is a huge problem when applying it to images that are
dissimilar to the training dataset. The detection rate could be
increased by using a lower confidence threshold; however, this
would also increase the number of false positives.

From the detected objects 64.3% are correctly classified with our
approach. This is 1.5× more than COCO-baseline and 3× more than
YCB-baseline. The difference between the results evaluated on the
original ground truth and the adapted ground truth (#Correctly
categorized in detected objects) is small for our approach because we
achieve a high detection rate. For YCBV-baseline, the difference is
significant. Comparing the adapted ground truth, YCBV-baseline
slightly outperforms our approach in terms of correctly
categorized objects (given that a substantially lower number
of objects is detected in the first place). However, it has
significantly more false positives even though it is specifically
trained for the objects in the dataset.

The performance for each YCB object used in the evaluation is
shown in Figure 5 for our approach and the baselines. It shows
that the smallest object in the dataset, the large marker, cannot be
localized by any method. However, our method was able to
localize other small objects such as the screwdrivers. It can be
seen that our method has difficulties detecting a plate because
many points can be explained by the supporting plane model and
are within the distance threshold dplane. Interestingly, for all
objects from the YCB dataset the localization performance of
COCO-baseline is superior compared to YCBV-baseline. The
lemon is the only object where our approach performs
significantly worse in categorizing than the baseline. The
reason is that the lemon is small as well as part of a pile in
most scenes. The wrong categorizations of the master chef can are
the result of incomplete object reconstructions and the confusion
with the pitcher, which has very similar appearance.

4.2 Robot Experiments
For the real-world robot experiments we use a Toyota Human
Support Robot in one room with nine surfaces and conduct three
runs with different object changes. Figure 6 presents the
reconstruction of the room using Voxblox. It also shows the
surfaces that are automatically extracted by exploiting semantic
labeling as outlined in Section 3.3.

To create the waypoints for each surface, robot locations are
generated at a distance of 20 cm to the convex hull around the
plane oriented towards the plane center and evenly distributed every
30 cm around the circumference. To create the reference map (used
for all three runs), the robot visits each surface and stores the detected
objects in the database. Twenty out of 21 objects placed on the
extracted planes are detected. The object locations then change three
times for the three runs at times t1 to t3.

Table 5 presents the results. For each run we give the numbers
of the objects assigned to the four categories compared to the
ground truth. Missed objects are those that were not detected at
all and therefore result in incorrectly categorized objects. The
table also shows the number of false positive objects as defined in

FIGURE 5 |Overview of YCB objects used in the dataset. The performance for each object is shown for our approach (first bar), COCO-baseline (second bar) and
YCBV-baseline (third bar). If the object is not in the YCBV dataset, no bar for YCBV-baseline is visualized.

FIGURE 6 | Reconstruction of the room used for the real robot
experiments. The detected planes are highlighted in turquoise.
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Section 4.1.2. The difference in the numbers of the last column
between our approach and the ground truth stems from the sum
of objects that were not detected (#Missed) and from wrongly
matched objects. In summary, most of the objects are detected (65
of 70) and correctly classified (61 of 65). Including the removed
objects, 65 of 74 objects are correctly categorized (last column in

the table). For each run the detection and matching part took
approximately 10 min on a standard laptop.

Figure 7 gives details about the matches. In run 1 all objects are
matched correctly. In run 2, the Pringles can is misclassified when
comparing the room at time t0 and t2. At t0 the Pringles can is close
to a tea box, which is correctly categorized as moved, but region

FIGURE 7 | Results of real-world robot experiments. Each row shows the comparison of the reference room (first column) with the state of the same room at a
different time (second column). Each detected object is marked with an ellipse and labeled with M (moved), R (removed), or N (novel). Correct categorizations are colored
in green, wrong ones in red. Objects, which were matched, have the same number assigned. For simplicity static objects are not shown and missed objects are marked
with a red cross.

TABLE 5 | Results of matching objects from the robot experiments. The rows with GT refer to ground truth for the respective runs 1 to 3.

