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Multi-agent task allocation methods seek to distribute a set of tasks fairly

amongst a set of agents. In real-world settings, such as soft fruit farms,

human labourers undertake harvesting tasks. The harvesting workforce is

typically organised by farm manager(s) who assign workers to the fields that

are ready to be harvested and team leaders who manage the workers in the

fields. Creating these assignments is a dynamic and complex problem, as the

skill of the workforce and the yield (quantity of ripe fruit picked) are variable and

not entirely predictable. The work presented here posits that multi-agent task

allocation methods can assist farm managers and team leaders to manage the

harvesting workforce effectively and efficiently. There are three key challenges

faced when adapting multi-agent approaches to this problem: (i) staff time (and

thus cost) should be minimised; (ii) tasks must be distributed fairly to keep staff

motivated; and (iii) the approach must be able to handle incremental

(incomplete) data as the season progresses. An adapted variation of Round

Robin (RR) is proposed for the problem of assigning workers to fields, and

market-based task allocation mechanisms are applied to the challenge of

assigning tasks to workers within the fields. To evaluate the approach

introduced here, experiments are performed based on data that was

supplied by a large commercial soft fruit farm for the past two harvesting

seasons. The results demonstrate that our approach produces appropriate

worker-to-field allocations. Moreover, simulated experiments demonstrate

that there is a “sweet spot” with respect to the ratio between two types of

in-field workers.
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1 Introduction

At soft fruit farms (e.g., where strawberries, raspberries, cherries and blackberries are

cultivated), seasonal workers are employed to pick ripe fruit at harvest time. Due to the

increasing demand for soft fruits and shortages in seasonal workers (Pelham, 2017;

Duckett et al., 2018; Kootstra et al., 2021), farms are seeking innovative solutions for

managing their workforce during the harvesting season. Typically, on such farms, each

day a harvest manager determines which fields are ready for picking and howmany teams

(groups of workers) will be needed. Each team will harvest one or more fields. The harvest

manager then decides which workers should be assigned to each team and assigns a leader.
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When the workers arrive at the fields, the team leaders decide

which tasks each of the workers should perform. Workers

assigned as pickers harvest ripe fruits and place them into

punnets1 which are grouped in trays. The filled trays are then

transported to packing stations. The task of transporting trays to

packing stations can be performed by pickers, but can also be

given to workers assigned as runners2. Typically pickers are

remunerated based on the volume of ripe strawberries they

pick (i.e., according to a piece rate), whereas runners are paid

hourly rates. Therefore, at the packing stations, the trays are

weighed and a barcode is scanned to record the volume picked

and who picked the fruits.

When there is insufficient human labour for picking and

transporting fruit, the crop will suffer. In extreme cases, all fruit is

not harvested and some ripe produce will rot in the field. This

situation not only results in food waste, but also loss of

investment for the grower (Doward and Baldassari, 2018). A

range of strategies to address the labour shortage issue are being

explored. This includes introduction of robotic devices to assist in

the performance of harvesting and crop-care tasks. However,

thus far, research into practical applications of Artificial

Intelligence (AI) for effective management of the harvesting

workforce is scarce. The approach we propose here helps to

populate this void, particularly drawing on literature from AI

Planning and Multi-Robot Task Allocation.

The work presented in this paper seeks to address three

research questions: (1) Can an algorithm be developed that

organises workers into teams whose performance is

comparable or better than the teams manually organised on a

commercial fruit farm? (2) What is the most efficient ratio of

runners to pickers? (3) What is the most efficient strategy for

allocating tasks to pickers and runners? These three research

questions can be evaluated using historical picking data provided

by fruit farms. However, to evaluate our first question

thoroughly, challenges with processing “live” data, provided

incrementally (on a daily basis), must be addressed. The key

difference between the historical and live data sets considered

here is that the former is complete and the latter is incomplete

and often somewhat uncertain (e.g., daily values may sometimes

be corrected later). The results presented here are derived from

two data sources: a small research farm and a large commercial

farm. The small research farm provided historical data from

2020. The large commercial farm provided historical data from

2020 and, during the 2021 season, sent us live data on a daily

basis.

To create efficient teams (i.e., to consider our first research

question) the following three factors must be taken into

consideration. First, workers tire as the day progresses and

expect work to be fairly distributed amongst workers;

therefore, all workers should each work for roughly the same

amount of time. Second, to reduce a farm’s staff expenditure, the

overall staff time must be minimised whilst still maximising yield

(quantity of produce harvested). Workers must be motivated, in

particular, slower workers can be inspired by watching and

learning from quicker workers; and thus teams should contain

a mixture of worker abilities. Third, since pickers are paid by

piece-rate, when a worker does not pick enough to reach the

equivalent government-set hourly minimum wage, the farm

must top up the worker’s wage—making that worker more

expensive than one who harvests enough to meet (or exceed)

the minimum wage.

To investigate our second two research questions, a

harvesting simulation was developed. This simulation enables

teams to be evaluated with different ratios of runners to pickers.

Our work posits that approaches designed to address task

allocation in a multi-robot team can be adapted to manage

the human workforce on a soft fruit farm. Specifically,

market-based multi-robot task allocation strategies were

applied to the problem of assigning tasks to pickers and

runners. This paper investigates our questions empirically

using data collected from a small strawberry field and on a

large field at the commercial fruit farm (demonstrating that our

approach works at both scales). Results are predicted with respect

to labour efficiency and the outcomes are compared for when

different market-based task allocation mechanisms are

implemented. This paper contains three novel contributions:

1) a description of how our worker model is built from real-

world data; 2) details of our method for allocating workers to

picking teams (an overview of which was presented in an

extended abstract Harman and Sklar (2022a)), and 3) a

detailed evaluation of our fruit harvesting simulation using

the teams proposed by our team creation method.

Our work is motivated by two goals: one short term and one

longer term. The short-term aim is to automate the process of

organising the harvesting workforce, attempting to optimise the

performance of a given workforce each day as well as saving time

for farm mangers who currently organise teams manually. The

longer term aim is to develop a methodology that will allow a

farm to easily integrate robots in their workforce. Indeed, in the

not-too-distant future, robots may soon be filling gaps in the

shortages of seasonal workers (Das et al., 2018; Shamshiri et al.,

2018; Seyyedhasani et al., 2020a; Kurtser and Edan, 2020;

Kootstra et al., 2021); and therefore, robotic co-workers will

need to be managed alongside the human workforce.

Underpinning the methodology described here is the concept

of a worker model, learned from observing each worker’s

1 Punnets are the small, often plastic, containers in which soft fruits are
sold in grocery stores. The practice of pickers placing fruits directly into
saleable punnets limits the handling of each piece of fruit, which
reduces the possibility of bruising the produce, hence increasing
shelf life.

2 The strategy of assigning workers as either pickers or runners is
designed to take advantage of the skills of the fastest and most
efficient pickers, so they can dedicate all their time to picking and
not spend time transporting fruit to packing stations.
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performance during the harvesting season. The worker’s species

is agnostic: human or robot. Hence we anticipate being able to

adopt our methodology seamlessly for human-only and human-

robot workforces.

This paper is organised as follows. Section 2 highlights

related work in the literature on task allocation in multi-

agent/multi-robot systems, as well as the application of

artificial intelligence in agriculture. Section 3.1 explains how

the farm’s data is processed to develop the worker model.

Section 3.2 describes our approach to allocating human

workers to teams, addressing the worker-to-field assignment

problem; and Section 3.3 details our harvesting simulation.

Section 4 explains the experiments we conducted, within a

real-world scenario, in order to evaluate the impact of our

approach. Section 5 presents and analyses our experimental

results. Finally, we close with directions for future work

(Section 6) and a summary of our contributions (Section 7).

