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This article describes an approach for multiagent search planning for a team of agents. A
team of UAVs tasked to conduct a forest fire search was selected as the use case,
although solutions are applicable to other domains. Fixed-path (e.g., parallel track)
methods for multiagent search can produce predictable and structured paths, with the
main limitation being poor management of agents’ resources and limited adaptability
(i.e., based on predefined geometric paths, e.g., parallel track, expanding square, etc.). On
the other hand, pseudorandom methods allow agents to generate well-separated paths;
but methods can be computationally expensive and can result in a lack of coordination of
agents’ activities. We present a hybrid solution that exploits the complementary strengths
of fixed-pattern and pseudorandom methods, i.e., an approach that is resource-efficient,
predictable, adaptable, and scalable. Our approach evolved from the Delaunay
triangulation of systematically selected waypoints to allocate agents to explore a
specific region while optimizing a given set of mission constraints. We implement our
approach in a simulation environment, comparing the performance of the proposed
algorithm with fixed-path and pseudorandom baselines. Results proved agents’
resource utilization, predictability, scalability, and adaptability of the developed path.
We also demonstrate the proposed algorithm’s application on real UAVs.

Keywords: unmanned aerial vehicle, area coverage path planning, multi-agent searching, constraint optimization,
distributed constraints optimization, team of UAVs search

1 INTRODUCTION

The objective of multiagent planning (MAP) for search is to coordinate the activities of agents to
explore an area of interest and detect prescribed targets while optimizing relevant parameters
(Cabreira et al., 2019; Nebel et al., 2019). For example, in Figure 1, A1–A4 are unmanned aerial
vehicles (UAVs) that have been assigned the mission of exploring a search area (bounded by defined
perimeters, i.e., the rectangular border) in order to detect forest fires (O1 and O2) which will be
moving across the search area. The forest fires’movement depends on variables such as wind speed,
wind direction, fuel type, and buildings, i.e., the environment is dynamic. In our motivating use case
of a mission for forest searching (Figure 1), cost functions are associated with limitations of sensor
range, energy (power or battery capacity of the agents), agents’ interactions, communication range,
onboard computational power, and memory use. Thus, our version of multiagent search is a team of
agents (e.g., UAVs) tasked to conduct a search activity under the outlined constraints.

In addition, individual agents do not know the locations of the targets (fires), and the location of
targets may change due to exogenous events, e.g., the forest fires O1 and O2 in Figure 1move faster
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downwind proportional to wind speed and fuel type. Each agent
is responsible for implementing its local plan (i.e., exploring a
sequence of waypoints). The UAVs’ mission is to explore the
search area and find the fires through effective resources (e.g.,
battery and mission time, as outlined in Table 1) utilization,
efficient agent coordination (by avoiding redundant searches),
and satisfying the imposed constraints (e.g., agents’ sparse
interactions). This is a challenging problem because the agents
need to ensure coverage of a dynamic environment with as little
redundancy as possible while optimizing a set of mission
constraints. This motivating use case mimics many practical
applications such as cases of a missing person finding, agents
mapping, search and rescue, and disaster management.
(Bevacqua et al., 2015; Cooper, 2020; Drew, 2021; Heintzman
et al., 2021; Nguyen et al., 2021; Sadat et al., 2014; Setter and
Egerstedt, 2017). Our use case assumes a number of simple agents
(e.g., micro-UAVs in Table 3) carrying targets’ detection sensors
(e.g., infrared sensors, temperature sensors, and spectrum
cameras for fire detection, on the assumption of one UAV per
sensor) and reports their information to the picture compilers
(PCs) UAVs (high-capacity fixed-wing or multirotor UAVs). PCs
are responsible for simple agents’ data processing. The PCs will
then submit their information to a server (a host computer
responsible for combined system knowledge processing).

Common MAP search methods will either assign fixed paths
for each agent in the team or enable individual agents to adapt
their actions to the environment and can operate in a centralized
or decentralized manner (Cabreira et al., 2019, 2018; Corte et al.,
2020; Merino et al., 2006, 2010; Ghamry and Zhang, 2016). These
are discussed further in Section 2. There are also “hybrid”
methods that enable agents to use a combination of fixed and

adaptive protocols (Chawla and Duhan, 2018; Cabreira et al.,
2019, 2018; Jensen-Nau et al., 2021). Given the constraints
imposed by our motivating example, we contribute to the set
of hybrid methods, with an emphasis on supporting search under
resource constraints. To be specific, our approach

• Builds on a Delaunay triangulation of the search space to
allocate agents to regions while optimizing resources;

• Provides a structured method for the team of agent search;
• Supports scalability, adaptability, and predictability;

We implement our approach on a small team of UAVs in the
Aerospace Multi-Agent Simulation Environment (AMASE)
developed by the Aerospace Vehicle Technology Assessment
and Simulation Branch of the United States Air Force Research
Laboratories (AFRL).1 AMASE models the environment and its
elements, e.g., fire, wind speed, etc., UAVs and their parameters,
sensors, and agents’ communication using MVC (Model-View-
Controller). The AMASE views (e.g., fires, forests, etc.) can be
designed using eXtensible Markup Language (XML) elements or
controller languages such as Java and Python. The view elements
can be referenced using unique identification numbers or names.
Dynamic variables can be modeled using time-based controller
functions. A detailed explanation of the simulation procedure and
sample code can be found in Section 4 and supplemental
documents. Section 6 describes a step-by-step procedure for
applying the proposed solution to real UAVs (drones). We
compare our approach with examples of the fixed path and
pseudorandom baseline methods to evaluate resource utilization,
predictability, adaptability, and scalability in a definedmulti-UAVs
mission for forest fire searching.

1.1 Problem Formulation
The focus of this article is onmultiagent searching under resource
constraints.

1.1.1 Defining Resource Constraints
The resources (mission and agent parameters) of interest are
summarized in Table 1. The choice of the parameters is in line

FIGURE 1 | Example of multi-UAV area coverage problem. A1–A4 are
UAVs that are tasked to search forest fires O1 and O2.

TABLE 1 | Agent and mission parameters to be optimiszd.

Parameter Optimization Parameter
type

Energy (battery) use Minimize Agent
Memory use Minimize Agent
Computational power Minimize Agent
Communication range Minimize Agent
Coverage Maximize Mission
Path divergence (path separation in
search space)

Maximize Mission

Redundant search Minimize during
search

Mission

Mission time Minimize Mission

1https://github.com/afrl-rq/OpenAMASE
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with the literature (Cabreira et al., 2018, 2019; Bevacqua et al.,
2015; Merino et al., 2010; Ingle, 2011). The resource parameters
are the main limitation of applying UAVs to the search problems
(Cabreira et al., 2018, 2019; Ghamry and Zhang, 2016; Jensen-
Nau et al., 2021; Kanistras et al., 2013; Sharma and Kumar, 2015;
Zhou et al., 2020; Alyassi et al., 2021; Rebolledo et al., 2021; Ryoo
et al., 2010). The limitations in these parameters depend on the
UAVs’ capability as described by the United KingdomMinistry of
Defence UAVs classification2 of Table 2. For our use case, micro
or mini UAV types will be used. The parameters for the search
mission modeled in this article are defined as cost functions (an
example of how these are quantified is shown in Table 3) to
enable the calculation of optimized solutions.

1.1.2 MAP/DULAR
The multiagent search problem developed in this article is
referred to as the “MultiAgent Planning under Destination
Uncertainty and Limited Resources (MAP/DULAR) problem”.
We modeled MAP/DULAR as a finite-horizon, proactive,
dynamic, and multi-objective distributed constraint
optimization problem, PDMO-DCOP, defined by the tuple:

D � Ai,j, T,W, λ, P, αi, γi, δ, Scondition, Ki, I, C, O, S{ }, (1)
where

• Aij = {a11, a22, a33, . . ., aij} is the set of agents i of type j, i ∈ [1,
N], j ∈ [1, M]. For example, a fire detecting micro-UAV of
type simple agent and a fire understanding UAV of type PC.

• T is the mission time space Ti = t1, t2, t3, . . ., ti for i = 1, . . .,
N. This defines the mission activities with a finite horizon
(Hoang et al., 2017; Fioretto et al., 2018) and can be
measured using the mission clock.

• Ware the paths (sequence of waypoints) for the agents,W =
w1, w2, w3, . . ., wN, which are DCOP variables.

• γi is the set of agent’s situations (defined by the agent’s
current belief about the environment, i.e., sensor states and
location) over time period T, i.e., γi = {γ1 × γ2 × γ3 × ... × γN}.
For example, an agent situation can be fire presence (based
on the sensor state) at location wi.