Run #Static #Moved #Removed #Novel #Missed #FPs #Correct

1 17 2 1 4 1 0 24
GT 18 2 1 4 0 0 25

2 12 5 2 3 1 0 22
GT 13 6 2 3 0 0 24

3 5 10 1 3 3 2 19
GT 8 12 1 4 0 0 25
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growing fails to stop at the object boundaries. Therefore, the two
objects are assigned the same label. This leads to the error that the
Pringles can at t2 is wrongly labeled as new. At time t3 the keyboard is
partially occluded when the robot moves around the table.
Consequently the reconstruction is only a planar surface, which
is not considered as an object. As a consequence the keyboard from
time t0 is matched to the keyboard of a laptop (labeled as M11 in
Figure 7). The other wrongly categorized objects result from the
inability to split the orange and blue object on the table in themiddle
of the room. Although for both objects PPF found the correct match
and the confidence is the highest compared to other possible
matches, it is still too low to accept the match. The reason is the
low geometric overlap because the two objects are only partially
reconstructed at t3 but almost a full model exists from t0.

4.3 Discussion
Based on the evaluation results using ObChange and the robot
experiments, in the following sections we highlight the findings on

remaining open challenges due to factors such as robot localisation,
covering surfaces with views, the detection of small objects, partially
occluded objects, and quality of reconstructions.

4.3.1 Robot Localization Error
Precise robot localization is necessary for most change detection
applications. It supports the pairing of frames as well as the
creation of clean reconstructions. In our experience the
performance of dense visual SLAM methods in environments
with areas of little visual and geometric features greatly benefit
from integrating odometry data assuming state-of-the-art
localization. Our solution to integrate odometry data to the
ElasticFusion framework could reconstruct all surfaces in
ObChange because the robot drift is insignificant. In case this
cannot be guaranteed, the recent work by Houseago et al.
(Houseago et al., 2019) shows how to integrate odometry data
and dense visual SLAM in the presence of drift. Although their
method could be integrated in our system, we opted for a

FIGURE 8 | Examples of missed objects. Extracted planes are visualized in red. First image: two objects in black rectangle. Only the yellow cup is detected because
the couch seat is too curved. Second and third image: only few object points are within the convex hull of the plane and therefore classified as noise and rejected. Note,
that in the third example the reconstruction is very sparse because the robot did not get close enough to the surface.

FIGURE 9 | Examples of hypotheses generated based on PPF.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 82873214

Langer et al. Object Mapping in Open-World Settings

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


computationally cheap approach. This is important when
working with mobile robots, where limited resources have to
be shared among different system components.

4.3.2 Search Space
Detecting objects is often a trade-off between reducing the
search space and not missing objects (examples are shown in
Figure 8), while at the same time the chance to detect false
positives increases with a less restricted search space. The
concept of surfaces reduces the search space significantly but
may lead to missed objects if the surface is occluded or if it is
not planar. We decrease the number of false positive
detections by utilizing a shrinked convex hull of the
surface, but this may cause objects at the border of a
surface to not be detected.

4.3.3 Detection of Small Objects
The detection of small objects is a well-known
problem. Especially when working with 3D maps, actions
taken to reduce the effect of noise and misalignments are the
reason for filtering small objects. Our evaluation shows that
neither the learning-based approaches nor the surface
concept approach are capable of reliably detecting small
objects.

4.3.4 Occlusion
Occlusion poses a significant challenge for object matching because
parts of an object are missing. The same accounts for incomplete
reconstruction due to view limitations. Generally, ambiguities due to
truly similar object appearance or partial reconstructions (see
Figure 9 first two examples) need to be counter-measured by
taking into account as much information as possible, for
example, color PPF (Choi and Christensen, 2012) could
provide better a priori hypotheses at the cost of higher
computational efforts.

4.3.5 Object Matching Verification
A verification step to check if a match is physically plausible,
similar to Furrer et al. (2018) or Bauer et al. (2022), could help in
some cases to reject inconsistent matches. However, this method
of verification does not work in all cases; approaches often fail
when objects are partially visible or symmetric. For example, a
tube was detected at t0 (tube0) and at t1 (tube1), but was only half
visible in the latter. The object matching and registration is
ambiguous and resulted in aligning tube1 to the top of tube0.
Projecting tube0 into the t1-recording resulted in half of the tube
being below the supporting plane, which is physically
implausible. This triggered a rejection even though the
matched objects are the same. More generally, the fact that
detected objects can actually be a heap poses challenges in
geometric and semantic verification.