2 Background

AI researchers aim to develop machines that are capable of

making decisions, searching, planning, solving problems and/or

performing tasks that humans would normally perform (Minsky,

1961; McCarthy, 2007; Russell and Norvig, 2009). Multi-Agent

Task Allocation (MATA) techniques address situations in which

a group of agents (e.g., humans, robots and/or software agents)

must work together to complete a set of tasks. They aim to make

decisions regarding which agent should perform which task, and

usually construct a plan (i.e., a sequence in which the tasks should

be executed). Multi-Robot Task Allocation (MRTA) techniques

encompass the same features as MATA regarding efficient

coordination of tasks and also incorporates aspects of the

classical Vehicle Routing Problem (VRP) (Dantzig and

Ramser, 1959) in order to take into account some of the

constraints imposed on robots operating in the physical

world. MATA problems have been classified in the literature

according to several taxonomies that distinguish specific features

of tasks and task environments (Gerkey and Matarić, 2004;

Landén et al., 2012; Korsah et al., 2013). From that literature,

the parameters that are particularly relevant for the work

presented here are: single-robot (or agent) (SR) vs. multi-

robot (MR) task—whether each task is performed by a single

actor or multiple actors; static (SA) vs. dynamic (DA)

assignment—whether all the tasks are known prior to

executing any task (static) or new ones appear as some tasks

are being executed (dynamic); independent (IT) vs. constrained

(CT) task—whether or not the assignment of one task is

dependent on the completion of another; and the further

distinction between in-schedule (ID), cross-schedule (XD) and

complex (CD) dependencies for CT tasks. Our field assignment

problem combines MR, SA and IT since multiple actors will be

assigned to each field (task). Our within-field task allocation

scenario is unusual because it combines SA and DA tasks within

an XD environment (runner tasks are dependent on picker tasks

and vice versa).

When the tasks require that the robots are mobile and must

travel to particular locations in order to execute their assigned

tasks, then the problem entails aspects of Multi-Robot Routing

(MRR), which is a type of multi-depot, multi-agent Travelling

Salesman Problem (mTSP) (Bektas, 2006) and a variant of more

general Vehicle Routing Problems (VRP) (Laporte, 1992). Recent

real-world examples include disinfecting public areas in order to

reduce spread of contagious diseases (Reuters, 2020) and

delivering food (Hern, 2020). A key challenge is to decide

which tasks—e.g. regions to spray with disinfectant or meals

to pick up and deliver—should be assigned to which robots so

that the overall execution of amission (set of tasks to be executed

within a particular overall timeframe) is efficient: resources are

used effectively, so that time and energy are not wasted and,

often, some reward is maximised.

A popular family of solutions to MRTA problems are

market-based auction mechanisms. As mentioned within the

literature (Kalra et al., 2005; Dias et al., 2006; Heap and

Pagnucco, 2011; Schneider, 2018), auctions are executed in

rounds that are typically composed of three phases: 1)

announce tasks—an auction manager advertises one or more

tasks to the agents; 2) compute bids—each agent determines its

individual valuation (cost or utility) for one or more of the

announced tasks and offers a bid for any relevant tasks; and 3)

determine winner—the auction manager decides which agent(s)

are awarded which task(s).

A very simple method, Round Robin (RR), differs from

auction mechanisms in that only the winner determination

phase occurs. The winner is determined by cycling though the

agents, assigning each of them a task in turn. The process

concludes when all tasks have been assigned. RR benefits from

low computation costs and results in (roughly) even distribution

of tasks (i.e., the number of tasks each agent is assigned differs at

most by 1 when any agent is capable of performing any of the

tasks on offer). Nevertheless, the cost of a task is not considered,

synergies between tasks are not exploited and the result is highly

dependent on the order in which tasks and agents are matched.

For MRTA problems, RR alone can result in inefficient task

allocations. We therefore employ a modified RR algorithm to

create an initial assignment of workers to fields. Our solution is

then modified to improve its efficiency and how well it meets the

farm’s specifications.

There is a substantial body of work on the application of

auction-based mechanisms to the problem of allocating tasks for

multi-robot teams. Probably the most well-known approach in

the literature is the Sequential Single Item (SSI) method (Koenig

et al., 2006). In SSI, several tasks are announced to teammembers

at one time. Each team member, or “bidder”, responds with a bid

representing the value (utility) of the task to them, incorporating

cost to execute and potential reward. The centralised auction
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manager, or “auctioneer”, then determines the winner by picking

the bidder with the lowest bid for any task. The auction repeats in

rounds until all tasks have been allocated. Auction mechanisms

take into account both the self-interests of individual bidders as

well as group goal(s) represented by the auction manager—hence

their popularity in multi-agent systems, which seek to balance

both sets of, potentially conflicting, goals.

SSI combines the strength of combinatorial (Berhault et al.,

2003) and Parallel Single Item (PSI) (Koenig et al., 2006)

auctions. In a combinatorial auction, robots bid on bundles of

tasks; with PSI, all tasks are allocated in a single round. PSI is

simple and requires less computation and communication than

SSI; but it cannot capture synergies between tasks and resulting

allocations may be sub-optimal. Compared to a combinatorial

auction, SSI is fast (the auction runs in polynomial time in the

worst case) and efficient, while also being able to produce an

allocation that is close to or within a guaranteed factor away from

optimal (Koenig et al., 2006). SSI has been a popular choice for

multi-robot task allocation, and many variants have been studied

(e.g. Heap and Pagnucco (2013); Nunes and Gini (2015);

McIntire et al. (2016); Nunes et al. (2016); Schneider et al.

(2015, 2016)).

Nunes and Gini (2015) proposed a modified version of SSI

called TeSSI to efficiently allocate a set of tasks with temporal

constraints to a team of robots. TeSSI determines an allocation by

minimising the total run time (the time until the last task in the

environment is completed) and maximising the total number of

tasks that can be executed. Simulation experiment results show

that weighting different features in a single objective function can

be advantageous for meeting customised requirements and

constraints. In later work (McIntire et al., 2016; Nunes et al.,

2016), the authors consider methods to efficiently allocate tasks

with precedence constraints and present a modified version of

TeSSI to solve more complex MRTA problems.

Heap and Pagnucco (2013) proposed sequential single-

cluster (SSC) auctions for solving pick-up and delivery tasks

in a dynamic environment. The problem takes the

dependencies between tasks into account when making an

allocation. A delivery task only becomes available when a

robot performs a pick-up task to collect an object to deliver.

SSC announces and assigns clusters of geographically

neighbouring tasks in each round, instead of only one task

(SSI) or every task (PSI) per round. A cluster is a set of

delivery tasks with short distances between independent

pick-up and drop-off locations.

Schneider et al. (2015) conducted an empirical analysis of

different auction-based mechanisms. Results revealed that the

advantages of the widely used SSI-based methods can be greatly

diminished when tasks are dynamically allocated over time.

Subsequently, the performance of task allocation mechanisms

in a set of parameterised mission environments was investigated

(Schneider et al., 2016). Results showed that some task allocation

methods consistently outperformed all others under specific

mission parameters. However, in the environments evaluated,

no single methodmanaged to outperform all others across all sets

of parameters.

Sullivan et al. (2019) investigated improving the performance of

SSI when used to assign tasks to heterogeneous robot teams. The

cost of a bid is the travel time (calculated using Euclidean distance)

plus the time to enact the task, which is based on the robot’s

expertise. Further, a robot will only bid on tasks for which it has a

relatively high level of expertise (in comparison to other robots).

Similarly, in our approach, we assign each agent an expertise level for

each type of fruit picked. In contrast, our taxonomy—and thus how

we address the problem—are different. In our worker-to-field

assignment problem, each task (field) requires multiple agents/

pickers (MR); whereas, Sullivan et al. (2019)’s tasks are

performed by a single robot (SR). Moreover, Sullivan et al.

(2019) use SA andDA, but not within anXD environment as ours is.

