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Previous studies have shown that the manufacturer’s default preoperative plans for total
knee arthroplasty with patient-specific guides require frequent, time-consuming changes
by the surgeon. Currently, no research has been done on predicting preoperative plans for
orthopedic surgery using machine learning. Therefore, this study aims to evaluate whether
artificial intelligence (AI) driven planning tools can create surgeon and patient-specific
preoperative plans that require fewer changes by the surgeon. A dataset of 5409
preoperative plans, including the manufacturer’s default and the plans corrected by 39
surgeons, was collected. Features were extracted from the preoperative plans that
describe the implant sizes, position, and orientation in a surgeon- and patient-specific
manner. Based on these features, non-linear regression models were employed to predict
the surgeon’s corrected preoperative plan. The average number of corrections a surgeon
has tomake to the preoperative plan generated using AI was reduced by 39.7% compared
to the manufacturer’s default plan. The femoral and tibial implant size in the manufacturer’s
plan was correct in 68.4% and 73.1% of the cases, respectively, while the AI-based plan
was correct in 82.2% and 85.0% of the cases, respectively, compared to the surgeon
approved plan. Our method successfully demonstrated the use of machine learning to
create preoperative plans in a surgeon- and patient-specific manner for total knee
arthroplasty.

Keywords: total knee arthroplasty, patient-specific, preoperative planning, machine learning, orthopedic surgery,
support vector machine, artificial intelligence

1 INTRODUCTION

Total knee arthroplasty (TKA) is a frequently performed type of surgery to improve pain symptoms,
joint instability, and range of motion for patients with advanced knee arthritis (Rodríguez-Merchán
and Oussedik, 2015). The knee joint comprises the femur, tibia, and patella (Figure 1A). During the
TKA procedure, the femur and tibia are resected at the joint interface and resurfaced using metal
implants (Figure 1B,C). Whether the patella gets resurfaced is dependent on the surgeon’s
preference for the patient but is not necessary for TKA surgery to be successful (Abdel et al.,
2014). There are 14 degrees of freedom to place the femoral and tibial implant components, listed in
Table 1. How the surgeon positions the implants along these degrees of freedom is dependent on
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their surgical preferences for knee joint alignment (Cherian et al.,
2014). There exist three main ways to align a knee joint during
knee replacement surgery: mechanical alignment, anatomical
alignment, and kinematic alignment (Cherian et al., 2014). In
the end, surgeons havemany possibilities to realign the knee joint,
but there is no agreement on the optimal implant position
(Gromov et al., 2014). This disagreement is mainly caused by
inconclusive evidence on which alignment strategy results in the
most optimal long-term patient outcome (Cherian et al., 2014).

Surgeons often plan the TKA procedure in advance because it
has numerous benefits (Tanzer and Makhdom, 2016). Through
preoperative planning, the implant component sizes can be
estimated, which allows the hospital logistics to be optimized
by reducing the implant and instrumentation stock and
sterilization cost (Hafez and Moholkar, 2017). In addition to
these advantages, the surgeons are better prepared for the surgery
to avoid unforeseen intra-operative challenges and possibly
reduce the surgical time (Rodrigues and Gutierres, 2016). For
3D planning, a computed tomographic scan or magnetic
resonance image (MRI) of the patient’s knee, hip, and ankle
are used to create a 3D model of the patient’s knee joint by
implant or instrumentation manufacturers. Based on this 3D

model, a default preoperative plan is created based on some fixed
surgical preferences. This plan is called the manufacturer’s
preoperative plan (MPP). The surgeon can modify all 14
degrees of freedom in the MPP to fine-tune the preoperative
plan in a patient-specific manner. This plan is referred to as the
surgeon corrected preoperative plan (SCP). The 3D preoperative
plan can be transferred to the operating room using patient-
specific instrumentation (PSI), navigation systems, augmented
reality, or robotic-assisted surgery.