• αi is the set of action spaces at every agent’s situation γi,
i.e., αi = {α1 × α2 × α3 × ... × αN} is factored across each agent

at every situation γi. That is the set of actions given a
particular situation. For example, if the situation, γi, is
fire spotted by a UAV, then action, αi, could be making
shorter waypoints to map the fire’s shape.

• λ is the agents’ waypoint assignment function given the
agent’s situation (γi) and action (αi), such that λ : W × γi ×
αi → Ai,j.

• P = {PA, PM, Co} is the set of agent parameters (PA) and
mission parameters (Pm) (Table 1), and their target cost
optimization function (i.e., minimize or maximize from
Table 1).

• δ is the agent’s probability of changing action in response to
the situation. Thus, the probability distribution of δ consists
of situation action transition values, i.e., δ → αi × γi. The
value of δ is initialized using δ = 100%/n, where n is the
number of possible situations (γi) of the sensor states, e.g.,
fire present or absent. The update (increments/decrements)
of δi occurs after every sensor poll.

• S is the bounded search space segmented into equal cells si,
such that Si = {s1, s2, s3, . . ., sn}.

• Scondition is the set of environmental variables that determine
the dynamic feature of the target at a given situation and
time described by the tuple Scondition = {γi, Sv, ti}, where Sv is
the set of environment’s dynamic variables (wind speed,
wind direction, fuel type, fuel condition, and terrain nature).
The essence of the environmental variables is to describe the
changing nature of the operating environment
(environmental dynamism).

• Ki is the set of constraints Ki = {k1, k2, k3, . . ., kn} imposed on
the agents, e.g., limited agents energy, limited sensor range,
unknown targets locations, and limited
communication range.

• I is the agent’s interactions (data exchange through
communication based on the agents’ proximity).

• C is a real-valued cost function defined by C: λi → R+. That
is, every agent’s waypoint selection in a particular situation
is mapped to a positive real number cost value measured
using Table 3.

• O = {o1, o2, o3, . . ., oN} is the set of detecting targets. The
targets are moving subjected to the environment condition,
i.e., the location of the target at a given time is defined by Oi

× Si → Scondition × Sv.

The goal of this study is to develop a MAP/DULAR algorithm
that efficiently utilizes the resources in Table 1. That is, to find an

TABLE 2 | UAV classification adapted.

UAV Classification Maximum take off weight

Nano < 200 g
Micro >200g–2 kg
Mini 2–20 kg
Small > 20–150 kg
Medium >150–600 kg
Large >600 kg

TABLE 3 | Example of cost functions.

Distance (D) between
waypoints in kilometers
square (km2)

Coverage
cost (R)

Redundant
search cost (R)

Mission
time (R)

D <1km2 2 20 20
1 km2 ≤ D ≤ 2 km2 10 10 10
2 km2 ≤ D ≤ 3 km2 20 2 2

2https://www.gov.uk/government/publications/unmanned-aircraft-systems-jdp-
0-302
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efficient set of waypoints plans π′ such that Uπ′
best is best for every

agent situation γi, i.e., π′ ∈ ΠiUπi
best where π′ = {π1, π2, π3, . . ., πi}

and each of the πi is the set of that optimize agents’ and mission’s
parameters at every situation. U is the best utility consumption
function for the set of parameters cost values defined by Eq. 2.
The best utility consumption of MAP/DULAR is the set of cost
implications at every agent waypoint assignment, i.e., ∀ λi → wi.
The best utility function Ubest is described using Eq. 2.

Ubest C, λ, P( ) � ∑T�n
T�0

∑i�n
i�0

Ci

→
λi\Pi( )( )⎡⎣ ⎤⎦T, (2)

where Ci
→

is the agent’s set of cost functions and target
optimization vectors at every situation γi (as defined in
Table 1). In other words, Ubest is the function that gives the
best utility cost of every parameter (of Table 1) in any situation
given a particular waypoint assignment.

2 RELATED WORK

Multiagent search continues to be an interest to the AI and
robotics communities (Cabreira et al., 2019; Rathbun et al.,
2002). The field of multiagent search evolved from the
simultaneous localization and mapping (SLAM) area, which
involves tasking robots to explore an area and adapt to the
elements of the area, e.g., chairs within a room during robots
automated vacuum cleaning. (Bonetto et al., 2021; Dissanayake
et al., 2001; Kim and Eustice, 2015). Work has focused on
computing fixed paths (fixed geometric patterns, e.g., parallel
track, creeping line, etc.) for each agent, enabling agents to
compute and adapt their paths to the environment, or providing
agents with a combination of fixed and adaptive protocols. The
fixed-pattern methods follow predefined geometric paths
(Cabreira et al., 2018), e.g., expanding squares or parallel
tracks to explore the search area (Bevacqua et al., 2015;
Jensen-Nau et al., 2021; Huang, 2001; Koenig and Liu, 2001).
Related methods such as sector search define angles and edges to
control the agents’ paths (Bevacqua et al., 2015; Jensen-Nau
et al., 2021). These methods make it easy to compute paths for
each agent but do not support adaptation to changes or failures
(e.g., sensor or motor failure) in complex and dynamic domains.
They struggle in optimizing resource usage or enabling proper
coordination between multiple agents (Cabreira et al., 2018,
2019; Di Franco and Buttazzo, 2016).

Grid-based methods that segment the search space into cells
impose structure on the problem by constraining random walks
(Hackney and Clayton, 2015). The paths followed by each agent
and the frequency with which an agent visits a particular cell are
controlled probabilistically, e.g., using computational models
inspired by the ant pheromone (Cabreira et al., 2019; Di
Franco and Buttazzo, 2016; Koenig and Liu, 2001; Nasirian
et al., 2021; Zhou et al., 2020). The limitations of such
methods include huge computational demands during optimal
solutions search and agents’ coordination, e.g., agents’ number of
cell (location) visits need to be shared among agents for better
coordination (Demyen, 2006; Koenig and Liu, 2001).

There is also work inspired by animal foraging with random
waypoints within the search space (Chawla and Duhan, 2018;
Sutantyo et al., 2011). The key advantage of such pseudorandom
methods is the agents’ independent planning, which supports
decentralized coordination. At the same time, these methods can
suffer from poor agent coordination in complex domains,
difficulty in predicting the future activities of the agents, and
limited consideration of the agents’ sensing abilities (Nurzaman
et al., 2009; Cabreira et al., 2019).

The aim of hybrid approaches is to combine the strength of
fixed paths and pseudorandom methods using agents control
protocols. The works of Sutantyo et al. (2011) and Chawla and
Duhan (2018) describe various hybrid approaches to
pseudorandom methods in which local agents protocols are
applied. The most common protocol is to generate waypoint
pseudorandomly and prioritize areas with the most targets
detection as inspired by artificial potential field, ant colony
optimization, and bat algorithms. (Chawla and Duhan, 2018;
Sutantyo et al., 2011). There are other forms of hybrid methods
that use geometric processes, e.g., Voronoi tessellation in pure
form or augmented with order processes, e.g., buffering (Arul
and Manocha, 2021), k-means algorithm (Chowdhury and De,
2021), gradient descent algorithm (Inoue et al., 2021), area
prioritization (Zarei and Mozafar, 2021), and particle swarm
optimization (Zaimen et al., 2021). In these methods, the plan
generation is controlled by theorems, propositions, lemmas, and
protocols of the geometric process. These hybrid approaches
resemble the proposed method of the Delaunay-inspired
approach (presented in Section 3), with the main limitation
of focusing on local agents rules rather than both local and
system protocols. In the Delaunay-inspired method, waypoints
are generated from the centers of the triangles rather than the
centers of the circumcircles as adapted by Voronoi methods.
Our characterization of the multiagent search problem
considers resources (Table 1) utilization, scalability,
adaptability, and predictability as the primary key features of
concern. Thus, we present a hybrid approach that combines the
strengths of fixed-path and pseudorandom methods to address
the outlined limitations.