4.3.6 Reconstruction Quality
Clearly, the quality of the surface reconstruction and therefore
the 3D object models impacts the performance of object
matching applications. While ElasticFusion tends to create
reconstructions with smoothed normals, it also connects

spatially close objects with additional points having a
continuous color gradient. While smooth reconstructions are
appealing and useful for many applications, we would rather
prefer sharp reconstructions, especially when it comes to
processing steps such as matching or region growing which
favor distinctive geometric features.

5 CONCLUSION

In this paper we tackled the core perception capabilities for
open-world operation in the context of the object mapping task.
This was defined as comparing the locations of objects in the
present visit (present object map) to a previously stored
reference map. Without loss of generality, we proposed to
create a 3D reference map of the environment. Comparing
complete room reconstructions is impractical for many
application scenarios; therefore, we presented a concept
where only local surfaces are reconstructed. This has the
benefit that local comparisons are performed more rapidly
and that these local planes are reconstructed more accurately.
The latter is critical to enhance object detection and matching
results. We showed that semantic segmentation methods are
suitable to autonomously provide a high-level partitioning into
relevant horizontal surfaces.

The key step of object mapping is to compare object detections
and match objects from two different time instances. A main
contribution of this work is the perception of all possible cases of
static, moved, removed, and novel objects. To evaluate the novel
approach, we compared against two baselines using state-of-the-
art methods. For a quantitative evaluation we presented the
ObChange dataset consisting of five different rooms, an
extension of the dataset in Langer et al. (2020), for the object
mapping task. Results indicated that the proposed method
significantly improved over the baselines in terms of detected
objects as well as the accuracy of categorization. Furthermore, we
conducted real-world experiments with an autonomous mobile
robot to demonstrate our developed capabilities in a realistic
setting. The experiments and evaluation give clear hints on the
remaining open challenges such as improving the reconstruction
quality in terms of accuracy as well as completeness. Another
open challenge is the detection of small objects and objects that
are partially hidden, where in both cases multiple views and using
cues that there might be another object and creating a close-up
view might be a future solution to work on.

Future work is also needed to realize the application
scenarios such as tidy up. While we focused on the key
aspect of perceiving all object changes, object pose
estimation needs to be further integrated with grasping.
Extending the reference map to a knowledge base may help
to keep track of where objects have been seen in the past and
might be found when requested by the user (Tenorth and
Beetz, 2013). Over time, the more changes happen, the better
the environment is segmented and explained. Finally, given we
can detect novel objects, it would be beneficial to merge
partially detected objects into a complete 3D model as
proposed in Furrer et al. (2018).

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 82873215

Langer et al. Object Mapping in Open-World Settings

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


DATA AVAILABILITY STATEMENT

The dataset generated for this study is available at https://doi.org/
10.48436/y3ggy-hxp10.

AUTHOR CONTRIBUTIONS

EL, TP, and MV conceived the idea of the presented work,
contributed to the analysis of the results, and to the writing of
the manuscript. EL implemented the system and conducted the
experiments.

FUNDING

The research leading to these results has received funding from the
Austrian Science Fund (FWF) under grant agreement Nos. I3969-
N30 (InDex), I3967-N30 (BURG) and from the Austrian Research
Promotion Agency (FFG) under grant agreement 879878 (K4R).

ACKNOWLEDGMENTS

We thank Markus Leitner for his help in setting up the proposed
pipeline on the robot.

REFERENCES

Alimi, P., Meger, D., and Little, J. J. (2012). “Object Persistence in 3D for Home
Robots,” in Proceedings of the IEEE International Conference on Robotics and
Automation: Workshop on Semantic Perception, Mapping and Exploration.

Ambrus, R., Bore, N., Folkesson, J., and Jensfelt, P. (2014). “Meta-rooms: Building
and Maintaining Long Term Spatial Models in a Dynamic World,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, 1854–1861. doi:10.1109/iros.2014.6942806

Bajones, M., Fischinger, D., Weiss, A., Wolf, D., Vincze, M., de la Puente, P., et al.
(2018). Hobbit: Providing Fall Detection and Prevention for the Elderly in the
Real World. J. Robotics 2018, 1–20. doi:10.1155/2018/1754657

Batra, D., Chang, A. X., Chernova, S., Davison, A. J., Deng, J., Koltun, V., et al.
(2020). Rearrangement: A challenge for Embodied AI. arXiv preprint arXiv:
2011.01975.