One of the current shortcomings in the use of preoperative
planning is the need for revision of MPPs by the surgeon. Okada
et al. analyzed the preoperative plans for 45 TKA surgeries and
found that 91.1% of cases required changes by the surgeon
(Okada et al., 2017). This can be attributed to the diversity in
surgical planning strategies. Because the optimal alignment
strategy is unknown, different surgeons have different
opinions on the optimal knee alignment (Cherian et al., 2014).
Currently, MPPs are created by a fixed algorithm that applies
some fixed surgical preferences. However, these algorithms
cannot capture the needs of all surgeons in a patient-specific
manner. A retrospective study by Schotanus et al. showed that
SCPs predicted the intra-operative implant sizes correctly in

FIGURE 1 | (A) Frontal view of the femur (gray), the femoral cartilage layer (red), the patella (yellow), the tibia (green), and the tibial cartilage (blue). (B) Lateral view of
the femur and tibia with the parts that are resected during surgery. (C) Knee joint where the anterior, posterior, and distal femoral surfaces and the proximal tibial surface
have been resected and replaced by a femoral and tibial implant.

TABLE 1 | The seven transformations for the femoral and tibial implants, resulting in 14 degrees of freedom.

Implant degrees of freedom

Transformation (units) Femur Tibia

Size change (size) Implant size Implant size
Coronal rotation (degrees) Varus/valgus angle Varus/valgus angle
Coronal translation (millimeters) Posterior resection Anterior/posterior displacement
Axial rotation (degrees) Internal/external rotation Internal/external rotation
Axial translation (millimeters) Distal resection depth Proximal resection depth
Sagittal rotation (degrees) Flexion/extension angle Posterior slope
Sagittal translation (millimeters) Medial/lateral displacement Medial/lateral displacement
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more than 90% of cases while the MPPs were correct in about
80% of cases compared to the implanted component sizes
(Schotanus et al., 2017). Therefore, we can conclude that
preoperative planning after surgeon corrections allows for
correct implant size prediction in the vast majority of cases.
Pietsch et al. concluded from a prospective study on 50 cases that
surgeons should not blindly accept the MPP because it would
require significantly more intra-operative changes (Pietsch et al.,
2013). Other prospective studies resulted in the same conclusion
(Stronach et al., 2013; Cucchi et al., 2018). Furthermore, Pietsch
et al. measured the average time taken by the surgeon to correct
the MPP, which was found to be 8 min (Pietsch et al., 2013).

This study aimed to develop an artificial intelligence (AI)
driven patient-specific planning algorithm that incorporates
surgeon preferences by learning from previous cases to reduce
the number of modifications surgeons need to make to the
surgical plan. This could reduce the planning time required by
the surgeon to plan a case and, as a result, help reduce the cost
associated with preoperative planning. Machine learning has not
yet been applied in the literature to create preoperative plans for
joint reconstruction surgery. We hypothesize that a learning-
based approach allows capturing the surgeons’ surgical
preferences and applying them in a patient-specific manner.

2 MATERIALS AND METHODS

2.1 Data Preprocessing
To create a machine learning model, we rely on a dataset to
determine model parameters. The dataset used was
retrospectively collected from 5,409 primary TKA surgeries
performed by thirty-nine experienced surgeons from 38
hospitals. All surgeries were performed consecutively between
September 2019 and October 2020. The patients were implanted
with a Vanguard, Persona, or NexGen implant (Zimmer Biomet,
Warsaw, Indiana, United States), depending on the surgeon’s
preference. For each case, the MPP and SCP were collected in
combination with their respective 3D bone and cartilage models
derived from the MRI scans. The SCP was obtained by the

treating surgeon after making his corrections to the MPP. An
overview of the number of cases handled by each surgeon and
their respective implant choices can be found in the
Supplementary Material.

For each surgeon, the dataset was randomly split into two
parts: 70% of the cases of each surgeon were used as a cross-
validation dataset for creating the model and the remaining 30%
of cases were used as the test set for validating the model
performance. The entire data processing pipeline is illustrated
in Figure 2. The goal of the machine learning model was to
predict the degrees of freedom (DOFs) of the SCP (Table 1),
determining the surgical plan in a surgeon-specific manner.
Hence, for each of the surgeons, separate models were created
using only the cases from this surgeon.