Auction-based methods have been applied to various

application domains, which demonstrates their versatility and

popularity. This includes inspecting airport runways to discover

defects (Shi et al., 2021), allocating vehicles to passengers (namely,

on-demand-transport) (Daoud et al., 2021) and UAVs for

performing agricultural tasks, such as pesticide spraying and crop

monitoring (Hu and Yang, 2018). Hu and Yang (2018) propose a

decentralised auction. Decentralised approaches can produce

allocations in less time than centralised approaches and can be

beneficial in environments where communication to a centralised

server is limited. The labour management approach currently used

on farms is centralised–the farm manager organises the workers

using spreadsheets. Therefore, we opted for a centralised approach

in the work presented here.

Within the literature,MRTAproblems have also been addressed

using alternative techniques, including metaheuristics, such as

Genetic Algorithms. Genetic Algorithms (GAs) are inspired by

natural selection, in which the individuals best suited to their

environment survive and breed, thus progressively adapting the

suitability of the population for its environment. In AI, GAs aim to

minimise/maximise a fitness function by iteratively adapting a set of

possible solutions—i.e. the population. Patel et al. (2020) introduce a

decentralised GA and compare minimising the total distance

travelled by robots, minimising the maximum distance travelled

by the robots and a combination of the two. In contrast, Martin et al.

(2021) compare Branch and Bound (B&B) to GAs for allocating

tasks to ground and aerial vehicles within a solar thermal plant. B&B

starts with an initial solution and creates adapted solutions

(branches out) from that initial solution. Their experiments

demonstrate that B&B can create optimal solutions but does not

scale to large problems. Their GA scaled well but did not find the

optimal solution.

One area of application for multi-robot teams that has been

gaining attention recently is agricultural robotics (Duckett et al.,

2018). This extremely challenging area presents many opportunities

to consider not only traditional problems faced in robotics around,

e.g., navigation, control, sensing, manipulation and coordination,
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but also emerging issues around human-robot collaboration. State-

of-the-art work in agricultural robotics includes use of autonomous

robots to drive in fields and collect sensor data, which is analysed

usingmachine learning and computer visionmethods to identify ripe

fruit (Kirk et al., 2020), map regions in need of irrigation (Chang and

Lin, 2018), locate weeds (Liu and Bruch, 2020), as well as facilitate

many other types of tasks that require precise object detection.

A wide range of robotic solutions for picking and

transporting crops are currently being developed, including

harvesting sweet peppers (Elkoby et al., 2014; Kurtser and

Edan, 2020) and other fruiting vegetables (Shamshiri et al.,

2018). When harvesting crops, if a produce container has

been filled, it must be transported to a storage and/or packing

location. Some researchers have experimentally evaluated hybrid

human-robot solutions, where robots perform the transportation

tasks while humans do the picking (Das et al., 2018; Seyyedhasani

et al., 2020a,b). The methods presented in this paper differ from

these in several important ways: we organise teams of workers

based on data-backed models of individuals’ skills, derived from

the information already gathered by farms to compute piece

rates; we apply multi-agent coordination algorithms to allocate

tasks to pickers and runners; and our assignments are actor-

agnostic, applying equally well to human or robot workers.

Despite the recent advances inAI and robotic technologies, farm

managers and supervisors still manually determine which workers

should be assigned to which fields and which ratio of pickers to

runners to use, typically following a cumbersome and error-prone

process that involves juggling spreadsheets from several different

commercial IT3 systems (e.g. farm planning, worker attendance,

payroll). The over-arching applied objective of our work is to

automate this process, which can be especially time-consuming

and complex on a large farm. Our strategy takes into consideration

the practical challenges associated with transferring a laboratory

approach into a real-world setting. Our previous work (Harman and

Sklar, 2021a,b) evaluated different ratios of pickers to runners. An

overview of our team allocation method appeared in an extended

abstract (Harman and Sklar, 2022a). In the work presented here, we

explain in depth all the components of our harvesting labour

management decision-making process, evaluate our methods on

new (additional)metrics over a longer time period than our previous

work, and provide a more detailed comparison and analysis of the

different picker and runner task allocation strategies we have

considered.

3 Methodology

This section describes our overall approach to the use of multi-

agent systems methodologies in the management of human labour

on a soft fruit farm.Our aim is not only to reduce the amount of time

wasted by people waiting for completion of dependent tasks within a

heterogeneous workforce, but also to save time for farm managers

who currently assign workers to teams and tasks manually. First, we

describe our methodology for modelling worker behavior, which is

the basis for formulating teams—the second component of our

methodology—and serves to inform the third component, where

roles are assigned within teams and tasks are allocated using our

simulation system.

3.1 Modelling workers

At the core of our methodology is a model of the behaviour of

individual pickers. This is a data-backed model, built using

information already collected on many farms, as mentioned

earlier and explained in detail below. Our worker model is

based on an estimate of how quickly a picker harvests each

type of fruit grown on the farm. Due to the variations in picking

techniques required for different types of fruit, some pickers are

skilled at picking multiple fruits whereas others find particular

types of fruit challenging. Moreover, some types of fruit are

generally picked at slower speeds (measured in grams per

second) than other types of fruit due to variations in weights,

sizes, shapes and growing positions. Therefore, for each type of

fruit, each picker will have a different picking speed.

When in a field, pickers place the harvested fruit into punnets

(containers) which are held in trays. After a tray has been filled it is

taken to a packing station, where it is weighed and scanned. This

results in a record being entered into a database; for example, the

following data is recorded when a tray is checked-in:

WorkerID: 001,FieldID: F0,Weight: 4000,Date: 2020 − 05

− 04,Time: 07:36:44

For each worker, a picking speed, in grams per second, is

computed for each type of fruit they have picked previously4.

This is calculated by summing the weights for a particular date,

dividing this by the duration the picker picked for, and finding

the average over all their dates. Each field contains a single type of

fruit (e.g. strawberry, raspberry, blackberry, cherry), thus the type

of fruit is derived based on the FieldID in the record logged.

When using the live (incremental) data set, if the system

encounters a worker who has not picked a certain type of fruit

(i.e. does not have any historic information in our data set), it

cannot assume that the worker is not able to pick that type of

fruit. They could be a new employee whose past experience is

3 Information Technology.

4 Note that at least two trays of the same type of fruit must be recorded
in order for the picking speed to be determined; otherwise the picker is
assigned the default picking speed, similar to those who have not
picked any of that type of fruit, as explained in the ensuing paragraph.
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unknown to our system, or they could be a current employee who

has never previously been assigned to a field with a particular

type of fruit. To set the speed of these workers, it is desirable for

farm managers to be able to categorise workers as having

particular expertise for each type of fruit. Therefore, rather

than guessing at the ability of an unknown individual, we

have developed a method of labelling pickers based on

historic speeds across the workforce. Using k-means clustering

(Mitchell, 1997), pickers with known picking speed data are

categorised into clusters and the centre of a cluster is used as the

picking speed for each member of that cluster. When the clusters

are sorted, the cluster number is used as a proxy for each worker’s

expertise level for each type of fruit they have picked. For our

experiments with presented here, the system used 6 clusters and

assigned levels 0–5. For unknown workers, the system assigned

expertise level -1 thus defaulting to a picking speed lower than

pickers with experience.

3.2 Allocating workers to teams

Each day a farm manager inspects the crops to estimate

the yield and decides which fields should be picked. Based on

the number of team leaders employed by the farm, some fields

will be grouped together so that they are picked by the same

team of pickers (because usually there are more fields than

teams). The first goal of our system is to decide which workers

should be assigned to which field(s), saving farm managers

from having to undertake this job on a daily basis—which

typically involves an awkward, manual process of juggling

spreadsheets produced by different software systems and can

be quite time consuming, particularly in the height of the

season when there are hundreds of workers to manage. An

overview of our method was presented in an extended

abstract (Harman and Sklar, 2022a); the detail is

presented here.