3 THE PROPOSED SOLUTION

The proposed algorithm evolved by applying a Delaunay
triangulation to seed waypoints (seed waypoints are defined
heuristically, i.e., using structured rules, e.g., the longest non-
crossing paths from the agent’s current location as described in
Figures 2 and 3; or derived from a known predictable
distribution), through the inscription of triangles around each
waypoint in a circle to avoid overlap of waypoints (Cignoni et al.,
1998). The initial version of the algorithm (in Appendix 1)
systematically generates seed waypoints for the first layer
waypoints (by taking the longest non-crossed paths from the
agent’s current waypoint) and then performs Delaunay
triangulation of the seed waypoints. The centre of each
triangle is a planned waypoint, and the process is repeated
until the number of waypoints is less than or equal to 2 (at
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this stage, triangulation is not possible because it requires at least
three waypoints). Each set of the Delaunay triangles makes a MAP/
DULAR layer (Definition 3.1). The number of triangles and edges
of the Delaunay triangulation are computed as 2n − 2 − k and 3n −
3 − k, respectively, where n is the total number of waypoints and k is
the number of convex hull waypoints (Perera and Barnes, 2011),
i.e., a theorem for computing the number of triangles and edges.
Figure 2 describes the implementation of this version of the
algorithm. From Figure 2, waypoints labeled W1 to W5 are the
longest non-crossed paths from the UAV’s (UAV1) current
location. Waypoints labeled W6 to W9 are the centres of the
Delaunay triangles of waypoints W1 to W5, which make the
layer 2 waypoints (see Definition 3.1). Similarly, waypoints W11
andW12 are the centres of the Delaunay triangles of waypointsW6
to W9, which made the final layer (layer 3) waypoints. This is
similar to the Voronoi tessellation methods (Arul and Manocha,
2021; Chowdhury and De, 2021; Inoue et al., 2021) in which
waypoints are the centers of the Delaunay triangulation
circumcircles instead of the centers of the triangles. The AMASE
simulator calls the Delaunay triangulation methods and generates
the waypoints. The visualization of the Delaunay triangulation of
the waypoints is described in supplemental documents.

Definition 3.1. [MAP/DULAR Layer] MAP/DULAR layer (τi)
refers to the set of waypoints at the same level of the plan, i.e., τi:
Wx→ Aij, such thatWx = {w1, w2, w3, . . ., wm}, ∀Wx ∈W and ∃ τj
=Wy→Aij, whereWy = {w1,w2,w3, . . .,wn}, such thatWx ∩Wy =
{} ∀ Wx, Wy ∈ W. Waypoints in every layer are characterized by
edge length, quadrants, and projection angles.

Algorithm A1 of Appendix 1 shows the initial version of the
algorithm, and Figure 2 describes a solution generated by one
of the UAVs while solving the problem in Figure 1. The seed
waypoints labeled W1, W2, W3, W4, and W5 are the longest
non-crossed paths based on the agent’s current location, which
serve as the seed waypoints (first layer waypoints). The second
layer waypoints are the waypoints W6, W7, W8, and W9,
which are the centres of the Delaunay triangles of the first
layer’s waypoints. Layer 3 waypoints areW10 andW11, which
come from layer 2 triangles’ centres. The outcome looks
predictable because agents’ future waypoints can be
estimated if the initial waypoint, speed, and waypoints
generation rules are known.

In addition, the outcome has highly spread waypoints (by
giving highly spread waypoints across the search space) and can
be partly controlled (by changing the seed waypoints or
waypoint generation rules). For multiple agents, the seed
waypoints can be varied, e.g., using Definitions 3.2 and 3.3,
and unique searching waypoints would be obtained because of
the Delaunay triangulation unique waypoints generation when
given varying sets of seed waypoints (Cignoni et al., 1998;
Demyen, 2006; Kallmann, 2005). Further refinement of the
algorithm produces an approach we call DIMASS (Delaunay-
Inspired Multi-agent Search Strategy), as described in
Algorithm 1. This is a simplified, efficient, predicable,
adaptable, and scalable version of the above-described
Delaunay-based solution (based on the comparison of the
results in Section 5 and the initial version of the algorithm
from Appendix 1).

FIGURE 2 | Example of the Delaunay-based solution for one agent
(UAV1). Agents paths can be traced using the directional arrows.

FIGURE 3 | Example of the DIMASSMAP/DULAR solution for one of the
UAVs (UAV1).
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Algorithm 1. DIMASS: Delaunay-Inspired Multi-Agent Search
Strategy.

In DIMASS (Figure 3), when an agent obtains seed waypoints
W1 to W5 of Figure 2, rather than performing triangulation, it uses
navigation rules based on the Delaunay triangulation theorems to
generate waypoints in the upper layer. For example, the waypoints
W6, W7, W8, and W9 of Figure 2 were obtained by projecting in
angle = 180°/n, where n is the number of upper-layer waypoints
computed using the Delaunay triangulation process. The projection
quadrants use different sequences depending on the number of
agents and paths needed. For instance, UAV 1 could use the first,
third, second, and fourth quadrant sequences, while other UAVs
could use the third, fourth, second, and first quadrants. That is, using
different waypoints edges (Ei) for i ∈ [1, N], projection angles, and
quadrants can be customized to effectively utilize resources (by
avoiding redundant search and maximizing coverage). For example,
the edges of the second layer waypoints (W6 − W9) from Figure 3
are half of the opposing edge (i.e., E5 = E4/2), etc. Searching the best
combination of angles, quadrants, and edges for each agent is
computationally cheap because the highest number of quadrants
is only four, while edges and angles can be controlled by setting a
range of values, e.g., ranges of 24° for angle difference (i.e., 360°/15,
which means 15 number of searches). Therefore, Figure 3 is only
one of the possible solutions. Thus, the best solution has the best
configuration of projection angles, quadrants, and edges selection to
solve the problem in Eq. 2.

Having defined a set of paths, the next challenge is to ensure
that these paths satisfy the resource constraints outlined in
Table 1, i.e., the DCOP solution of Eq. 1, which is based on
adjusting waypoints edges, angles, and quadrants until resources
consumption is efficient given the agents’ current situations and
time limits (finite-horizon). For the purpose of layers selection
and waypoints allocation, the following concepts are important.

Definition 3.2. (Reflected Waypoints). Two waypoints Xij and Yij
with dimensions i and j and search space lower and upper
boundaries Mij and Nij, where i, j ∈ Rd, within a MAP/DULAR
plan of d-dimension (note that, for i and j, d = 2), are said to be
reflected if and only if the distance computation in Eq. 3 exist.

Yi � Ni − Xi −Mi( ) or Yj � Nj − Xj −Nj( ), (3)
where i, j ∈ Rd.

Definition 3.3. (Refracted Waypoints).
Two waypoints Xij and Yij in a MAP/DULAR environment

with search space lower and upper boundaries Mij, Nij, where

i, j ∈ Rd are said to be refracted waypoints if and only if the
distance computation in Eq. 4 exist.

Yij � Nij − Xij −Mij( ), i, j ∈ Rd. (4)
Reflected or refracted waypoints resemble light rays and can

coordinate multiple agents. For example, Figure 4 describes
the MAP/DULAR solution for four UAVs using the DIMASS
algorithm. UAVs A1 and A4 have refracted seed waypoints
starting from s1 and s4, and agents A2 and A3 have reflected
seed waypoints starting from s2 and s3. Paths can be traced by
following the directional arrows. Each of the UAVs from
Figure 4 is on its path. Thus, each individual agent has a
unique path. Note that the overlapping paths from Figure 4
will be explored at different times by different UAVs based on
the concept of waypoints reflection and refraction (as
originated from the initial location and seed waypoints
differences). As such, the paths will not be considered
redundant due to exploration time differences. Thus, two
different UAVs with distinct seed waypoints and/or
waypoints generation protocols have distinct MAP/DULAR
solutions using DIMASS based on the uniqueness of the
inspired Delaunay triangulation (Cignoni et al., 1998).
Similarly, Proposition 1 proved that the convex plans (plans
with waypoints interior angles less than 180°) have higher path
divergence (areas of exploration spread across the search space
as defined in Section 5) than the concave ones.

Proposition 1. (path divergence of MAP/DULAR problem).
Convex MAP/DULAR has more path divergence than the
concave counterpart with the same edges configuration.

FIGURE 4 | The MAP/DULAR solution for a team of four UAVs.
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Proof: Let n be the number of waypoints, and the convex of n be
Conv(n). If m out of n waypoints of a concave plan are concave,
then the convex hull of Δconvex of the concave plan is Conv (n −
m), i.e., using Graham’s Scan algorithm. From Euler’s formula,
the number of triangles formed for the convex plan Δconvex is
Δconvex = 2 + E − n, while for the concave plan is Δconcave = 2 + E −
(n − m). Therefore, the total area of the triangles formed is∑n�n

i�1 Δconvex >∑n�n
i�1 Δconcave because n > n − m for m > 0 and the

edges are of the same size.

4 EVALUATION

The metrics used for the evaluation are qualitative and
quantitative. The quantitative metrics are coverage, path
divergence, energy, mission time, computational power
(measured by time complexity and McCabe cyclomatic
complexity (McCabe, 1976)), memory use, and redundant
search. The qualitative metrics (non-functional features) are
scalability, predictability, and adaptability. The metrics can be
used in determining the mission utility cost and the overall
efficiency of the algorithms.