To predict these DOFs, we rely on features extracted from the
MPPs. These features are descriptors of the patient’s anatomy
that should enable the model to accurately predict the DOFs
encompassing the SCP. The features are hand-crafted and
subdivided into multiple categories: landmark locations,
measurements, the DOFs in the MPPs, and shape parameters.
Landmarks are prominently recognizable points that can be
robustly annotated even in the presence of joint degradation.
In total, 26 landmark points are used (Figure 3A, Supplementary
Material). These points are chosen to allow the model to get
information on the dimensions of both bones, thus allowing the
implant sizes to be learned by the model. Furthermore, they serve
as references for the resection levels and the rotation references.
The landmark locations are expressed in two anatomical
coordinate systems: the femoral coordinate system (Figure 3B)
and the tibial coordinate system (Figure 3C).

The second category of features are the measurements taken
after initial virtual implantation. These are useful for indicating
whether the implant components’ position and orientation
should be changed. The first important measurement is
femoral notching. This occurs if the femoral implant is placed
too much in extension, causing the most superior tip of the
implant to undercut the bone (Figure 4). Notching the femur
increases the risk of post-operative bone fracture due to the
stresses occurring at the interface of the implant and bone

FIGURE 2 | A flowchart of the dataset used for training and validation of the proposed models.

Frontiers in Robotics and AI | www.frontiersin.org March 2022 | Volume 9 | Article 8402823

Lambrechts et al. AI-Based Total Knee Planning

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


(Lesh et al., 2000). A secondmeasurement is mediolateral femoral
implant overhang, where the implant protrudes from the resected
bone surface, which can cause post-operative irritation of the
soft-tissue structures and thus should be avoided (Figure 4). On
the tibial side, both underhang and overhang should be avoided
(Figure 4). Underhang causes bone resorption resulting in
implant loosening, while overhang causes soft-tissue irritation
(Figure 4) (Gu et al., 2019). In total, 57 measurements have been
defined (Supplementary Material).

The DOFs in the MPPs were also used as features because they
provide a baseline on which the model needs to learn the necessary
changes. The final set of features is shape coefficients obtained after
fitting a statistical shape model (SSM) to the bones. An SSM
describes the distribution of anatomical variation in a population of
geometrical shapes (Cootes et al., 1995). The SSM describes a new
bone as the average bone shape from the population together with a
linear combination of the shape variation modes. The SSM was
created based on a dataset of 524 3Dmodels of femur and tibia (Van
Dijck et al., 2018). The first fifteen shape coefficients of both femur

and tibia, explaining most of the shape variation, are included as
features.

2.2 Feature Selection
Combining all features results in a set of d (149) features for each
surgical plan. These features for the N cases are stacked in a
feature matrix X ∈ RN×d, while the T DOF we want to predict are
grouped in Y ∈ RN×T. Many of these features might contain
redundant or irrelevant information for the model. To obtain
a subset of relevant features, multiple feature selection methods
were compared. Since the problem of predicting a preoperative
plan is a multi-target regression problem, we also search for a
predictive subset of features for each target. Feature selection
methods can be broadly categorized in three groups: filter,
wrapper, and embedded approaches Bachu and Anuradha
(2019). Filter methods are computationally inexpensive but
result in a set of correlated features. Wrapper methods can
capture these correlations and usually result in a sparser set of
features compared to filter methods. However, this extra

FIGURE 3 | (A) Femur and tibia with the landmark points annotated as spheres indicating prominent structures on the bones. Panels (B,C) show the femoral and
tibial coordinate system, respectively.

FIGURE 4 | Bone measurements. Panel (A) displays notching where the femoral implant is too much rotated in an extended orientation that it undercuts the bones
as visualized in the green oval. In (B), the femoral implant overhangs on the medial side indicated by the green oval. Panel (C) demonstrates tibial implant underhang
where a large part of the tibial plateau is not covered by the implant component.
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performance comes at the cost of computational time. The final
class is embedded methods, which embed the feature selection
step in the learning algorithm combing the best of both worlds.
They can result in more optimal subsets of features compared to
filter methods while being less computationally expensive than
the wrapper methods. We opted to investigate the performance of
three embedded feature selection methods.