Our method addresses three challenges: (1) it must be fast

to compute; (2) it must be able to make decisions from

incomplete information; and (3) it must produce a well-

balanced distribution of workers to tasks. To meet the first

challenge, we base our method on the well-known and simple

Round Robin (RR) strategy described in Section 2. This has

been shown to perform faster than auction mechanisms but

can produce unfair distributions of workload (Schneider et al.,

2016); so, as explained below, we repair the baseline RR to

account for this shortcoming and address the third challenge.

To meet the second challenge, we evaluate the baseline RR

against three variations and under two conditions: one in

which complete information about harvesting tasks and

workers is known at the time of making the allocation and

one in which only partial information is known. To meet the

third challenge, our method attempts to balance the load

amongst workers, e.g. fields that take less time to pick

should have fewer workers than those that take a long time

to pick. If the workload is unbalanced, some workers would

have very few fruits to pick while others would spend too long

working. This could result in some workers becoming over-

worked and others earning less than they should. If these

discrepancies are large, then the workforce can become

disgruntled. Since workers are usually free to leave one

farm and move on to another, the farm managers would

like to keep their workers happy so that their workforce

remains intact during the season. Having a stable

workforce helps the farm managers ensure that the crop

will be harvested on time and that harvesting performance

is consistent throughout the season.

Our task allocation method involves two steps: (i) creating an

initial solution using a modified version of Round-Robin; and (ii)

improving the solution tominimise the variance in the estimated field

picking times across all fields. The remainder of this section details

these steps in turn.

Generally, in auction-based approaches, an item (e.g. task) is

assigned to a single “bidder” (e.g. software agent or robot). In our

scenario, a task (i.e. a field) requires multiple agents. Therefore,

rather than agents bidding on fields, the fields bid on agents.

Although we employ RR and variants thereof—because it is faster

to compute than an actual auction mechanism—it is convenient

to use the terminology from the auction mechanism literature.

This also keeps the terminology consistent throughout the paper,

since auctions are implemented in the subsequent section to

allocate tasks to pickers and runners within our harvesting

simulation (Section 3.3).

3.2.1 Create initial solution
The first step in our method is to generate an initial solution,

using a quick algorithm, which will later be improved upon

(Section 3.2.2). This section describes the standard RR algorithm

and our repaired RR variant.

3.2.1.1 Standard RR

To create an initial solution, we implement a standard

Round Robin (RR) scheduler. First, the fields and workers are

ordered, considering fields as bidders and workers as items.

Workers are sorted slowest first, using their average picking

speed over all fruits. Fields are sorted by yield (lowest first). RR

assigns the first item to the first bidder, the second to the

second bidder and so forth. After a single item has been

assigned to each bidder, the bidders are re-iterated over to

assign each of them a second item, and so forth until all items

have been allocated.

3.2.1.2 Repaired RR

During some of our experiments, we found that a high

proportion of the pickers were assigned to fields containing

fruit that they had no prior experience of picking. We

therefore modified the RR scheduler (i.e. the approach of
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Section 3.2.1.1) so that a worker is only assigned to a field

containing a type of fruit that the worker has picked before. If

a worker has not previously picked any of the types of fruit

(due to be picked), then the algorithm reverts to the standard

RRmethod. The pseudo-code for this is shown in Algorithm 1,

in which fi is the ith field in F. If all workers have experience of

picking all types of fruit (or all workers have no experience),

this algorithm is equivalent to RR. This algorithm results in

FIGURE 1
Flow diagram showing how the second step of our approach improves the initial solution. The legend along the bottom highlights which
portions of the diagram relate to the variants in Section 3.2.2.
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each field having (roughly) an equal number of workers

assigned to them.

Algorithm 1. Repaired RR

3.2.2 Improve solution
The second step in our method improves the solution by

reassigning workers from fields requiring less picking time to

fields requiring more picking time. The method implemented also

aims to keep the staff time down, andmaintain amix of highly-skilled

and low-skilled workers within a single field. This section outlines the

specifics of reducing the difference in picking time between the fields,

followed by two improvements to this method. The details are

depicted visually in Figure 1, colour-coded to highlight the

components that relate to each variant described below.

3.2.2.1 Δept-smoothed variant

This variant involves first computing the estimated picking

time (ept) for each field (f) for a particular date (d), assuming it is

picked by a specific team of workers (W). This is calculated by

dividing the estimated yield (for field f on date d) by the sum of

the workers’ picking speeds (w.ps), as shown in Eq. 1:

ept f,W, d( ) � f.estimated_yield d( )
∑w∈W w.ps f.fruit( ) (1)

This algorithm starts with a list of pairs of fields, sorted

according to the difference between the total estimated picking

time for each field in the pair (Δept). The pair of fields with the

largest Δept appears first, and the rest are taken in descending order

of Δept. Then the algorithm searches for the picker who, when

moved from the field with the shortest picking time to the field with

the longest picking time (in each pair of fields), produces a reduced

Δept. We call this the “candidate worker”. If no worker is moved (i.e.

because moving a worker would increase Δept or the field with the

shortest duration has two or fewer workers), then the pair of fields is

removed from the list of all pairs of fields. The algorithm continues

until the list of pairs of fields is empty.

3.2.2.2 Δept-Repaired variant

In executing the method described in Section 3.2.2.1, workers

with a high picking speed could be moved to a field containing a fruit

they are less skilled at, to decrease the execution time of the field they

were moved from. This could result in the worker picking a type of

fruit they have no experience of picking. To prevent workers being

assigned to fruits they have no experience of picking, we modified the

baseline algorithm as follows. After a candidate worker (to move) has

been identified, the algorithm compares all remaining workers to the

candidate. If the candidate worker is not skilled and another worker

(being considered) has experience (and the difference in picking time

is still lower), then the alternative worker is selected (and becomes the

candidate). If both workers have experience, then the worker with the

largest (positive) difference in picking speed will be selected. For

example, if the first worker has a picking speed of 0 for the first fruit

and five for the second fruit, and the other worker has a picking speed

of three for the first fruit and one for the second, then the first worker

will be moved to pick the second type of fruit.

3.2.2.3 Balanced variant

To maintain a balance of fast/slow pickers across the fields, if the

fields contain the same fruits, then our algorithm compares the mean

picking speeds of both fields and checks this against the worker’s

picking speed. The aim of this step is to keep the mean picking speeds

of the fields similar, e.g. so that all the “champion” (best) pickers are

not grouped into a single team. This seems to result in higher overall

satisfaction across the teams of workers, as reported by farm

managers.

3.3 Allocating roles and tasks within teams

When teams arrive at the fields, the team leaders must assign

roles to the workers by deciding what ratio of runners to pickers to

deploy and must distribute tasks amongst the workers. To automate

this, we have constructed amulti-agent based simulation of operations

on a soft fruit farm, where each human worker is represented by a

software agent. Our work assumes that there are two different roles for

workers (picker and runner), that each task can be completed by one

worker on their own and that each worker performs one type of task

(picking or transporting, respectively). Pickers harvest fruit in the field

(in this case, the fields contain a type of greenhouse called a

polytunnel) and place the produce in punnets; and runners collect

trays of full punnets and deliver them to a centralised location called a

packing station. Our simulator was developed using MASON (Luke

et al., 2005), a discrete-eventmulti-agent simulation library. Amarket-

based task allocation mechanism from (Schneider et al., 2015) was

adapted to advertise a set of fruit picking tasks. Agents bid on these

tasks and an auction manager assigns each task to the agent that

presents the bid with the lowest cost; the cost is computed based on an

approximated duration to complete the task. The work presented in

this section builds on our prior work (Harman and Sklar, 2021a,b).

This paper presents an evaluation of our approach using the teams

created as per the previous section, a comparison of the different task

allocation mechanisms and an additional performance metric.