Bauer, D., Patten, T., and Vincze, M. (2022). “Sporeagent: Reinforced Scene-Level
Plausibility for Object Pose Refinement,” in IEEE/CVF Winter Conference on
Applications of Computer Vision, 654–662. doi:10.1109/wacv51458.2022.
00027

Björkman, M., and Kragic, D. (2010). “Active 3D Scene Segmentation and
Detection of Unknown Objects,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 3114–3120.

Boccato, T., Patten, T., Vincze, M., and Ghidoni, S. (2020). “In the Depths of
Hyponymy: A Step towards Lifelong Learning,” in Proceedings of the
International Conference on Autonomic and Autonomous Systems, 103–109.

Bore, N., Ekekrantz, J., Jensfelt, P., and Folkesson, J. (2018). Detection and Tracking
of General Movable Objects in Large Three-Dimensional Maps. IEEE Trans.
Robotics 35, 231–247.

Bugmann, G., and Copleston, S. N. (2011). “What Can a Personal Robot Do for
You?,” in Proceedings of the Conference Towards Autonomous Robotic
Systems, 360–371. doi:10.1007/978-3-642-23232-9_32

Cakmak, M., and Takayama, L. (2013). “Towards a Comprehensive Chore List for
Domestic Robots,” in Proceedings of the ACM/IEEE International Conference
on Human-Robot Interaction, 93–94. doi:10.1109/hri.2013.6483517

Calli, B., Singh, A., Bruce, J., Walsman, A., Konolige, K., Srinivasa, S., et al. (2017).
Yale-cmu-berkeley Dataset for Robotic Manipulation Research. Int. J. Robotics
Res. 36, 261–268. doi:10.1177/0278364917700714

Choi, C., and Christensen, H. I. (2012). “3D Pose Estimation of Daily Objects Using
an RGB-D Camera,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 3342–3349. doi:10.1109/iros.2012.6386067

de Oliveira, F. D. B., da Silva, M. R., and Araújo, A. F. R. (2021). Spatio-temporal
Data Association for Object-Augmented Mapping. J. Intell. Robot Syst. 103,
1–19. doi:10.1007/s10846-021-01445-8

Dhamija, A., Gunther, M., Ventura, J., and Boult, T. (2020). “The Overlooked
Elephant of Object Detection: Open Set,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 1021–1030. doi:10.
1109/wacv45572.2020.9093355

Drost, B., Ulrich, M., Navab, N., and Ilic, S. (2010). “Model Globally, Match
Locally: Efficient and Robust 3D Object Recognition,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 998–1005. doi:10.1109/cvpr.2010.5540108

Edmonds, J. (1965). Maximum Matching and a Polyhedron with 0, 1-vertices.
J. Res. Natl. Bur. Stand. B 69, 55–56. doi:10.6028/jres.069b.013

Fehr, M., Furrer, F., Dryanovski, I., Sturm, J., Gilitschenski, I., Siegwart, R., et al.
(2017). “TSDF-based Change Detection for Consistent Long-Term Dense
Reconstruction and Dynamic Object Discovery,” in Proceedings of the IEEE
International Conference on Robotics and Automation, 5237–5244. doi:10.
1109/icra.2017.7989614

Finman, R., Whelan, T., Kaess, M., and Leonard, J. J. (2013). “Toward Lifelong
Object Segmentation from Change Detection in Dense RGB-D Maps,” in
Proceedings of the European Conference on Mobile Robots, 178–185.
doi:10.1109/ecmr.2013.6698839

Fischler, M. A., and Bolles, R. C. (1981). Random Sample Consensus. Commun.
ACM 24, 381–395. doi:10.1145/358669.358692

French, R. (1999). Catastrophic Forgetting in Connectionist Networks. Trends
Cognitive Sciences 3, 128–135. doi:10.1016/s1364-6613(99)01294-2

Furrer, F., Novkovic, T., Fehr, M., Gawel, A., Grinvald, M., Sattler, T., et al. (2018).
“Incremental Object Database: Building 3D Models from Multiple Partial
Observations,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IEEE), 6835–6842. doi:10.1109/iros.2018.
8594391