The first option would be to learn one set of features predictive
for all the 14 DOFs using theMulti-Task Lasso (MTL). This could
be done by employing l2,1 regularization on a multi-target linear
regression problem (Eq. 1) (Xiao et al. 2012). The l2,1 norm (Eq.
2) induces sparsity on the rows of the coefficient matrix Θ
resulting in rows with all zeros for the features which are
unpredictive of the targets. The non-zero rows of Θ indicate
the features which are predictive for all targets:

min
Θ

1
2
‖Y − XΘ‖22 + λ‖Θ‖2,1, (1)

‖A‖2,1 � ∑
i

�����∑
j

A2
ij

√
, (2)

A second method is the least absolute shrinkage and
selection operator (Lasso), which induces sparsity on a set of
coefficients from a linear regression model for each individual
target Tibshirani (1996). This could possibly be advantageous as
each DOF will be influenced by its own subset of features. The
Lasso coefficients are generated for all T DOF of the
preoperative plan (Eq. 3). The coefficients of θt which are
non-zero correspond to the selected features for the
corresponding target yt:

min
θt

1
2
‖yt − Xθt‖22 + λ‖θt‖1 t � 1, 2, . . . , T (3)

.

The final feature selection method is the group Lasso (Eq. 4)
Yuan and Lin (2006). The group Lasso induces sparsity in groups
of features. These groups are manually defined prior to fitting
the model. We opted for this method because the landmark
coordinates show a clear grouping structure, where the x, y,
and z coordinates are grouped together. For that reason, all
landmark features are grouped, which is indicated by the
corresponding set of model parameters θgt ∈ R3. The other
features form a group by themselves θgt ∈ R1. The group
sparsity is induced by calculating the sum of all l2 norms of
the group coefficient vectors. This will set the coefficients of
some of the groups to zero, meaning they are unimportant to
the model. Using the group Lasso, all coordinates of a
landmark are always selected together, which is an
advantage over the classical Lasso algorithm. To account for
the difference in group size, a correction factor equal to the
square root of the group size σg is introduced (Hastie et al.,
2015):

min
θt

1
2
‖yt − Xθt‖22 + λ∑

g∈G

��
σg

√ ‖θgt ‖2 t � 1, 2, . . . , T. (4)

The optimal value for λ in each of the three feature selection
methods was obtained through tenfold cross-validation on the
regularization path on the training set.

2.3 Regression Analysis
The feature subsets selected by the algorithms from Section 2.2
are used as input to a regression framework to predict the DOFs
in the SCP. All DOFs indicating the position and orientation are
adaptable by increments of 0.5 mm and 0.5°, respectively. The
different implant sizes are coded as ordinal variables. Predicting
implant sizes could be seen as a classification problem. However,
the largest and smallest sizes are implanted very infrequently.
Hence, there is a large class imbalance. Because all DOFs are
either ordinal or continuous data, we decided to predict all DOFs
using regression models. Two methods for the regression
framework were compared: support vector regression (SVR)
and least absolute deviation support vector machines
(LAD-SVR).

The support vector regression proposed by Vapnik tries to fit a
non-linear function through a set of points (Vapnik et al., 1996).
Support vector machines are universal approximators (Hammer
and Gersmann, 2003). Thus, their hypothesis space can
approximately model any target function. To model non-
linearities, we applied a Gaussian radial basis function (RBF)
kernel to the Lagrange dual formulation.

The SVR method has two downsides: the large number of
inequalities slowing down the optimization and the large number
of hyper-parameters (ϵ, C, σ) resulting in a long optimization
time. These two problems have been solved by the least-squares
support vector machine (LS-SVM), which has only one equality
constraint per data sample instead of the four inequality
constraints per sample of SVR (Suykens et al., 2002). The LS-
SVR problem can be solved as a linear system of equations,
making it much faster than the SVR. However, the downside is
that the LS-SVR problem minimizes a least-squares loss sensitive
to outliers. Because our dataset contains outliers, this is not
desired. In 2013, Wang et al. proposed the least absolute
deviation support vector regression (LAD-SVR) method,
where a Huber loss is used, which is much less sensitive to
outliers compared to the least-squares loss function (Wang et al.,
2014). Similar to the normal support vector regression, non-
linearities were modeled by RBF kernels. The LAD-SVR is
optimized by the Newton method, which is numerically fast to
solve for problems with a small sample size, as is the case here. As
some of the surgeons make infrequent corrections to certain
DOFs, a robust regression method could be beneficial.

For each of the preoperative planning parameters that need to
be estimated, three SVR and three LAD-SVR models are fitted by
varying the three feature subsets obtained from the different
feature selection algorithms in Section 2.2. Tenfold cross-
validation was used in combination with grid search to find
the optimal hyper-parameter using logarithmically spaced values
∈ (10–6, 106) and optimized independently for each DOF.