In practice on farms, picking tasks are determined each

day by inspecting the rows of crops, to discover the amount of
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ripe fruit they contain. In our simulation, picking tasks are

represented by patches (areas) of unoccluded (readily visible)

and occluded (hidden) fruits that are ripe. Figure 2 shows the

simulation of the strawberry field of a small research farm and

a field of the commercial farm. The colour of the patches

represents the number of ripe fruits: red patches contain more

ripe fruits than forange patches, which contain more than

yellow patches and green indicates the patches containing low

numbers of ripe fruits. The triangles represent the pickers and

the circles represent the runners. Transport tasks are created

when a picker’s schedule contains a task that will cause its

capacity to be reached. According to the taxonomies cited in

Section 2, we characterise picking task assignment as static,

SA, because this is done a priori (before any picking

commences). Transport task assignment could be

characterised either as SA, allocated before the mission

when picker tasks are assigned, or dynamic, DA, allocated

during the mission, as pickers fill trays.

3.3.1 Agents
Two roles for agents are defined in our simulation:

• A picker is defined by the tuple p = 〈v, l, sp, c〉, where l is the
agent’s initial location and v its navigation speed; sp = 〈so,

FIGURE 2
Our strawberry field is shown in (A, B). The commercial field is shown in (C). See text for explanation.
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su〉, for which so is the speed at which the agent can pick

occluded fruit (number of fruits per step) and su the agent’s

unoccluded fruit picking speed. When a picker has reached

their capacity (c), they cannot pick any more fruits. Pickers

cannot leave trays/punnets on the ground since customers

are unwilling to accept fruit covered in mud or potentially

contaminated with pests or disease. Pickers also require

empty punnets, so must wait for a runner to arrive with

empty trays/punnets and collect those full of ripe fruits

(which they take to a nearby packing station).

• A runner navigates to a picker, collects the punnets and

then returns to the packing station. Runners have a

navigation speed and an initial location, i.e., r = 〈v, l〉.

3.3.2 Task allocation mechanisms
Our evaluation compares the variations in performance

resulting from the application of three different auction-based

mechanisms to the process of allocating picker and transporter

tasks. Our simulator implements the following:

• Round Robin (RR), which was described in Section 3.2.

• Ordered Single Item (OSI), in which all agents bid on the

first task and the agent with lowest costing bid is assigned

the task. The subsequent task is then auctioned. When all

tasks are assigned, the process concludes. The task ordering

is dependent on context, and our implementation is

detailed in Sections 3.3.3, and Section 3.3.4.

• For Sequential Single Item (SSI), in each round all

unassigned tasks are bid on by all agents. The task with

the lowest costing bid is assigned to the agent who placed

that bid.

3.3.3 Allocation of picking tasks
Pickers are allocated work by bidding on, winning, and thus

being assigned, picking tasks. A picking task is defined as an (x,

y) location and a number of ripe fruits. Before bidding begins,

the list of picking tasks is sorted, highest first, by the total

number of ripe fruits they contain. Pickers are sorted by picking

speed, s, which is a combination of speeds for picking

unoccluded, su, and occluded, so, fruits; the quickest picker

appears first. The cost of a picking bid is the duration for the

agent to complete all their previously assigned tasks plus the

task being auctioned. The duration of a single picking task is the

sum of three components:

• The time it takes the agent to navigate to their picking

location (dv). Navigation duration is calculated by dividing

the length of the path by the agent’s navigation speed (v):

dv = len(path)/v.

• The time it takes to pick the ripe fruits (dp). Picking

duration is calculated by combining the time spent

picking unoccluded fruits with the time to pick occluded

fruits: dp = (u/su) + (o/so).

• The time spent waiting for a runner, but only if two

conditions are met: (i) the agent’s capacity will be

reached whilst picking that patch; and (ii) the runner

scheduling interweaves the picker scheduling (see

Section 3.3.4).

As precise AI path planning (e.g. (Harabor and Grastien,

2011) and (Hart et al., 1968)) causes the bidding process to be

computationally expensive, Euclidean distance5 is calculated as a

proxy for the path length. If an agent has not won any tasks (yet),

two Euclidean distances are summed: (i) the distance from the

picker’s initial location to the row in which the new task is

located, and (ii) from the end of the new task’s row to the location

within the row of the new task. For navigating between locations

within the same aisle, a single distance is measured. For patches

in different aisles, three distances are summed: the distance from

the previous location to the end of its row, from the row of the

previous location to the end of the row containing the new

location, and from that row end to the location itself. When the

mission is executed, Jump Point Search (JPS) (Harabor and

Grastien, 2011) is called to find the precise path. We

considered using A* (Hart et al., 1968); however, unlike JSP,

A* did not scale well to large commercial fruit fields.

If executing a task would cause a picker’s capacity to be

reached, a provisional transport task is created whilst

constructing the picking bid. To facilitate this, the number

of fruits the agent will be holding when it completes its

schedule and the time step the agent will finish on are

updated each time it is assigned a task. To determine the

time spent picking before the agent’s capacity is reached, we

assume that pickers harvest unoccluded fruits before picking

the occluded fruits from a patch. Along with the navigation

time, this is added to the time the picker will start the task (i.e.

the timestep after its previously scheduled task will end).

Ideally, a runner will take the picked fruit from the picker

on the timestep directly after the picker has reached capacity.

In reality, often a picker has to wait for a runner; or vice versa.

If the picker’s bid wins, then the transport task is no longer

provisional; it is appended to a list of transport tasks. When a

picker will reach capacity more than once when executing a

task, multiple transport tasks are created.

3.3.4 Allocation of transport tasks
Transport tasks contain the location and timestep that a

picker will reach maximum capacity. The less time a picker

spends waiting for a runner, the sooner it will be able to complete

its task. Therefore, the winning transport bid is the bid that

causes the picker the shortest delay. If multiple bids have an

equally short delay, then the bid with the shortest duration wins.

5 Euclidean distance, δ, between two points (x1, y1) and (x2, y2) is defined
as δ = �

�������������������
(x2 − x1)2 + (y2 − y1)2

√
.
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For a transport bid, duration is the sum of the time it takes the

runner to navigate to the picker, collect the punnet/tray and

return to the packing station. Runners are sorted by navigation

speed, quickest appearing first.

Three different modes were implemented and compared

experimentally for allocating tasks to runners. To differentiate

between these and the mechanisms implemented for allocating

picking tasks, each adds a prefix to the mechanism name

(e.g. W-RR):

• Whilst scheduling picking (W): Runners can be scheduled

as soon as a transport task is created. This enables a picker’s

bid to include the time they would spend waiting for a

runner.

• Post scheduling picking (P): The auction manager can

wait until all transport tasks have been created (i.e. all

picking tasks have all been assigned) before scheduling the

runners.

• Whilst executing picking (E): Runners can be scheduled

during execution, which facilitates delays (differences

between the scheduled duration and execution duration)

to be accounted for within the runners’ schedules.

The transport bid creation algorithm determines where

within the runner’s existing schedule the task should be

placed. The algorithm iterates over all the runner’s already

scheduled tasks, selecting those with start time after the ideal

end time of the task being auctioned and checking where the new

task will fit within this selected list. A record of the location/index

is kept, so that if the agent’s bid wins, the task can be inserted into

the schedule easily.

The delay to the picker, in waiting for the runner to complete

its task, is calculated by finding the difference between the time

the transport is required and how soon after this time the runner

can arrive. If the runner can arrive on time, then the delay is the

time it takes to hand over the punnet/tray.

For the three modes (W, P and E), implementations of RR

and OSI were developed. In the W and E modes, OSI and SSI

are equivalent since only one task at a time is offered to the

bidders. The algorithms employed to auction transport tasks

are essentially equivalent to those developed for auctioning

picking tasks. In the P mode, before bidding begins, the

transport tasks are sorted by the timestep at which the

runner is required. Unlike the W and E modes, when a

runner is assigned a task, the picker who created the task is

required to update its schedule to take into account the delay.