Furukawa, Y., Suzuki, K., Hamaguchi, R., Onishi, M., and Sakurada, K. (2020).
“Self-supervised Simultaneous Alignment and Change Detection,” in
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems, 6025–6031. doi:10.1109/iros45743.2020.9340840

Graham, B., Engelcke, M., and van der Maaten, L. (2018). “3D Semantic
Segmentation with Submanifold Sparse Convolutional Networks,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 9224–9232. doi:10.1109/cvpr.2018.00961

Grinvald, M., Furrer, F., Novkovic, T., Chung, J. J., Cadena, C., Siegwart, R., et al.
(2019). Volumetric Instance-Aware Semantic Mapping and 3d Object
Discovery. IEEE Robot. Autom. Lett. 4, 3037–3044. doi:10.1109/lra.2019.
2923960

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). “Mask R-CNN,” in
Proceedings of the IEEE International Conference on Computer Vision,
2961–2969. doi:10.1109/iccv.2017.322

Hodaň, T., Michel, F., Brachmann, E., Kehl, W., Glent Buch, A., Kraft, D., et al.
(2018). “BOP: Benchmark for 6D Object Pose Estimation,” in European
Conference on Computer Vision (ECCV).

Houseago, C., Bloesch, M., and Leutenegger, S. (2019). “KO-fusion: Dense Visual
SLAM with Tightly-Coupled Kinematic and Odometric Tracking,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 4054–4060. doi:10.1109/icra.2019.8793471

Joseph, K. J., Khan, S., Khan, F. S., and Balasubramanian, V. N. (2021). “Towards
Open World Object Detection,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. doi:10.1109/cvpr46437.2021.
00577

Kim, D., Lin, T., Angelova, A., Kweon, I. S., and Kuo, W. (2021). Learning
Open-World Object Proposals without Learning to Classify. CoRR abs/
2108.06753.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,
et al. (2017). Overcoming Catastrophic Forgetting in Neural Networks. Proc.
Natl. Acad. Sci. USA 114, 3521–3526. doi:10.1073/pnas.1611835114

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 82873216

Langer et al. Object Mapping in Open-World Settings

https://doi.org/10.48436/y3ggy-hxp10
https://doi.org/10.48436/y3ggy-hxp10
https://doi.org/10.1109/iros.2014.6942806
https://doi.org/10.1155/2018/1754657
https://doi.org/10.1109/wacv51458.2022.00027
https://doi.org/10.1109/wacv51458.2022.00027
https://doi.org/10.1007/978-3-642-23232-9_32
https://doi.org/10.1109/hri.2013.6483517
https://doi.org/10.1177/0278364917700714
https://doi.org/10.1109/iros.2012.6386067
https://doi.org/10.1007/s10846-021-01445-8
https://doi.org/10.1109/wacv45572.2020.9093355
https://doi.org/10.1109/wacv45572.2020.9093355
https://doi.org/10.1109/cvpr.2010.5540108
https://doi.org/10.6028/jres.069b.013
https://doi.org/10.1109/icra.2017.7989614
https://doi.org/10.1109/icra.2017.7989614
https://doi.org/10.1109/ecmr.2013.6698839
https://doi.org/10.1145/358669.358692
https://doi.org/10.1016/s1364-6613(99)01294-2
https://doi.org/10.1109/iros.2018.8594391
https://doi.org/10.1109/iros.2018.8594391
https://doi.org/10.1109/iros45743.2020.9340840
https://doi.org/10.1109/cvpr.2018.00961
https://doi.org/10.1109/lra.2019.2923960
https://doi.org/10.1109/lra.2019.2923960
https://doi.org/10.1109/iccv.2017.322
https://doi.org/10.1109/icra.2019.8793471
https://doi.org/10.1109/cvpr46437.2021.00577
https://doi.org/10.1109/cvpr46437.2021.00577
https://doi.org/10.1073/pnas.1611835114
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Langer, E., Patten, T., and Vincze, M. (2020). “Robust and Efficient Object Change
Detection by Combining Global Semantic Information and Local Geometric
Verification,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 8453–8460. doi:10.1109/iros45743.2020.
9341664