Coverage is the proportion of search area with sensed agents
path, i.e., ∑i�n

i�1Si such that ∀Si∃wi × rv ∈ Si, where rv is the sensing
range. In other words, coverage is the portion of the search space
S with the agent’s path and sensing. This can be measured by
segmenting the search space into cells of equal sizes (S = {s1, s2, s3,
. . ., sn}) and counting the cells with paths and sensing in them
(Sauter et al., 2005; Sutantyo et al., 2011). One of the key
limitations of measuring coverage in this way is that cells with
paths close to them could have a partial visit, i.e., ∑i�n

i�1Si such that
∀Si∃w∉Si and rv ∈ si, and, ∃ distance d = ‖si − sj‖ such that there
exists one of the following conditions: wi∉Si and rv ∈ si or wi ∈ Si
and rv∉si and the area of d < sc where sc is cells’ size, and not
counted as covered. In other words, partially visited cells have no
agents path (waypoint path) in them but have partial sensing (rv)
due to their proximity to the path. Thus, because of the absence of
a path, they will not be counted as covered. Considering the
omission of partial visit limitation, we then introduce the path
divergence metric, which is the measure of how the search path is
spread across the search space, i.e., by considering waypoints
spread within the search space. For example, the plan in Figure 5
picture “B” has higher path divergence than the one in picture “A”
because its paths have higher separation across the search space.
The plan in picture “A” can be stretched to have more path
divergence simply by changing the angles, quadrants, and edge
length configurations. We measure the path divergence by
summing up the area of the Delaunay triangles of the
waypoints, i.e., ∑area (Delaunay (Wi)), the area function
compute the area of the Delaunay triangles of the set of
waypoints Wi. In addition, path divergence can be used in
controlling redundant search (i.e., continuous exploration of
certain locations many times within a short period).

Energy is the amount of power consumed when performing
mission activities. We compute energy consumption by taking
the percentage of battery consumed by a real UAV given certain
flight modes (ascending and descending). The DJI Ryze Tello Edu

drone was used to obtain the agents’ energy consumption. The
drone was tasked to perform different flight modes using the
Tello Python application programming interface (API)3 for the
range of 500 cm, and the battery level in percentage was
monitored. Note that the energy consumption rate depends on
the UAV type and operating environment condition (Scondition
defined in Section 1.1), e.g., consumption of 0.049%/s during
UAV ascending. The evaluation process considers different flight
modes (as described in the results in Table 5) and assumes
constant sensing as adapted from Huang (2001). Energy is
important due to the limited battery capacity of the UAVs
(Cabreira et al., 2018, 2019; Merino et al., 2006, 2010; Jensen-
Nau et al., 2021). Mission time is the amount of time spent while
conducting the mission. This is measured simply by using the
mission clock of the AMASE simulation. Mission time relates to
coverage and other parameters. For example, an algorithm that
covers an area of 100 km square (100 km2) in 1 min is more
effective in terms of mission time than an algorithm that covers
the same area in 5 min.

Time complexity is the measure of the computational power
needed to execute the algorithm. This metric is essential in
determining the capacity of the agent to be used, i.e., complex
algorithms require agents with larger computational capacities. In
addition, McCabe cyclomatic complexity (McCabe, 1976), which
measures the number of branches (a branch could be a loop or a
function) for the algorithm implemented, was used to measure
the algorithms’ implementational measures. McCabe’s
cyclomatic complexity is similar to the time complexity,
i.e., an algorithm with low cyclomatic complexity could be
tested, evaluated, and implemented more easily than one with
a higher number (McCabe, 1976; Wallace et al., 1996). Eclipse
cyclomatic complexity plugin was used for the cyclomatic
complexity measurement.

Redundant search is the number of times a particular space is
explored within a short period of time. This is measured by
counting the number of consecutive waypoints generated within a
sensor range interval (i.e., the overlapping sensor range for two
subsequent waypoints). Redundant search is categorized into
intra-agent and inter-agent redundancies. Intra-agent
redundancy refers to the overlapping waypoints among the
agent’s self waypoint, whereas inter-agent redundancy is the
overlapping waypoints among two different waypoints. These
quantitative parameters are related to one another, as implied in
Table 1, and depend on mission requirements and agents’
capacity. For example, coverage is critical during searching
and less critical during mapping. Similarly, running
computationally expensive algorithms on micro UAVs can be
critical.

The benchmark values for the metrics are in line with the
reported values from the literature. For example, agents’
searching mission time can be reduced by 50% when the Lévy
flight (a popular pseudorandom search) algorithm (Chawla and
Duhan, 2018; Sutantyo et al., 2011) is augmented with artificial
potential fields instead of being purely pseudorandom (Sutantyo

3https://github.com/code4funSydney/Tello
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et al., 2011). Similarly, the work of (Sauter et al., 2005) shows that
agents’ search coverage of fixed-pattern methods has a 25%
chance of having higher coverage at the first 80 min of the
agent’s mission than a fixed-pattern method augmented with
pheromone inspiration. The rest of the metrics (with the
exception of path divergence, McCabe cyclomatic complexity,
predictability, and adaptability as introduced in this paper) have
been reported in (Huang, 2001; Jensen-Nau et al., 2021; Kanistras
et al., 2013; Koenig and Liu, 2001; Li et al., 2011; Sutantyo et al.,
2011). Therefore, while we are reporting our specific results, we
acknowledged the standards and similar patterns presented by
existing works in line with our outlined contributions.

The qualitative metrics are non-functional features
(predictability, scalability, and adaptability) of the algorithms.
Predictability is a measure of how the algorithms allow agents’
location predictions (location estimation based on known
parameters, e.g., speed, downwind and upwind acceleration
and retardation, etc.). For example, due to the randomness of
the Lévy flight, each round of waypoints plan generation is
different (Chawla and Duhan, 2018; Sutantyo et al., 2011;
Yoon and Kim, 2013) which makes prediction impossible or
very difficult. Predictability can be measured using the standard
deviation of the number of generated waypoints by an algorithm
given the same time and structure constraints. In order words,
predictability can be measured as the function of the structure of
the generated plan. For example, DIMASS and fixed-pattern
methods stick to a stable number of waypoints when seed
waypoints and track configurations are the same. Considering
the plan generated in Figure 3, each agent has the same number
of waypoints (i.e., a total number of 11 waypoints based on the
five seed waypoints) and similar edges, quadrant, and angle
configuration patterns. This means the plan is structured,
unlike the pseudorandom methods that generate a varying
number of waypoints (based on the standard deviation in
Tables 7 and 8). That is, predictability leads to a uniform
standard deviation in the number of generated waypoints
across the agent’s generated plan. For example, considering
the DIMASS plan in Figure 3, the standard deviation of the

number of waypoints will always be i∑i�n
i�0(pi − qi), where i is the

number of plans generated, p is the number of generated
waypoints, and q is the mean of the number of waypoints
generated at each plan πi. Thus, for Figure 3, as far as the
plan seed waypoints and edges, angles, and quadrants
generation rules are the same, the standard deviation will be 0,
i.e., i (11 − 11) across all layers for Figures 3 and 4. On the other
hand, pseudorandom methods generate a different set of
waypoints plan at each iteration of the algorithm with a
varying number of unpredictable waypoints based on the
standard deviations as described in Tables 7 and 8.
Adaptability is a measure of how the algorithms can be
customized to suit certain functionalities, e.g., directing the
final waypoints near a charging point, narrow space
exploration, etc. We measured adaptability by counting the
number of controllable path elements, i.e., the path’s
quadrants, angles, and edges. For example, DIMASS can be
controlled by changing edge, quadrants, and angle
configurations; as such, the adaptability number is 3
(Table 10). The pseudorandom method, e.g., the Lévy flight,
cannot be controlled even if the seeds of the random numbers are
clustered between ranges (as discussed in Section 5). Summarily,
adaptability is the feature of the algorithm that allows it to be
applied for more than one purpose, e.g., area coverage search,
mapping, etc. The scalability of an area coverage planning
algorithm is the measure of its ability to handle multiple
numbers of agents with resource stability. This is measured
using both the time and implementational complexity of the
algorithms. For example, assume two algorithms A and B;
algorithm A is more scalable than B if it can handle a higher
number of agents with stable time or cyclomatic complexity than
B. Overall, the higher the number of quantitative and qualitative
metrics utilized by a MAP search (area coverage algorithm), the
better.