2.4 Statistical Analysis
The AI-based preoperative plan (APP) is defined by the best
performing ML-based method during cross-validation for each
individual surgeon and each planning parameter separately. A
correction is counted per 0.5 mm change in resection level,
0.5°change in implant rotation, and per implant size change.
These discrete steps are also applied by the surgeon when
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planning a real case. A Friedman test was used to compare the
differences between the number of corrections required to the
predictions of different machine learning models. One-sided
Wilcoxon signed-rank tests will be used to test for differences
between individual planning algorithms. In our experiment, we
used a value of 0.01 for alpha and a power of 80%. Based on these
values, a sample size calculation was done using the mean and
standard deviation of the number of corrections required to the
MPP (7.13 ± 4.2) and an estimate of the corrections needed for
the APP (5.00 ± 2.4). This estimate relies on a 30% reduction in
corrections required to the APP compared to the APP and a
reduction in variance on the required number of corrections to
the APP. This resulted in a sample size of 154 cases. Our test set
contains 1,465 cases, surpassing the required sample size.

3 RESULTS

The test set accuracies of the different ML models are compared
in Table 2. The predictive performance is measured as the
average number of corrections the surgeon needs to make to
each of the preoperative plans generated by the different
algorithms with respect to the ground truth SCP. The
improvement is the percentage reduction in corrections
required to the APP compared to the MPP. For 37 out of 39
surgeons, there was an improvement to the preoperative plans
using machine learning to predict its planning parameters. For
the two remaining surgeons, the APP and MPP were equally
accurate. The methods using Lasso as feature selection were most
frequently successful. The combination of Lasso with LAD-SVR
was the method that most frequently resulted in the best
performance. This was the case for 20 out of 39 surgeons. The
model accuracy averaged over all surgeons can be found in
Table 2. On average, the APP requires 3.76 corrections, while
the MMP requires 7.13, a 39.71% improvement. If we average the
model accuracies only for surgeons who make frequent

corrections (more than three changes on average to the
MPPs), the improvement increases to 47.95%.

The Friedman test, comparing differences between the six
combinations of the three feature selection methods with the two
regression methods, results in a p-value of 2.13e-22. For this
reason, we reject the null hypothesis and use the Wilcoxon
signed-rank tests to compare individual models. One-sided
Wilcoxon signed-rank tests were used to identify statistically
significant improvements between different preoperative
planning methods. For each comparison, the p-values can be
found in Table 3. All of the proposed machine learning
algorithms were significant improvements compared to the
MPP. The two methods with the Lasso as feature selection
method also significantly outperformed the group Lasso and
Multi-Task Lasso. In contrast, the group Lasso-based models
significantly improved theMulti-Task Lassomethods. Finally, the
APP significantly improved compared to using just a single
machine learning method for all planning parameters.

Figure 5 shows the number of corrections each surgeon has to
make to both the MPP and the best ML preoperative plan. It also
shows a correlation between the number of corrections that a
surgeon needs to make to the MPP and the improvement
obtained using ML. The associated Pearson correlation
coefficient is 0.546. From Figure 6, one can observe the
correlation between average number of corrections made by
the surgeon to the single planning parameter with most
corrections and the improvement obtained from AI planning
with Pearson correlation of 0.69. Finally, the number of cases
which can be used to train the model for a surgeon is uncorrelated
with the improvement caused by ML based planning, with
Pearson correlation −0.095, as can be observed in Figure 6.

The APP also helps improve the femoral and tibia implant size
predictions compared to the MPP. Figure 7 presents the implant
size accuracy in both MPP and APP for each surgeon. We can
observe that significant accuracy improvements are possible,
mainly for surgeons for whom the MPP is inaccurate. The

TABLE 2 | The number of corrections required by surgeons on average (standard deviation) to the different types of preoperative plans.

MPP Lasso Group Lasso Multi-Task Lasso APP Improvement (%)

SVR LAD-SVR SVR LAD-SVR SVR LAD-SVR

7.13 (4.93) 4.10 (2.63) 4.15 (2.62) 4.25 (2.91) 4.31 (2.87) 5.98 (4.29) 4.46 (2.87) 3.76 (2.49) 39.71% (22.89%)

TABLE 3 | The p-values associated with one-sidedWilcoxon signed-rank tests indicating whether the preoperative planningmethods in the first column are an improvement
upon the preoperative planning methods in the first row. Values in bold are statistically significant improvements.