Langer, E., Ridder, B., Cashmore, M., Magazzeni, D., Zillich, M., and Vincze, M.
(2017). “On-the-fly Detection of Novel Objects in Indoor Environments,” in
Proceedings of the IEEE International Conference on Robotics and
Biomimetics, 900–907. doi:10.1109/robio.2017.8324532

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).
“Microsoft COCO: Common Objects in Context,” in Proceedings of the ECCV
(Berlin, Germany: Springer), 740–755. doi:10.1007/978-3-319-10602-1_48

Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., and Yu, S. X. (2019). “Large-scale
Long-Tailed Recognition in an Open World,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2537–2546. doi:10.
1109/cvpr.2019.00264

Luo, M. R., Cui, G., and Rigg, B. (2001). The Development of the CIE 2000 Colour-
Difference Formula: CIEDE2000. Color Res. Appl. 26, 340–350. doi:10.1002/col.
1049

Marton, Z.-C., Pangercic, D., Blodow, N., Kleinehellefort, J., and Beetz, M. (2010).
“General 3DModelling of Novel Objects from a Single View,” in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems,
3700–3705. doi:10.1109/iros.2010.5650434

Mason, J., and Marthi, B. (2012). “An Object-Based Semantic World Model for
Long-Term Change Detection and Semantic Querying,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
3851–3858. doi:10.1109/iros.2012.6385729

Miller, D., Dayoub, F., Milford, M., and Sünderhauf, N. (2019). “Evaluating
Merging Strategies for Sampling-Based Uncertainty Techniques in Object
Detection,” in Proceedings of the IEEE International Conference on
Robotics and Automation, 2348–2354. doi:10.1109/icra.2019.8793821

Miller, D., Nicholson, L., Dayoub, F., and Sünderhauf, N. (2018). “Dropout
Sampling for Robust Object Detection in Open-Set Conditions,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, 3243–3249. doi:10.1109/icra.2018.8460700

Okada, H., Inamura, T., and Wada, K. (2019). What Competitions Were
Conducted in the Service Categories of the World Robot Summit? Adv.
Robotics 33, 900–910. doi:10.1080/01691864.2019.1663608

Oleynikova, H., Taylor, Z., Fehr, M., Siegwart, R., and Nieto, J. (2017). “Voxblox:
Incremental 3D Euclidean Signed Distance fields for On-Board MAV
Planning,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 1366–1373. doi:10.1109/iros.2017.8202315

Park, J.-M., Jang, J.-h., Yoo, S.-M., Lee, S.-K., Kim, U.-h., and Kim, J.-H. (2021).
“ChangeSim: towards End-To-End Online Scene Change Detection in
Industrial Indoor Environments,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 8555–8562.
doi:10.1109/iros51168.2021.9636350

Park, K., Patten, T., andVincze,M. (2019). “Pix2Pose: Pixel-wise Coordinate Regression
of Objects for 6D Pose Estimation,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 7668–7677. doi:10.1109/iccv.2019.00776

Perera, P., Morariu, V. I., Jain, R., Manjunatha, V., Wigington, C., Ordonez, V., et al.
(2020). “Generative-discriminative Feature Representations for Open-Set
Recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 11814–11823. doi:10.1109/cvpr42600.2020.01183

Pidhorskyi, S., Almohsen, R., Adjeroh, D. A., and Doretto, G. (2018). Generative
Probabilistic Novelty Detection with Adversarial Autoencoders. arXiv preprint
arXiv:1807.02588.

Qiu, J., Yang, Y., Wang, X., and Tao, D. (2020). “Hallucinating Visual Instances in
Total Absentia,” in Proceeding of the ECCV (Berlin, Germany: Springer),
264–282. doi:10.1007/978-3-030-58558-7_16

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). “ROS:
an Open-Source Robot Operating System,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Workshop on Open
Source Software, Kobe, Japan, 5. Vol. 3.

Redmon, J., and Farhadi, A. (2018). Yolov3: An Incremental Improvement. arXiv
preprint arXiv:1804.02767.

Sakurada, K., Shibuya, M., and Wang, W. (2020). “Weakly Supervised Silhouette-
Based Semantic Scene Change Detection,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 6861–6867.
doi:10.1109/icra40945.2020.9196985

Song, S., Zhang, L., and Xiao, J. (2015). Robot in a Room: Toward Perfect Object
Recognition in Closed Environments. CoRR, abs/1507.02703.