The delay amount is added to the start, end and transport-

required times of all the tasks proceeding the delayed picking

task. The transport-required times of the corresponding

(unassigned) transport tasks are updated simultaneously.

P-SSI is not performed since a runner’s tasks must be in

order of when a picker reaches capacity (to prevent

deadlocks).

In the E mode, the transport task is only offered to the

runners when the picker (actually) reaches capacity. When a

runner has no tasks to execute, it will navigate to and wait in front

of the polytunnels, so that it has less distance to travel when a

picker reaches capacity. These locations are predefined and

iterated over (then re-iterated over) to assign them to the

runners. In future work, we will consider integrating the work

of Ravikanna et al. (2021), who are investigating finding the

optimal location for runners to wait.

4 Experiments

Our experiments are designed to evaluate the

effectiveness of our two decision making processes. First,

our method of assigning workers to fields is evaluated and

performance is assessed in the context of challenges that arise

when deploying the method in the real world. Second, our

simulator is run to assess different ratios of runners to pickers

and to compare the runner task allocation strategies. This

section provides information on the data provided as input,

defines a set of metrics that are measured to quantify the

effectiveness of our approach, and explains the setups specific

to our team allocation experiments and our simulated

experiments.

4.1 Data

Data was collected from two sites: a commercial fruit farm

and a small research farm. Our team creation approach is

evaluated on the 2020 historical data and the 2021 live data

provided by the commercial farm. Different ratios of runners to

pickers and the various scheduling mechanisms are compared by

simulating the field of the small research farm and a large field on

the commercial farm. This enables us to test our simulation at

two different scales.

4.1.1 Large commercial farm
Data from the whole of the 2020 picking seasons (175 picking

days) for strawberries and raspberries (25 fields in total) has been

provided by the commercial farm. For 2021, cherries and

blackberries are also included. The 2021 picking season

involved 182 picking days and 30 fields.

For the 2020 harvesting seasons, the following information

was provided:

• Estimated yield list: For each date a field was picked, we

were provided with the yield—volume of fruit—for that

field which farm managers estimated a priori was ready to

be harvested that day.

• Recorded picking data: The historical record of the

amount of fruit actually picked, which picker picked the
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fruit, the field it was picked from and the time it was

checked-in (as described in Section 3.1).

For 2020, the entire set of recorded data was provided at once

(after the season was over, i.e. as an historic data set) and

processed to calculate the picking speed of each worker, and

to determine which pickers worked on each date. As our system

knew which fruit types each worker can pick, the default picking

speed was only used when a picker had picked too little fruit to

determine their speed (i.e. had checked in a maximum of one tray

each date for each type of fruit). The historic data was also

processed to extract the teams actually deployed by the farm, thus

enabling a comparison to be performed between our system’s

proposed teams and their teams.

During the 2021 harvesting season, the data differed slightly

since (until the season was over) the data was incomplete

(incremental). The system could only use the data recorded

up to (and including) any particular day in order to create a

schedule for the next day. The following information was

provided incrementally during 2021:

• Estimated yield: Each evening, the farmmanagers produce

a spreadsheet containing an approximate volume for each

field they plan to pick on the morrow. Each field is labelled

with the team leader in charge of that field, enabling us to

extract which fields are picked by which teams. Fields

picked by the same team are grouped together and their

metrics (e.g., ept) are summed by our approach.

• Worker list: Each weekend, an updated list of the workers

available to work during the following week was sent to us.

• Recorded picking data: During 2021, a report of the

picking information was produced at the end of each

day (once the fields had finished being picked) and

uploaded to our system.

Based on field maps provided by the commercial fruit farm,

we can create their fields within our simulation. This paper

presents the results for a single field (depicted in Figure 2C).

Within this simulation, the field’s yield was uniformly distributed

across patches. The capacity of pickers is set to the volume

(4,000 g) of a standard tray (which contains the punnets of

picked fruits), and, for all workers, a navigation speed of

roughly 1 m/s is used.

4.1.2 Small research farm
For our simulated experiments, we also used the field

(pictured in Figure 2A) of a small research farm. During

summer 2020, the volume of ripe fruits that were picked per

row of crops were recorded. This included information on how

many of the fruits were occluded from view. Data was recorded

on each picking day (twice per week). In our initial experiments,

there was no statistically significant difference between the

results for different dates. Therefore, for the experiments

presented here, we selected the results from a single date in

which a large number of fruits were harvested. The data per row

was broken down into patches by adding each fruit to a

randomly selected patch from the same row (as depicted in

Figure 2B). As an element of randomness was included, two

random distributions were produced (illustrated as heatmaps,

like that in Figure 2B). For this scenario, we employed a 7-agent

team of workers. The capacity of pickers is set to the size of a

punnet (20 fruits).

4.2 Metrics

To evaluate our proposed teams, for each picking day, five

metrics are calculated: execution time, staff time, percentage of

pickers unskilled at assigned fruit,max-min ept andmean picking

speed entropy. To evaluate different ratios of pickers to runners,

we consider execution time and two additional metrics: wait time

and max-min|fruits picked|. Each of these metrics is described

below.

• execution time: The difference between the start and end

times of each day (i.e. effectively, the difference between the

time that the first picker started picking on any field and

the time that the last picker stopped picking on any field, in

the same day). When evaluating different ratios of pickers

to runners, this is the number of timesteps the

simulation took.

• staff time: The sum of times worked by all workers each

day, across all fields. Staff time should be minimised to

keep a farm’s expenditure low.

• percentage of pickers unskilled at assigned fruit: The

percentage of pickers that have been assigned to a fruit

they have not picked before (or have picked too little of

to calculate their picking speed). In our experiments,

these pickers are assigned the default picking speed

(expertise level -1, as described earlier) —which is a

guess about how fast they might pick. This metric should

be minimised so that workers are building/using their

experience.

• max-min ept: The difference in time between the team that

picks for the shortest time (field with shortest ept) and the

teams that picks for the longest time (field with the longest

ept) should be minimised. If the difference is high, then the

workforce is distributed unfairly since there will be some

workers working longer hours than other workers.

• mean picking speed entropy: For each team, the entropy

of the workers’ picking speeds is calculated, then the mean

across all teams is found. The mean picking speed entropy

should be high so that there is a mixture of different skilled

workers across the fields.

• wait time: The total length of time all pickers spend

waiting for a runner within our simulation.
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• max-min |fruits picked|: The difference in grams between

the highest and lowest volume of fruits picked by an

individual picker. To keep workers motivated, the work

should be evenly distributed, and thus this value kept low.

To determine the significance of our results, we applied

statistical testing and factor analysis, where appropriate. A

Shapiro-Wilk test (Shapiro and Wilk, 1965) was performed to

check if each sample is normally distributed. If there is a greater

than 95% chance that the samples are all normally distributed, an

ANalysis Of VAriance (ANOVA) test Anscombe (1948); Fisher

(1925) was performed (for which the F test statistic is reported).

Otherwise, Kruskal–Wallis tests Kruskal and Wallis (1952) were

run (for which the H test statistic is reported). T-tests are

performed when there are only two samples (and the samples

are likely to have a normal distribution). The significance of

results is indicated by p, the probability of the results occurring

randomly.

4.3 Team allocation experiments

For the experimental results of our team allocation method,

this paper presents pairs of plots (in Section 5.1). Each pair of

plots compares the results obtained with the two data sets: (a) the

complete, 2020 “historical” data set; and (b) the incremental,

2021 “live” data set. Five different methods are compared. Our

baseline is the Actual teams that were deployed during each day

of each picking season (2020 and 2021). These teams were

manually created by farm managers. Four variants of the

method described in Section 3.2 are considered here in order

to determine, experimentally, which method produces the most

favourable metrics. These are:

• RR0: The standard round robin algorithm, described in

Section 3.2.1.1.

• RR1: The repaired round robin algorithm, described in

Section 3.2.1.2.