MPP Lasso Group Lasso Multi-Task Lasso APP

SVR LAD-SVR SVR LAD-SVR SVR LAD-SVR

MPP n/a 1 1 1 1 1 1 1
Lasso SVR 1.2e-07 n/a 0.76 0.000 8 0.000 8 6.3e-07 5.4e-06 1

LAD-SVR 1.2e-07 0.24 n/a 0.001 3 0.000 33 1.8e-06 5.4e-06 1
Group Lasso SVR 1.2e-07 1 1 n/a 0.49 8.1e-07 0.001 6 1

LAD-SVR 1.8e-07 1 1 0.51 n/a 6.8e-06 0.000 1 1
Multi-Task Lasso SVR 2.7e-07 1 1 1 1 n/a 1 1

LAD-SVR 1.8e-07 1 1 1 1 2e-05 n/a 1
APP 5.7e-08 8.4e-08 1.8e-07 1.2e-07 8.4e-08 5.7e-08 8.4e-08 n/a

As explained in the caption of the table, these are the statistically significant improvements.
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average femoral implant size accuracy in the MPP and APP is
68.4% and 82.2% (p-value = 1.93e-6), respectively, while the tibial
implant size accuracy in the MPP and APP is 73.1% and 85.0%
(p-value = 2.62e-8).

4 DISCUSSION

One of the benefits of applying feature selection is that we can
compare the selected features with clinical knowledge to

determine if the model is reliable despite being a black box.
Most of the features selected can directly be related to clinical
knowledge. These insights may also increase the level of trust
surgeons have in the models. For example, in predicting the
femoral implant size, the Lasso method found the MPP femoral
implant size, MPP tibial implant size, femoral width, femoral
implant overhang, and notching distance the most important
features for most surgeons. These can all be logically explained.
TheMPP femoral implant size functions as a baseline from which
the models predict the correction. The MPP tibial implant size is

FIGURE 5 | For each of the surgeons, the average number of corrections to be made to the MPP and the best ML plan. The red bisector indicates the line where no
improvement occurs upon the MPP.

FIGURE 6 | Panel (A) shows the trend between the number of corrections made to the most frequently modified planning parameter in the MPP of each surgeon
and the reduction in corrections needed to the best ML-based plan. Panel (B) shows the lack of a trend between the number of cases available per surgeon and the
improvement that can be made with ML-based planning.
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highly correlated with the femoral implant size. The femoral
width and overhang are measures that the model can use to
correct the implant size in case of mediolateral over- and
undersizing. Finally, the notching distance is a measure
predictive of under- or oversizing in the anteroposterior
direction. By describing the important features to the surgeon,
we can instill trust in our models.

The Multi-Task Lasso was selected as the best feature selection
model in combination with either regression model for only five
surgeons. The disadvantage of the Multi-Task Lasso is that it
selects one set of features predictive for all planning parameters.
Therefore, some of the features which are predictive of only a
limited set of planning parameters might not be included in the
model. The Lasso and group Lasso methods do not suffer from
this effect. Therefore, they are more frequently optimal. The
group Lasso is the best feature selection model for nine surgeons,
while the lasso is optimal for 31 surgeons. We attribute this to the
fact that the group Lasso has to include all three coordinates of the
landmark locations in the model facilitating interpretability.
However, this seems to come at the cost of reduced model
accuracies. One disadvantage common to all feature selection
methods is that interactions between features are not considered.
The LAD-SVR and SVR methods were most accurate for 24 and
18 surgeons, respectively. The LAD-SVR method has the
advantage of being less sensitive to outliers due to the use of
the Huber loss function in contrast with the ϵ-insensitive loss.
This is beneficial for surgeons who make infrequent but large
changes to a planning parameter.