4.1 Experiment Design
The experiment employs an AMASE model of the problem
described in Figure 1. Targets (fires), fuel types, and other

FIGURE 5 | Example of MAP/DULAR path divergence variation for two plans.
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dynamic variables (wind speed, wind direction, fog, and clouds)
were simulated. For example, the growth rate of the fire at every
location li(x, y, h)ti in time difference Δt = ti+1 − ti is defined
using Eq. 5

li x, y, h( )ti+1 � li x, y, h( )ti × wti Δt, Sv �x( ), Sv �y( ), Sv �h( )( ). (5)

where (x, y, h)ti + 1 is the estimated growth of the target (fires)
across x, y, h axis (where h is the height) from the current
position (x, y, h)ti , Δt is the time interval, and
wti(Δt, Sv( �x), Sv( �y), Sv( �h)) is the function that defines the
growth factor by considering the current environmental
dynamic variables, (Sv), factors (wind speed, wind direction,
and fuel type) and time interval Δt. That is, each of the functions
Sv( �x), Sv( �y), Sv( �h) returns the velocity vector of the target (fire)
mobility rate for each dimension based on the environmental
dynamic variables configuration vector taken as passing
parameter, e.g., fuel type, wind speed, location relation
ground surface (uphill or downhill, etc). Parameters values
for the variables were obtained from documented standard
operating procedure (SOP), UAV images analysis works
(Fernández-Hernandez et al., 2015; Haddadi et al., 2020;
Dalla Corte et al., 2020; Corte et al., 2020; da Costa et al.,
2021; Mohan et al., 2021; Neto et al., 2021), and arranged
physical experiments as described in Figure 6 and Table 4.
For example, the contribution to fire spread weight (w) from
dried shrubs is higher than the wet ones (fire spreads faster in
dried shrubs than in marshland). Similar weighting is
performed for the influences of other variables, such as wind
speed, wind direction, and location relation to the ground. The
higher the weight (w of Eq. 5), the higher the translation
(growth) rate. Other dynamic variables such as wind speed
or wind direction follow defined dynamic generation patterns.
For example, the wind speed could be changing values
systematically every time interval Δt (as shown in Figure 7).
Fuel type and location relation to ground (uphill, downhill, or
flat) will be defined based on the location values using search
area segmentation Si (by dividing the search space into cells of
equal sizes). All these variables have their corresponding
element definition tag in XML of the AMASE view.
Alternatively, dynamic variable features can be inserted using
backend manipulations (using the provided AMASE Java
library). The UAVs’ features and sensor configurations are
defined in a similar way. For example, Table 5 describes the
UAVs’ variables and sensor configuration. The issues of sensor
reliability and conflict were beyond the scope of this study; as
such, the reader is referred to our previous work (Yusuf and
Baber, 2020, 2022) for more details on sensor issues. The UAVs’
energy consumption across various flight modes for the AMASE
simulation utilizes the real UAVs experiment derived values.

The target (fire) spread values across different environmental
conditions (e.g., various values of wind speed) were obtained
from a physical experiment. The experiment was conducted in
Nigeria (i.e., the fire spread values collection experiment) within a
government-approved quarrying area at the beginning of a dry

season on top of a hill. The plants on top of the hill are set on fire
intentionally at the beginning of every dry season to clear the
shrubs, trees, and grasses for easy access. (That is why some of the
trees are dead in Figure 6). This traditional clearance method was
used during the fire spread values collection (results reported in
Table 4). The hill is surrounded by a trench to avoid fire
escalation. All permissions were granted, and all necessary
safety measures were observed before starting the fire. The
location has a combination of dried and semi-dried trees,
shrubs, and grasses, as shown in Figure 6. The observations
were made on a sunny day with temperature, wind speed, and
humidity values of 34°C, 8Kilometer per hour, and 12%,
respectively. The fire spread rate was measured by making
marks across the directions (north = 0°, east = 90°, south =
180°, west = 270°, northeast > 0° and < 90°, southeast > 90° and
< 180°, southwest > 180° and < 270°, and northwest > 270° and
< 0°(360°), as defined by the American Practical Navigator
(Bowditch, 2002).

Table 4 describes the excerpt of the fire spread values across
two locations in varying directions and time frames (target height
was measured relatively the same as fuel height), and the full
parameters were available in the simulation XML source code
inside the supplemental documents folder. The spread rate value
depends on the location terrain nature (Ingle, 2011; Merino et al.,
2006, 2010), fuel, e.g., trees, shrubs, grasses, etc., as described in
Figure 6, environmental condition (Scondition), and other dynamic
variables, e.g., wind speed, wind direction, etc. Figure 7 describes
the AMASE simulation of the problem at 1:30:36.4 mission clock,
i.e., the figure shows fire expansion and other simulated variables,
e.g., wind speed, wind direction, UAV battery etc. values. Thus,
the simulated environment presents a dynamic environment.

FIGURE 6 | Fire spread rate measurement experiment.
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TABLE 4 | Fire spread values.

Location ID # Spread length (Meter per second) Experiment time (minute) Direction of spread

1 0.002 14 East
1 0.009 14 Northeast
1 0.005 14 West
1 0.006 14 North
2 0.004 8 Southeast
2 0.025 8 Northwest
2 0.02 8 Southwest
2 0.0135 8 South

FIGURE 7 | AMASE experiment running with fires moving (mission clock 01:30).

TABLE 5 | UAVs simulation details.

UAV type Flight type Speed (m/s) Vertical speed (m/s) Pitch angle (x°) Max. Bank angle (x°) Min./Max. Speed (m/s) Energy rate (%/second)

Fixed-wing Cruising 30 0 0 30 10/40 0.049
Loitering 20 0 5 30 10/40 0.0083
Ascending 30 5 10 30 10/40 0.05
Descending 30 −5 −5 30 10/40 0.025
Dashing 40 0 −2 10/40 0.019

Multi-
copter

Cruising 20 0 0 30 0/25 0.074

Loitering 20 0 5 30 0/25 0.037
Ascending 20 5 10 30 0/25 0.075
Descending 20 −5 −5 30 0/25 0.05
Dashing 25 0 −2 30 0/25 0.049
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Tables 5 and 6 describe the UAVs and sensors configurations
based on the DJI Phantom 3 functionalities and capacities.

5 RESULTS

The simulation experiment was designed to test the hypothesis
that the proposed solution (DIMASS) is resource-efficient, i.e., it
adheres to both quantitative and qualitative metrics utilization in
comparison with the existing methods (parallel track, creeping
line, expanding squares, sector search, Zamboni, and Lévy flight)
based on the described parameters and constraints; and that
DIMASS provides a structured search plan which exploits the
best features of pseudorandom and fixed-pattern methods. The
evaluation results are categorized into agent and mission
parameters, algorithm parameters, and qualitative parameters.

5.1 Agents and Mission Parameters
Performance
Redundant search (both inter-agent and intra-agent
redundancy), coverage, and path divergence were evaluated.
These parameters are separated because of their strong
relation with the agents and mission activities, whereas the
next subsection focuses on the algorithms’ computational and
implementational analysis.

5.1.1 Redundant Search
Redundant search in fixed-pattern methods can be avoided by
configuring the sensor range in line with the inter-track
distance (e.g., the distance between the tracks in a parallel
track). However, the comparison starts with sensor range, rv =
5% of the searching space, which make all the waypoints of the
parallel track, creeping line, and expanding square methods
redundant. Sector search and Zamboni produce a low number
of redundant waypoints due to their path spread, as shown in
the supplemental document, i.e., no subsequent waypoints
overlapping due to their waypoints separation. Therefore, the
comparison considers Lévy fight and DIMASS. Because of the
randomness of the Lévy flight, mean and standard deviation
were calculated from fifteen (15) experiments. The number 15
is to justify the minimum angle used for DIMASS from
Figure 3, i.e., 30°. Thus, this is approximately equal to 15
iterations for the DIMASS process of searching for the best
angles, edges, and quadrants combination (i.e., 360°/15 = 24°).
Table 7 describes the redundant search performance

comparison. Each of the entries in Table 7 was obtained by
simulating the paths (e.g., Figures 2 and 3) and counting the
overlapping consecutive waypoints. For instance, from
Figures 2 and 3, the intra-agent redundancy of 2 for
DIMASS happens when the sensor range is rv = 10% and is
for the waypoints W10 and W11. The number of redundant
waypoints keeps increasing when the sensor range becomes
bigger and bigger. For the Lévy flight method, intra-agent
redundant waypoints are detected at every subsequent
waypoint generation, whereas inter-agent redundancy is
detected by exchanging the waypoint information among
agents. A total number of 15 rounds of different AMASE
missions was used for the Lévy flight, and the mean and
standard deviation were reported.

Table 7 shows that the proposed DIMASS minimizes the
number of redundant waypoints (both intra-agent and inter-
agent redundancies). The Lévy flight shows more occurrence
of redundant search and random behaviour (as can be seen
from the standard deviation values, σ). The result of DIMASS
in Table 7 is one of the possible solutions, and the best
solution can be found by stretching the angles, edges, and
quadrants to avoid redundant waypoints. Therefore, we can
conclude that, although DIMASS demonstrates good
performance in terms of redundant search, it is not as good
as the Zamboni or sector search. Again, the best DIMASS
solution (the DIMASS solution with the best angles, edges,
quadrants, and configurations) can provide a zero-tolerance
for redundant waypoints whenever possible.