Tateno, K., Tombari, F., and Navab, N. (2015). “Real-time and Scalable
Incremental Segmentation on Dense Slam,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (Hamburg,
Germany: IEEE), 4465–4472. doi:10.1109/iros.2015.7354011

Tenorth, M., and Beetz, M. (2013). KnowRob: A Knowledge Processing
Infrastructure for Cognition-Enabled Robots. Int. J. Robotics Res. 32,
566–590. doi:10.1177/0278364913481635

Wald, J., Avetisyan, A., Navab, N., Tombari, F., and Nießner, M. (2019). “RIO: 3D
Object Instance Re-localization in Changing Indoor Environments,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 7658–7667. doi:10.1109/iccv.2019.00775

Weihs, L., Deitke, M., Kembhavi, A., and Mottaghi, R. (2021). “Visual Room
Rearrangement,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 5922–5931. doi:10.1109/cvpr46437.2021.
00586

Whelan, T., Leutenegger, S., Salas-Moreno, R., Glocker, B., and Davison, A. (2015).
“ElasticFusion: Dense SLAM without a Pose Graph,” in Proceedings of
Robotics: Science and Systems. doi:10.15607/rss.2015.xi.001

Xiang, Y., Schmidt, T., Narayanan, V., and Fox, D. (2017). PoseCNN: A
Convolutional Neural Network for 6D Object Pose Estimation in Cluttered
Scenes. arXiv preprint arXiv:1711.00199.

Yamamoto, T., Terada, K., Ochiai, A., Saito, F., Asahara, Y., and Murase, K. (2019).
Development of Human Support Robot as the Research Platform of a Domestic
Mobile Manipulator. ROBOMECH J. 6, 1–15. doi:10.1186/s40648-019-0132-3

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Langer, Patten and Vincze. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 82873217

Langer et al. Object Mapping in Open-World Settings

https://doi.org/10.1109/iros45743.2020.9341664
https://doi.org/10.1109/iros45743.2020.9341664
https://doi.org/10.1109/robio.2017.8324532
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/cvpr.2019.00264
https://doi.org/10.1109/cvpr.2019.00264
https://doi.org/10.1002/col.1049
https://doi.org/10.1002/col.1049
https://doi.org/10.1109/iros.2010.5650434
https://doi.org/10.1109/iros.2012.6385729
https://doi.org/10.1109/icra.2019.8793821
https://doi.org/10.1109/icra.2018.8460700
https://doi.org/10.1080/01691864.2019.1663608
https://doi.org/10.1109/iros.2017.8202315
https://doi.org/10.1109/iros51168.2021.9636350
https://doi.org/10.1109/iccv.2019.00776
https://doi.org/10.1109/cvpr42600.2020.01183
https://doi.org/10.1007/978-3-030-58558-7_16
https://doi.org/10.1109/icra40945.2020.9196985
https://doi.org/10.1109/iros.2015.7354011
https://doi.org/10.1177/0278364913481635
https://doi.org/10.1109/iccv.2019.00775
https://doi.org/10.1109/cvpr46437.2021.00586
https://doi.org/10.1109/cvpr46437.2021.00586
https://doi.org/10.15607/rss.2015.xi.001
https://doi.org/10.1186/s40648-019-0132-3
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Where Does It Belong? Autonomous Object Mapping in Open-World Settings
	1 Introduction
	2 Related Work
	3 Object Mapping Using Local Surfaces for Matching
	3.1 Problem Definition
	3.2 System Overview
	3.3 Reconstruction of the Indoor Environment and Plane Extraction
	3.4 Reconstruction of the Surface and Object Detection
	3.5 Object Matching and Categorization
	3.5.1 Local Matching
	3.5.2 Semi-local Matching
	3.5.3 Global Matching


	4 Experiments
	4.1 Evaluation on the Robotic Dataset ObChange
	4.1.1 The ObChange Dataset
	4.1.2 Metrics
	4.1.3 Baseline
	4.1.4 Evaluation
	4.1.5 Results

	4.2 Robot Experiments
	4.3 Discussion
	4.3.1 Robot Localization Error
	4.3.2 Search Space
	4.3.3 Detection of Small Objects
	4.3.4 Occlusion
	4.3.5 Object Matching Verification
	4.3.6 Reconstruction Quality


	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