Overall, machine learning can significantly improve upon
measurement and rule-based systems as in the MPP. Only for
two surgeons, the APP did not improve upon the MPP. These two
surgeonsmake very few changes (1.0 and 2.68 changes, resp.) to the
preoperative plan. Hence, there are only a few cases fromwhich the
machine learning models can learn, limiting the possible
improvement. Nevertheless, over the entire sample of surgeons,
the APP is a significant improvement over the MPP (p-value =
5.7e-08). For surgeons who make frequent changes (> 3 changes)
to the MPP, almost 50% fewer corrections are needed to the APP.
This may help reduce the time spent on preoperative planning for
TKA. The average accuracy improved and the consistency of the

predicted planning parameters increased as noted from the lower
standard deviation in the number of corrections that need to be
made to the APP compared to the MPP. It can also be concluded
that using a combination of different ML methods for different
planning parameters significantly improves the overall quality of
the preoperative plans compared to using a single method for all
planning parameters. Themost important planning parameters are
the implant sizes. The APP significantly improves the implant size
accuracy over the MPP. These improvements are mainly for
surgeons for whom the MPP has low implant size prediction
accuracy. In contrast, surgeons for whom the implant size accuracy
in theMPP is above 80% do not experience any improvement from
the APP.

The reduction in corrections needed by the surgeon is highly
correlated with the number of corrections made to the MPPs.
This result might be explained by the increased number of
samples from which the model can learn how to correct the
MPP to be closer to the SCP. However, this measure is not the
only predictor of the improvement that can be obtained by
machine learning-based preoperative planning. Because these
corrections might be divided over all planning parameters, all
planning parameters have small corrections. This is also
problematic because the samples with small corrections to a
planning parameter are also harder to learn from. Hence, the
largest correlation with the machine learning-based planning
improvement observed was the maximum over all planning
parameters of the average number of corrections made to it. If
a surgeon makes large changes to a specific planning parameter
from the MPP, then the trend can more easily be learned by the
machine learning model. Surprisingly, the number of cases
planned by the surgeon was uncorrelated with the
improvement that can be made by machine learning-based
preoperative plans. This is a counterintuitive finding because,
in general, machine learning models perform better with more
data to train the model. Having more training data only helps if
the surgeons make corrections that are consistent and frequent.
Therefore, an ideal dataset size that generally results in accurate
AI-generated preoperative plans cannot be easily proposed.
Nevertheless, every surgeon in our dataset had at least 75
cases, which is a large dataset. Therefore, our modeling

FIGURE 7 | Panels (A,B) show the femoral and tibial implant size in the MPP and APP, respectively, for each surgeon.
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approach is limited to high-volume surgeons. One possible topic
of future research could be to investigate online learning to
predict preoperative plans. This allows the models to improve
over time as the surgeon plans more cases. With advances in basic
and clinical science, surgeons’ approach to TKA also evolves over
time. Therefore, the second benefit of online learning is that it
allows the AI plans to evolve over time with changes in the
surgeon’s planning method.

The main limitation of our approach is that it relies on static
bone-derived features. Even though bone anatomy is very
important to determine implant function, the soft-tissue
structures also play an important role. They dictate the
stability and aid in the motion of the joint. Currently, our
models do not capture the dynamic nature of the arthritic
knee because they are solely based on an MRI scan. Therefore,
we hypothesize that adding these dynamic measures would help
improve the quality of the models. Currently, robotics is starting
to be increasingly used in TKA. Most of these robotic systems
allow the measurement of knee dynamics (Keggi et al., 2021).
These measures of soft-tissue balance throughout the range of
motion could be included as features. Unfortunately, the
adoption of robotic-based TKA is still limited to high-volume
surgical centers. Therefore, another option could be to rely on
musculoskeletal modeling to simulate knee kinematics and
ligament elongation (Vanheule et al., 2016; Bartsoen et al.,
2021). Using these models, a knee squat motion could be
simulated, subsequently extracting features from them. At the
time of our study, these dynamic knee motion-derived features
were not available. Hence, further research is required to
investigate if they help improve model accuracy.