• RR2: The Δept-smoothed variant (described in Section

3.2.2.1), modifying the output of RR0. When just using

the Δept-smoothed variant, the candidate worker that

reduces the Δept the most is moved.

• RR3: The combined variant, modifying the repaired RR

output (labeled RR1 above), using the Δept-smoothed

(described in Section 3.2.2.1), repaired (Section 3.2.2.2)

and balanced (Section 3.2.2.3) improvements.

When historic data is being used with RR0, if the worker has

never picked a certain type of fruit, the picking time of a field

containing that fruit cannot be calculated. Thus, the worker is

assigned to the next field (in the circular list of fields being picked

that day) that the worker’s picking speed can be calculated for.

This is similar to RR1; however, RR1 also attempts to avoid

assigning workers to a field they have the default picking speed

for (as explained in Section 3.2.1.2).

Our results are computed over all picking days in each data set.

As our samples were not all normally distributed, mean and

standard deviation do not necessarily summarise the results well.

Therefore results are displayed using box-and-whisker plots. Note

that some of the graphs are cropped to allow us to zoom in on the

majority of points, and thus some outliers are not displayed.

4.4 Simulator experiments

Our in-field task allocation results are analysed by looking

first at the composition of our workforce (number of pickers and

transporters) and second at the different task allocation strategies

(Section 5.2). For both of these, each metric (execution time, wait

time and max-min |fruits picked|) are discussed. When our

system is deployed, farm managers will desire advice on what

ratio of pickers to runners to deploy per field on a daily basis. The

methodology described in Section 3.3 can provide this

information. This paper presents the result for a single

commercial field for one randomly selected date in the

2021 harvesting season, plus the result from our small

research field. This demonstrates the system at different scales

(without overloading the reader with results for every date and

every field). The team proposed by our RR3 approach (on the

randomly selected date) was used within the commercial field

experiments. This team has 102 workers; whereas, (as described

earlier) the experiments with the small field use a team of 7.

5 Results

This section introduces the results of the experiments described

in Section 4. First the outcomes from employing our method for

allocating workers to teams (detailed in Section 3.2) are presented.

Then the outcomes from employing our method for allocating roles

and tasks to workers (detailed in Section 3.3) are described.

5.1 Team allocation results

This section presents the experimental results for our team

allocation method. The results for each metric (execution time,

staff time, percentage of pickers unskilled at assigned fruit, max-

min ept and mean picking speed entropy) are discussed in turn.

5.1.1 Execution time
As shown in Figure 3, the combined variant (RR3) produces

the lowest execution time in comparison to the alternative

methods. This result is statistically significant for both data

sets. Reducing the execution time will help to prevent workers

from tiring. It will also reduce the amount of hours worked by
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other farm personnel, such as the team leaders, quality

controllers (who inspect the filled punnets) and drivers (who

transport the workers and the harvested fruits to/from the fields).

5.1.2 Staff time
The difference in staff time for the 2020 historical data is not

statistically significant (see Figure 4), but it is for the 2021 live data.

For 2021, on average, the Actual teams achieved a slightly shorter

staff time than RR3 (2.97Ms and 2.98Ms, respectively). It is not

surprising that the staff time for the different approaches are similar,

since, in total, the same workforce are still picking the same fruits.

5.1.3 Assignments of unskilled workers
RR1 does not assign any workers to fields containing a type of

fruit that they have no experience at picking, unless the worker has

no experience with any type of fruit. As a result, RR1 produced

teams with the fewest possible pickers assigned to fruits they are

unskilled at. This is shown in Figure 5. Our live (2021) experiment

uses the list of workers the farm predicts will be working on the

morrow; however, some workers many not turn up. This has

resulted in RR1 having a slightly higher result than Actual (an

average of 4.51% and 7.21%, respectively). As expected, RR3

produces a worse result than RR1 but improves on the result of RR2.

FIGURE 3
Execution time for the Actual teams and our four RR variants (RR0, RR1, RR2 and RR3), based on (A) 2020 historic data and (B) 2021 live data.
(Lower values are better).

FIGURE 4
Staff time for the Actual teams and our four RR variants (RR0, RR1, RR2 and RR3), based on (A) 2020 historic data and (B) 2021 live data. (Lower
values are better).
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Note that the range of percentages is much larger for the

2021 “live” data than for the 2020 “historical” data set. This is

primarily because the 2020 data set is complete, and any

modelling our system does using that data set will be based

on complete information. In contrast, the 2021 data set was

incomplete during the experimentation, because it was sent

incrementally as the season progressed. Processing the two

data sets in this way gives us a good view of how the system

would work in a real-world setting, where the data is generated

incrementally each day of the harvesting season. Logically, this

means that the percentage of workers for whom we have no

picking history is larger than for the historical data set, where we

have some data on everyone. This is a key challenge, as the

accuracy of the predicted yield suffers when there is too much

guessing about worker picking speeds—hence the variations in

Figure 4B. While RR3 is not a marked improvement on Actual, it

is the best of the variants.

5.1.4 Difference between maximum and
minimum ept

As shown in Figure 6, RR3 produces the lowest difference

between maximum and minimum ept, closely followed by

RR2. These results are statistically significant for both data

sets. Thus the impact of the smoothing variant (Section

FIGURE 5
Percentage of pickers unskilled at assigned fruit for the (A) 2020 historic and (B) 2021 live datasets. (Lower values are better.)

FIGURE 6
The max-min ept for the (A) 2020 historic and (B) 2021 live datasets. (Lower values are better).
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3.2.2.1) is substantial, using both historical and “live” data.

With a more evenly distributed workload, workers are likely to

stay motivated rather than being over-worked or under-

worked (and thus less likely to leave).

5.1.5 Mean picking speed entropy
Finally, the mean picking speed entropy is considered. For all

approaches, this metric is high. Therefore, it is likely that there is

a good mix of low/high skilled workers in each team. These

results are shown in Figure 7.

5.1.6 Summary
Overall, our results demonstrate that the team allocations

proposed by our approach are comparable with or better than the

teams actually deployed by the commercial fruit farm. These

results prove that assigning pickers to fields can be automated by

task allocation algorithms, even when presented with incomplete

knowledge.

5.2 Simulator results

This section analyses our in-field task allocation results, by

first looking at the composition of our workforce (number of

pickers and transporters) and second at the different task

allocation strategies. The whilst scheduling pickers (W)

runner mode is more computationally expensive than the E

and P modes, since for every bid that a picker creates (for

which transport is required) the transportation task auction is

invoked; whereas, for E and P, only the transport tasks of

FIGURE 7
Mean picking speed entropy for the (A) 2020 historic and (B) 2021 live datasets. (Higher values are better).

FIGURE 8
Results for execution time for different percentages of agents being employed as runners. The H statistic from Kruskal–Wallis tests and
associated p values are shown, indicating statistically significant differences for the different ratios for both farms: (A) the small field and (B) the large
field.
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winning picking bids are auctioned. The deliberation time (i.e.

the time it takes to allocate the tasks) of RR, OSI and SSI has

previously been compared and is nominal in the scheme of the

overall run time of our scenarios; thus, deliberation time is not

analysed here (Schneider et al., 2015).

5.2.1 Workforce composition
As shown in Figure 8, the ideal team split based on the

execution time metric, for the small field, is 57% of agents

deployed as runners and the remaining agents as pickers; and

for the large field, it is 30% of agents deployed at runners.

Although the best percentages differ—due to the large

difference in sizes between the small and large fields and

workforces—the trends are similar. For the small field, the

two extremes (highest:lowest and lowest:highest ratios of

runners:pickers) represent the worst execution times, but

there is a sweet spot in the middle. For the large field,

between 10% and 70%, we also see two extremes with a

sweet spot in the middle. However, at 75% we observed a

small reduction in staff time. This was particularly prominent

for when RR was used to schedule the pickers. This is because

the slowest pickers are being moved to the running role, and at

75% all the least experienced (slowest) pickers are assigned to

the role of running; and thus, picking takes less time.