5.1.2 Coverage and Path Divergence
Table 8 shows the coverage and path divergence performance
across the selected comparing methods. The coverage is reported
as the proportion of the total number of cells. The total number of
cells is 10, which is the same as the assumed sensor range for
coverage evaluation. As such, the value 1 means full coverage,
i.e., 10/10 for all cells covered. For the Lévy flight, the mean and
standard deviation of the values of 15 rounds of AMASEmissions
were reported.

From Table 8, DIMASS and some fixed-pattern methods
demonstrate high performance in terms of coverage. The path
divergence performance varies based on how the search
method spreads its path across the search area. For
example, considering the stable time and energy allocation,
it is obvious that the parallel track and creeping line will have
low path divergence based on their structure (as described in
their respective pictures from the supplemental documents),

TABLE 6 | Target detection sensor configuration.

Sensor type Video stream X/Y
resolution (px)

Min. X/Y
view (m)

Supported wavelength
band

Elevation Target detection range
(Microns)

Infrared Camera Type 1 256/192 55/55 Short-wave infrared 450 0.9–1.7 microns
Infrared Camera Type 2 256/192 55/55 Mid-wave infrared 450 2–5 microns
Infrared Camera 3 256/192 55/55 Mid-wave infrared 450 7–12 microns
Spectrum Camera 256/192 55/55 Electro-optical 450 0.4–0.76 microns
Thermistor (Temperature
Sensor)

- - Heat sensor 450 87o
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especially when the inter-track distance is small. Thus,
Table 8 shows that the path divergence and coverage vary
based on the path structure. As expected, the Lévy flight
demonstrates random behaviour in terms of coverage and
path divergence, which is luckily better than some of the fixed-
pattern methods. The results show higher performance in
DIMASS coverage and path divergence despite not being the
best solution of DIMASS (i.e., DIMASS best solution
configure the best configurations of angle, edge, and
quadrants).

Regarding the relationship between the number of
uncovered cells of a DIMASS and coverage plan. The
square root of the total number of cells (Sn) and the sensor
range (rv) were used for the computation. For example, if the
number of cells is 100, then the square root (Sn) is = 10. An
observational result for a single UAV (Figure 3) shows that
when (Sn) = 4, Cuc = 0 (number of uncovered cells), and when
Sn > 4, then the number of uncovered cells Cuc are the positive
prime numbers P+ after each increment, e.g., if (Sn) = 5, then
the number of uncovered cells is 2. We acknowledge that the
result is based on observation using the plan in Figure 3.
Example and code of the visualized measurement process have
been added to the supplemental documents. The uniqueness
of the Delaunay triangulation makes different DIMASS plans
have different outcomes. An interesting part of the result is
how the number of uncovered cells became structured in line
with the sensor range (i.e., keep increasing in a structured
pattern, e.g., 0, 1, 2, 3, and 5). In conclusion, the coverage for
the agents depends on the planned path, and the result
shows a certain level of structure in the number of
uncovered cells.

5.2 Algorithms Complexity Performance
Comparison
Table 9 describes the algorithms’ complexities performance
comparison, which could be used in grading the
computational and implementational efforts of the algorithms.
From Table 9, DIMASS shows good performance in terms of
time complexities (being linear) and cyclomatic complexities. The
cyclomatic complexity of the fixed-pattern methods follows the
authors’ implementation as provided in the supplemental
document (a different implementation may give a different
result). The authors tried their best to reduce the cyclomatic
number during implementation (by avoiding unnecessary loops,
functions, etc.). As such, a lower number can be achieved with a
different implementation because there are many ways of
implementing a task in object-oriented programming
languages, especially the applied Java programming language
(codes can be found in the supplemental documents).

5.3 Qualitative Metrics Performance
This subsection discusses the qualitative metrics performance
comparison of the algorithms.

5.3.1 Scalability
Definition 3.2, Definition 3.3, Proposition 1, and control rules for
initial seeds waypoints demonstrate the possibility of applying
Algorithm 1 (DIMASS) to multiple agents in a scalable manner.
For instance, rules can be applied to control the initial waypoints
and overall plan variation for multiple agents without agents’
interaction, e.g., using Definitions 3.2 and 3.3, as shown in
Figure 4. As such, multiple agents’ solution requires a lower

TABLE 7 | Redundant search performance comparison.

Sensor
Range (rv)

D (%)IMASS intra-agent
redundancy

DIMASS inter-agent
redundancy

Lévy flight intra-agent
redundancy

Lévy flight inter-agent
redundancy

5 0 1 4 (2) 4.7 (2.11)
10 2 2 9 (4.76) 9.8 (4.80)
15 3 3 7.9 (3.75) 9.8 (4.13)
20 4 4 9.4 (3.37) 10.9 (3.11)
25 4 4 11.2 (2.48) 13.3 (2.54)
30 5 4 11.5 (3.84) 14.2 (4.09)
35 6 4 14.9 (6.89) 18.2 (8.04)
40 6 4 12.6 (3.17) 15.3 (3.89)
45 6 5 17.6 (3.60) 18.26 (2.77)
50 6 7 18 (2.83) 21.6 (3.89)

TABLE 8 | Coverage and path divergence performance comparison.

Algorithm Path divergence (km2) Coverage

DIMASS 962.33 1
Lévy flight (Chawla and Duhan, 2018) 434.17 (281.20) 0.64 (0.28)
Parallel track (Bevacqua et al., 2015; Jensen-Nau et al., 2021) 128.03 1
Creep lining (Bevacqua et al., 2015; Jensen-Nau et al., 2021) 252.64 1
Sector search (Bevacqua et al., 2015; Cabreira et al., 2019) 588.55 0.69
Expanding squares (Bevacqua et al., 2015; Cabreira et al., 2019) 172.28 0.75
Zamboni search (João, 2012) 518.06 1
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computational demand, number of agents’ interaction, energy
(i.e., information exchange consumes power), mission time (due
to absence of interaction), etc., based on the algorithm complexity
of Table 9. The DIMASS has linear complexity (from Table 9)
because a plan for n number of agents can be generated at once
when distinct protocols (rules) are specified. That is, agents can
generate their plans independently. Similarly, the Lévy flight
approach (Chawla and Duhan, 2018; Sutantyo et al., 2011) can
be considered as scalable because agents generate their plans
independently (i.e., the plan efficiency is controlled by the Lévy
distribution). However, the coordination of agents is challenging
due to the pseudo-randomness of the waypoints’ generation
process. On the other hand, structuring the fixed-pattern
methods is quite challenging. This would require each agent’s
plan consideration and revision, which increases the time
complexity and makes scalability worse. For instance, assume
the implementation of a parallel track (implementation picture is
available in the supplemental documents folder) for four UAVs,
track balancing is quite challenging due to inflexibility. The
effective structuring of paths and tracks is challenging because
it possesses a fixed structure, and the level of the challenge
increases based on the number of agents. The same challenge
happens with other methods such as parallel track, Zamboni
search, and expanding squares (Cabreira et al., 2019; Bevacqua
et al., 2015; João, 2012). For example, the challenge could be
during section segmentation (i.e., vertically or horizontally, as
described by the parallel track scalability picture of the
supplemental document). Thus, the associated metrics for
scalability are the cyclomatic and time complexities of Table 9
with respect to the resource utilization results of Tables 8 and 7.
That is, the lower, more stable, and linear the time and cyclomatic
complexities, the higher the scalability, and DIMASS shows a
good performance.