To the best of our knowledge, no literature predicted
preoperative plans for TKA or orthopedic surgery using
machine learning. Nevertheless, several studies have attempted
to predict the implant sizes used intraoperatively. Most notably,
Kunze et al. compared support vector machines, stochastic
gradient boosting, elastic net penalized linear regression, and
random forests and extreme gradient boosting to predict femoral
and tibial implant sizes (Kunze et al., 2022). They relied on
patient age, gender, height, weight, and body mass index to
predict the component sizes. For their study a cohort of
11,777 cases was collected by 21 surgeons all using the same
implant type. Optimal results were obtained using support vector
machines for predicting the femoral implant size with an
accuracy of 42.2%. For the tibial implant size, elastic net
penalized linear regression was optimal with 43.8% accuracy.
Wallace et al.’s study found similar results for predicting TKA
intraoperative implant sizes based on demographic data (Wallace
et al., 2020). Using linear regression based on patient age, gender,
height, weight, and race the predicted component sizes with
accuracy of 43.7% for femoral and 43.7% for tibial implant
size. Although their studies are not directly comparable to
ours due to the difference of the preoperative and
intraoperative setting, our method yields significantly higher
accuracy. We mainly attribute these accuracy differences to the
extra information, which can be obtained from anatomical
measurements compared to the simpler demographic data
from the study of Kunze and Wallace.

One of the factors affecting the performance of machine
learning-based preoperative plans is the quality of the data
used to train the models. One problem is the definition of a
correct preoperative plan. Currently, there is a large variation in
knee alignment methods that surgeons use, such as mechanical,
anatomical, kinematic, restricted kinematic, adjusted mechanical,
inverse kinematic, and functional alignment (Howell et al., 2013;
Winnock de Grave et al., 2020; Vendittoli et al., 2021; Kayani
et al., 2020; Cherian et al., 2014). These different alignment
methods exist because surgeons do not agree on the alignment
method, which results in optimal long-term patient outcomes
(Rivière et al., 2017). This disagreement results from lacking data
and large-scale studies comparing the patient outcome of
different knee alignment methods. Therefore, having a
consensus on the values of preoperative planning parameters
amongst surgeons will not be possible because they might strive
for different targets. The definition of a “correct” preoperative
plan is hence the topic of further clinical research. As a result, our
ground truth data are obtained each time by the single surgeon
who executed the procedure. A second factor affecting data
quality is the intra-observer variability of a surgeon while
planning. Schoenmakers et al. investigated the intra-observer
variability of MRI-based preoperative planning based on the
intraclass correlation coefficient (ICC) of repeated planning of
40 cases by five surgeons (Schoenmakers et al., 2021). They found
that, for two and three planning parameters, the ICC was
moderate (0.5 < ICC ≤0.75) and poor (ICC ≤0.5),
respectively. Both the inter-surgeon and intra-surgeon
variability in preoperative planning imposes a limitation on
the quality of the data used in our study.

Several methods could be proposed to remove cases with low-
quality data. First of all, the post-operative patient-reported
outcome scores allow the removal of cases with bad outcomes.
This limits the presence of low-quality preoperative plans in the
training set. Consequently, the machine learning models are less
likely to predict thee preoperative plans resulting in sub-optimal
surgical outcomes. Secondly, the cases in which the surgeon
deviates significantly from the preoperative plan during the
surgery should also be removed from the dataset because the
preoperative plans were not correct. Lastly, the data quality can be
improved by asking the surgeons to plan each case multiple times,
which allows for the removal of cases with large variability in
implant position, orientation, or size.

Besides improvements in data quality, the machine learning
models could be further improved. Our feature selection
methods only consider the main effects while neglecting
interactions between features. Secondly, our method relies on
manually defined features based on clinical knowledge.
However, as different surgeons consider different anatomical
and kinematic parameters, some features might not be captured
by our model. Therefore, one of our future goals is to use the
entire 3D bone model, which could mathematically be
represented by a graph to be used as input to a machine
learning model. This would reduce the need for manually
defining clinical features because they could be learned from
a dataset of 3D bone models, for example, by using graph
convolutional neural networks (Wu et al., 2019).
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5 CONCLUSION

This study aimed to evaluatewhethermachine learning can be applied
to improve the default preoperative plans for TKA provided by
instrumentation manufacturers to a surgeon. A machine learning-
based preoperative plan, which captures surgical preferences in a
patient- and surgeon-specific manner, has the potential to reduce the
time needed to modify the preoperative plan prior to approval. Our
method that used hand-crafted features based on clinical knowledge
combined with sparsity-inducing algorithms for feature selection and
non-linear regression was able to reduce the average amount of
corrections needed by surgeons by 39.71%.
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