When the ratio of runners to pickers was increased, the

amount time the pickers spent waiting for the runners

significantly reduced (as shown in Figure 9). However, if there

are fewer pickers, each picker must pick a higher proportion of

the fruits. For the small field, the difference between the

maximum and minimum number of fruits picked by

individual pickers falls as the number of pickers decreases (see

Figure 10). This was particularly prominent when the runners

FIGURE 9
Results for cumulative picker waiting time for different percentages of agents being employed as runners for both farms: (A) the small field and
(B) the large field.

FIGURE 10
Results for max-min |fruits picked| for different percentages of agents being employed as runners for both farms: (A) the small field and (B) the
large field.
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FIGURE 11
Results for the different picker schedulingmechanisms for both farms: the small field (A) execution time, (B)waiting time and (C)max-min |fruits
picked|; and the large field (D) execution time, (E) waiting time and (F) max-min |fruits picked|.

FIGURE 12
Results for the different runner scheduling mechanisms for both farms: the small field (A) execution time, (B) waiting time and (C) max-min |
fruits picked|; and the large field (D) execution time, (E) waiting time and (F) max-min |fruits picked|.
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were scheduled whilst scheduling the pickers using SSI (as shown

later, in Section 5.2.2.3). The difference is not statistically

significant for the large field.

5.2.2 Task allocation strategies
This section discusses the evaluation of the different picker

task allocation mechanisms, then the transport task allocation

strategies, and then all combinations of picker and runner task

allocation strategies.

5.2.2.1 Picker task allocation mechanisms

The execution times of the different picker task allocation

mechanisms echo the results presented in previous

research. SSI outperforms OSI, which outperforms RR

(Figures 11A,D). The difference is statistically significant.

The difference in wait time is not statistically significant for

the small field (Figure 11B), but is for the large field

(Figure 11E). When SSI is used, as the pickers’ schedules

are more efficient, they reach capacity quicker, and thus must

wait longer for the runners (than when RR or OSI are used).

RR produced the lowest max-min |fruits picked|. Although a

reduced max-min |fruits picked| is fairer for the pickers, it

is unlikely that farms would be willing to accept the

execution time (and thus staff time costs) associated with

the use of RR.

5.2.2.2 Transport task allocation strategies

For scheduling runners, overall there is no statistically significant

difference in execution time or max-min |fruits picked| between the

two task allocation mechanisms (RR and OSI) (Figure 12). For the

large field, although there is a large standard deviation, OSI produced

a shorter wait time than RR with a statistically significant difference.

For the large field, scheduling the runners whilst scheduling the

pickers produced a shorter execution time and a shorter wait time

than the alternative modes (Figure 13). This indicates that being able

to account for the runner timings within the pickers’ schedules is

beneficial. The ablated results for the runner scheduling mechanisms

echo this result, with WRR marginally outperforming WOSI for

execution time and vice versa for wait time (Figure 14).

5.2.2.3 Picker and Runner task allocation strategies

The results for the different combinations of picker and

runner scheduling strategies are shown in Figure 15. Overall,

running SSI for scheduling pickers whilst scheduling the runners

using OSI (i.e. SSI_WOSI) achieved the shortest execution time.

For both fields, the results are statistically significant. For wait

time, the difference was statistically significant for the large field

(with SSI_WOSI performing best) but not for the small field. For

both fields, running the RR_POSI combination resulted in the

lowest difference between the most fruits and the least fruits

picked by an agent.

FIGURE 13
Results for the different runner scheduling modes for both farms: the small field (A) execution time, (B) waiting time and (C) max-min |fruits
picked|; and the large field (D) execution time, (E) waiting time and (F) max-min |fruits picked|.
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FIGURE 14
Results for the different runner scheduling strategies for both farms: the small field (A) execution time, (B) waiting time and (C)max-min |fruits
picked|; and the large field (D) execution time, (E) waiting time and (F) max-min |fruits picked|.

FIGURE 15
Results for all the different scheduling strategies for both farms: the small field (A) execution time, (B) waiting time and (C) max-min |fruits
picked|; and the large field (D) execution time, (E) waiting time and (F) max-min |fruits picked|.
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6 Future work

This section mentions three areas that can be explored in future

research. First, we will consider comparison with additional multi-

agent task allocation mechanisms, exploring more complex bidding

strategies for the auctionmechanismsmentioned in Section 2, as well

as the use of evolutionary inspired approaches, such as Genetic

Algorithms (GAs) and Particle Swarm Optimization (PSO), both

of which have previously been applied to task allocation problems

(Salman et al., 2002; Liu and Kroll, 2012; Patel et al., 2020). A solution

to our task allocation problem can be represented as a vector of

integers (with each integer referring towhichfield aworker is assigned

to). Defining a fitness function that takes into consideration the

different factors discussed in this paper will be investigated. However,

evolutionary methods are notable for the often lengthy time they take

to converge on a solution, so our focus will be on implementations

that can perform quickly enough to be suitable in our application

domain. Preliminary work on evaluating the performance of GAs on

this problem has been presented in (Harman and Sklar, 2022b).

Second, preferences and environmental conditions could be taken

into account during the allocation. For example, farm managers

report that workers from the same country, who speak the same

language, prefer to work on the same team. Environmental

conditions, such as humidity, temperature and the time of day,

impact the picking speed and actual yield. Therefore, we will

develop a more complex model of the workers’ picking speed that

encompasses these factors.

Third, we plan to trial our scheduling method at a

commercial fruit farm during the upcoming picking seasons.

This trial will hopefully involve the farm employing our

schedules so that we can further evaluate the real-world

feasibility of our approach. Although we sent a commercial

farm several schedules during 2021, as we were testing/

debugging our system, the schedules were not used and a

more thorough real-world evaluation is required. Nevertheless,

this testing enabled us to gain feedback and demonstrated that

our schedules can be produced in a timely manner.

Finally, the work presented here can be integrated with yield

prediction methods (to gain more accurate yield estimates) (Kirk

et al., 2020; Lee et al., 2020) and robotic technologies (Das et al.,

2018; Seyyedhasani et al., 2020a,b; Huang et al., 2020; Xiong et al.,

2020). We intend to evaluate our approach on a hybrid human-

robot workforce to ensure farms are able to seamlessly adopt robotic

workers (attractive to farmers due to shortages in seasonal workers).

7 Conclusion

This paper has explored automating the daily process of assigning

workers to fields, deciding what ratio of runners to pickers to deploy

and allocating picking and transportation tasks to workers.

For assigning workers to fields, we developed a two-step

approach: step 1 creates an initial solution using a repaired version

of the round robin scheduling algorithm, and step 2 improves that

solution. Experiments were run on the data provided by a commercial

fruit farm during the 2020 and 2021 harvesting season. We evaluated

our approach on five metrics: execution time (the difference between

the start and end time), staff time (sum of the times worked by all

workers), the percentage of pickers assigned to a field they have no

experience of picking, the difference between the maximum and

minimum time worked (to measure how fairly the work had been

distributed) and the mean picking speed entropy (since there should

be a mixture of high/low skilled workers across the fields). The results

demonstrate that, based on the metrics evaluated, our approach

produces solutions that are comparable and often better than

current manual allocations.

For the second two aims, we adapted auction-based scheduling

strategies to address this problem and evaluated these within our

simulator. Our results show that the ratio of runners to pickers is

critical with respect execution time and that the “sweet spot” varies

depending on the size of field and workforce. Scheduling pickers

with SSI whilst scheduling runners with OSI produced the shortest

execution time. Our experiments showed that for a small field with

seven workers, 57% of agents deployed as runners was the ideal ratio

of runners to pickers, and for a large field with 102workers, 30%was

the ideal ratio.
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