5.3.2 Adaptability
The ability to adjust the waypoints angles, edges, and projecting
quadrants of DIMASS (Algorithm 1) supports its adaptability.
For instance, it provides a unique way of monitoring the area
coverage tasks, e.g., directing agents’ final waypoints close to the
charging points when needed, searching for the best solution,
controlling location’s number of visits using probabilities,
detected fire (target) mapping, roads mapping, etc. For
example, assume UAV4 (A4) from Figure 1 detects the fire
O1 (based on the sensor state), the fire mapping task could be a
set of short range waypoints in terms of angles (θi), quadrants
(Qi), and edge (Ei) length to map the fire shape. That is, the

transition of the agents’ belief and action configuration is
modeled as O : γi × Scondition × δi → wi (θi × Qi × Ei) (all
symbols were defined in Section 3). In other words, the choice of
angle, edges, and quadrant size is defined jointly by the agent’s
situation (sensor state, i.e., belief and location) and
environmental condition, e.g., the PC information on wind
speed, wind direction, etc., which determine the fire (target)
spread rate. For instance, the fire spread rate increases with an
increase in wind speed. As such, the mapping task can be a zig-
zag path of the locations with fire presence and absence
continuously, i.e., a series of waypoints with a configuration
of when a fire is detected until when it is absent. Similarly,
considering the scene in Figure 1, when a road detecting agent
finds its target, it would track that road by tilting its sensor
within a certain radius, edge lengths, quadrants, and angles.
Probability could be assigned to interesting k-previous
waypoints (past waypoints), e.g., junctions, such that when
the agent finishes its current task, it will return to the
location and continue from there. The locations probabilities
marks could be stored in the agent’s short term, medium- or
long-term memories based on the saliency of the waypoint. For
example, if the available detected roads could give a good
evacuation plan, then another road tracking could be marked
as non-important by lowering its junction’s probability value
until the exit of the critical situation. This process resembles the
operation of simulated annealing in terms of memory
categorization and probability assignment; and smart Rapidly-
exploring Random Tree (RRT) in terms of radius assignment
(Nasir et al., 2013; Varty, 2017). That is, the projection angle,
quadrant, and edge are based on the road detection radius and
inclination towards the direction of the road. Lévy flight lacks
adaptability due to the pseudorandom waypoint generation
(Chawla and Duhan, 2018; Nurzaman et al., 2009). The
structure of the fixed-pattern methods (square, rectangular
and triangular shapes) affects their adaptability, e.g., during
narrow space exploration. Thus, Algorithm 1 (DIMASS) can
be extended to handle different forms of tasks, e.g., mapping
using different waypoints’ edges, angles, and quadrant
configurations. For the Lévy flight method, waypoints
controlled from pseudorandom number generation is difficult
or even impossible due to the standard deviation values of Tables
7 and 8. The fixed-pattern methods geometric shapes affects
their adaptability (e.g., assume applying any of the fixed-pattern,
e.g., parallel track, sector search, etc., search for road tracking).
This will be difficult unless full search space coverage is needed.
Thus, we propose the number of path control elements

TABLE 9 | Cyclomatic complexity and time complexity performance comparison.

Algorithm Cyclomatic Complexity Time Complexity

DIMASS 2 O(n)
Lévy flight (Chawla and Duhan, 2018) 3 O(n)
Parallel track (Bevacqua et al., 2015; Jensen-Nau et al., 2021) 7 O (n2)
Creep lining (Bevacqua et al., 2015; Jensen-Nau et al., 2021) 9 O (n2)
Sector search (Bevacqua et al., 2015; Cabreira et al., 2019) 11 O (n2)
Expanding squares (Bevacqua et al., 2015; Cabreira et al., 2019) 7 O (n2)
Zamboni search (João, 2012) 7 O (n2)
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(quadrant, edges, and angles) as the measure for comparing the
adaptability of the algorithms as described in Table 10.

Table 10 describes the algorithms’ adaptability measures using
angle, quadrants, and edges customization as the measuring
metrics. Therefore, based on the result in Table 10, DIMASS
has the highest number of controllable path elements (angles,
quadrants, and edges length).

5.3.3 Predictability
From the fixed-pattern methods of the supplemental document
and the DIMASS (Algorithm 1), agents’ locations can be
estimated based on their speed and the plan generation rules.
For example, from Figure 3, if a UAV is starting from waypoint
W1 with a speed of 30 m/s, assume the length between waypoints
W1 and W2 is 5.6 km; then, at the end of its second minute, it is
expected to be 3.6 km away from the initial point (i.e., 2 × 60 × 30/
1,000). Note that other reports could be incorporated, e.g.,
upwind and downwind acceleration and retardation. Thus, the
predictability feature would help data collection (by arranging
rendezvous among agents) and failure recovery (by estimating
agents’ location). Additionally, the predictability feature could
help in structuring the agents’ sensing range either periodically
(after every time threshold) or waypoint-based. For the Lévy
flight approach, predictability is difficult based on the standard
deviation values of Tables 7 and 8, while fixed-pattern methods
and DIMASS are predictable. One could say the possible solution
to improve the predictability of the Lévy flight is to limit the seed
of the random numbers. Interestingly, limiting the range of the
random number seeds for Lévy flight has no effect on its
predictability, as described by the results in Table 11. The
values were taken from the average of 10 different AMASE
experiments.

Table 11 shows that limiting the Lévy flight random number
seeds range has no effect on its predictability even with the least
range of 1–5 numbers. For example, from Table 11 #1, the range
1–5 has higher path divergence than #3 with range 1–15 and #4
with range 1–20. Thus, the number of waypoints and path
divergence demonstrates no relation with the random number
seeds ranges based on the mean and standard deviation values in

Table 11. This means predictability of Lévy flight is difficult to
achieve through random number seeds control.

6 DISCUSSION

The experiment compared DIMASS with examples of existing
methods across qualitative and quantitative metrics. The results
in Tables 8–9 show that the DIMASS delivers a solution with
good coverage, path divergence, time complexity, cyclomatic
complexity, redundant search, adaptability, predictability, and
scalability, despite being the non-best solution, i.e., the evaluation
used fixed protocols in which shorter edges are half of the longer
ones from Figure 3. The DIMASS best solution can be obtained
by stretching the edges, angles, and quadrants through searching
and information exchange until the best solution is found (i.e., a
solution that best utilizes the evaluation metrics). For example,
the number of visits to a cell can be managed using probabilities,
i.e., an increase in the probability of the cell after each visit. This
will allow waypoints adjustment (i.e., edges, angles, and
quadrants adjustment) based on cells’ number of visits
probabilities. The redundant search comparison considers two
UAVs because the higher the number of UAVs, the higher the
redundant search (Koenig and Liu, 2001; Li et al., 2011). The
predictability supports the estimation of agents’ current and
future locations, which in return supports data collection
rendezvous between PCs and micro UAVs; and promotes
failure recovery (i.e., by estimating the location of the UAV
based on speed and environment exogenous variables, e.g.,
wind speed, wind direction, etc.). In terms of scalability,
DIMASS seed waypoints generation and the uniqueness of the
waypoint generation rules [based on the Delaunay triangulation
uniqueness (Cignoni et al., 1998)] ensure a scalable solution
(i.e., there is no need for revising all the agents’ plans when
seeds waypoints and rules are different). Thus, this supports
independent agents’ planning. As such, the uniqueness of the plan
and policy variation ensures stable resource demand (measured
based on the running time and cyclomatic complexity) for a
larger number of UAVs, as described in Figure 4.

TABLE 10 | Algorithms adaptability comparison.

Algorithm Controllable path
elements

Controllable elements Comments

DIMASS 3 \{quadrants, angles,
edges\}

All variables can be controlled

Lévy flight (Chawla and Duhan, 2018;
Sutantyo et al., 2011)

0 ¬\{quadrants, angles,
edges\}

None of the variables can be controlled

Parallel track (Bevacqua et al., 2015;
Jensen-Nau et al., 2021)

1 \{¬quadrants, ¬ angles,
edges\}

Edges can be controlled, whereas angles and quadrants are fixed
because angle has to be either 90° or 180°

Creep lining (Bevacqua et al., 2015;
Jensen-Nau et al., 2021)

1 \{¬quadrants, ¬ angles,
edges\}

Edges can be controlled, whereas angles and quadrants are fixed
because angle has to be either 90° or 180°

Sector search (Bevacqua et al., 2015;
Cabreira et al., 2019)

2 \{¬quadrants, angles,
edges\}

Changing quadrants configuration of sector search will make it not to be
in sector form anymore

Expanding squares (Bevacqua et al., 2015;
Cabreira et al., 2019)

1 \{¬quadrants, ¬ angles,
edges\}

Edges can be controlled, whereas angles and quadrants are fixed
because angle has to be either 90° or 180°

Zamboni search (João, 2012) 1 \{¬quadrants, ¬ angles,
edges\}

Edges can be controlled, whereas angles and quadrants are fixed
because angle has to be either 90° or 180°
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Adaptability will be maintained by changing the projection
angles, quadrants, and edges of a plan. For example, target (fires)
tracking would be done by changing the angles, edges, and
quadrants based on the known dynamic variables (e.g., tilting
sensors toward the expected fire direction based on wind speed).
Based on observation and analysis of the outlinedmethods, most of
the fixed-pattern methods are highly structured and have poor
adaptability. For example, parallel track, creeping line, expanding
squares, Zamboni, and sector methods (Bevacqua et al., 2015;

Cabreira et al., 2019; João, 2012) as described in the supplemental
documents folder, all follow a fixed structured geometric pattern
and explore the environment sequentially. However, sector search
is similar to DIMASS in terms of adaptability. For example, from
the sector search figure of the Supplemental document, the angle
and projection edges can be changed to incorporate multiple
agents. Despite the potential for adaptability, sector search lacks
the following features in comparison with the DIMASS. Sector
search follows geometric shapes, which make them inappropriate

TABLE 11 | Effect of changing the Lévy flight random number seeds on predictability.

# Random number seed range Avg. Path divergence km2 μ (σ) Avg. Number of waypoints (σ)

1 1–5 273.58 (73.34) 7.6 (1.16)
2 1–10 288.39 (61.75) 10.8 (1.90)
3 1–15 260.34 (94.42) 6.2 (1.46)
4 1–20 275.86 (119.35) 7.4 (1.58)
5 1–25 193.87 (43.64) 5.1 (0.64)
6 1–30 293.29 (83.3) 7.8 (1.64)

FIGURE 8 | Example of one of the UAVs fire detection presentation using a heat map.
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for narrow space exploration, e.g., road mapping, whereas, in
DIMASS, policies are used to control the path projections.
Thus, adaptability is limited in sector search, as described in
Table 10. Similarly, in Voronoi tessellation, agents visit the
centres of the circumcircles of the Delaunay Triangulation
(Hasegawa et al., 2012; McLain et al., 2001; So and Ye, 2005).
This approach resembles the initial version of our algorithm in
Appendix 1, with the absence of layering. In conclusion, DIMASS
has some similarities with sector search and Voronoi tessellation
but provides superior performance across the outlined metrics. In
terms of sensor information presentation, say to the Subject Matter
Experts (SMEs), the search space can be segmented into equal cells
with target detection highlighted by a different colour, i.e., red for
fire, green for covered cells (Figure 8). Figure 8 describes a heat
map presentation for UAV 4 of Figure 4 using 900 (30 by 30)
equals cells, i.e., S = {s1, s2, s3, ..., s900}. Each fire detection at a
particular location (cell Si) is marked with a different colour.
Therefore, the heat map will produce a picture of the situation
of the environment at the PC or host levels.

6.1 Moving From Simulation to Reality
The implementation of DIMASS on real UAVs is simple. The
process starts by selecting the seeds waypoints (e.g., the longest
non-cross waypoints in Figure 3), and then a function can be
developed to generate the remaining waypoints by taking some
parameters, e.g., using the function generateWaypoint (Lx, Ly, e, q,
θ, h, n), where Lx and Ly are the longitude and latitudes of the
current waypoint, e is the edge length, q is the projecting quadrant
(first to fourth), θ is the projecting angle, h is the height of the
waypoint (e.g., to avoid collision), and n is the number of
waypoints in a layer of the MAP/DULAR solution (based on

the Delaunay triangulation theorems discussed). In other words,
the function generateWaypoint (Lx, Ly, e, q, θ, h, n) produce a
waypoint based on the current waypoint, opposing edge, angle (θ),
number of waypoints in a layer, and the implemented rules as
described in Section 3. Waypoints latitudes and longitudes
distance differences (i.e., for e) can be computed using the
Haversine formula or Euclidean distance can be used for planar
coordinates. This can be implemented in any programming
language (e.g., Java, as described in the supplemental documents).

The generated plan can be transferred easily to the UAVs using
the respective UAVs’ (drone’s) mobile application (downloaded
from either Google play store or Appstore), e.g., DJI GO, DJI Pilot,
FreeFlight 6, FreeFlight Pro, etc., for DJI and Parrots drones. Before
testing the proposed algorithm on real UAVs, the authors acquired
the operator and flyer identification numbers (drone flying
licenses) from the Civil Aviation Authority (CAA) of the
United Kingdom. The flying took place in one of the areas of
Birmingham in the United Kingdom, as shown in Figure 9, i.e., the
real UAV flying experiment took place in the United Kingdom,
whereas the fire spread experiment was conducted in Nigeria.
Figure 9 shows the implementation of DIMASS on the DJI Pilot
mobile app to explore a search space (forest) starting from
waypoint S to 11 (just like Figure 3). The plan creation and
modification (i.e., quadrants, edges, and angles configurations)
occurs simply by clicking and dragging waypoints. The
displayed distance between waypoints helps in defining edge
length (as described in Figure 9). In addition, the mobile apps
allow plans storage and deletion. Thus, the plan storage will allow
routine lookout planning for the team of UAVs (i.e., waypoint
plans can be saved and utilized for routine area searching, e.g.,
routine forest fire searching). Alternatively, waypoints can be sent
to the UAVs via python code for the programmable drones, e.g.,
DJI Tello Edu python application programming interface (API)4.
For larger UAVs, e.g., DJI matrices 100, onboard computers can be
mounted to perform information analysis and other complex tasks
(Alexis, 2019).

The authors flew three UAVs, Parrot Bebob 1 and 2 and DJI
Phantom 3. Each UAV has a controlling app running on a tablet
(one tablet per UAV). The outcome is similar to the simulation
results as described in Figure 4. Thus, the proposed DIMASS is
easy to implement on real devices.

6.2 Limitations
While we have demonstrated good performance of DIMASS,
both in simulation and real UAVs, there are a number of
limitations to explore in further work:

• Seed waypoints (first layer waypoints) need to be defined
systematically. In the case of a large number of UAVs, the
seed waypoints definition function must be systematic. For
example, using four UAVs (Figure 3) is less challenging than
50 UAVs unless rules grouping is applied (i.e., a group of
UAVs will be using different control protocols with others).
Thus, in a large team of UAVs, seed waypoints control will be

FIGURE 9 | Implementation of algorithm DIMASS on real drone android
application (DJI Pilot app).

4https://github.com/code4funSydney/Tello
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challenging. Therefore, layers configuration and control
policies will be difficult. Although this scalability issue can
be solved by using waypoints altitudes variations, Definition
3.2, Definition 3.3, Proposition 1, and seed waypoints
variation, any non-organized set of plans could cause team
disorganization (poor coordination). Thus, we agree that the
type of search task used for our use case would be best
performed by a team of around four to sevenUAVswhich are
controllable by a single expert (Baber et al., 2011).

• For a large number of layers and agents (e.g., UAVs), searching
for the best solution coulddemand large computational resources,
which must be bounded, e.g., by setting a number of iterations to
avoid plan delay. For instance, configuring the best edges for 10
UAVs given 50 seed waypoints could require a lot of information
exchange among UAVs. Therefore, large consumption of
memory, communication bandwidth, and processing power
will likely occur at the mission preparation stage.

• Policies for controlling plan updates need to be defined. As
such, in the case of a large number of UAVs, this will be
quite challenging to control.

• Collision avoidance requires Detect and Avoid (DAA)
techniques using sensors or some form of organization,
e.g., stop and pass rules (i.e., stop and wait for rules to avoid
collision), waypoints altitudes variation, etc. Again,
implementing effective collision avoidance for a large
number of UAVs and waypoints will be difficult.

7 CONCLUSION

We introduce a novel hybrid multiagent search algorithm for a
team of UAVs under destination uncertainty and limited agents’
resource constraints. The algorithm used mathematically derived
rules from the Delaunay triangulation process to control agent
waypoints’ efficient generation. The algorithm promotes

scalability, adaptability, predictability, and resource utilization of
the team of UAVs tasked to conduct the search mission. The
performance of the proposed algorithm was evaluated on a multi-
UAV mission for forest fire searching. Results proved an efficient
solution as described in Section 5. We believe that the proposed
algorithm is an advancement of the fixed-pattern and
pseudorandom methods. We suggest that instead of tasking the
agents with complex operations through communication and
messages processing during a search mission, we can make
their tasks easier by applying simple control rules. In addition,
DIMASS demonstrates easy implementation on real UAVs. Future
work will look at how the proposed algorithm will support a large
number of UAVs, agents decision-making, effective sensor
information collating process for a bigger team, agents control
through learning, and more path control theorems.
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APPENDIX 1: FIXED-PATTERN
(GEOMETRIC-PATTERNS) APPROACHES

This is the result of the initial version of DIMASS.

Algorithm A1. The Delaunay triangulation–based MAP/
DULAR algorithm.

TABLE A1 | Algorithm A1 performance.

Metric Value

Coverage 1
Path divergence 834.83 km2

Cyclomatic complexity 19
Running time O (n2logn)
Redundant search: sensor range:rv Number of waypoints A1(r), A1(R)
rv = 5% 0,0
rv = 10% 1,4
rv = 15% 5,2
rv = 20% 5,3
rv = 25% 5,3
rv = 30% 6,3
rv = 35% 6,4
rv = 40% 6,5
rv = 45% 6,5
rv = 50% 6,6
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