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Proportional control using surface electromyography (EMG) enables more intuitive control
of a transfemoral prosthesis. However, EMG is a noisy signal which can vary over time,
giving rise to the question what approach for knee torque estimation is most suitable for
multi-day control. In this study we compared three different modelling frameworks to
estimate knee torque in non-weight-bearing situations. The first model contained a
convolutional neural network (CNN) which mapped EMG to knee torque directly. The
second used a neuromusculoskeletal model (NMS) which used EMG, muscle tendon unit
lengths and moment arms to compute knee torque. The third model (Hybrid) used a CNN
to map EMG to specific muscle activation, which was used together with NMS
components to compute knee torque. Multi-day measurements were conducted on
ten able-bodied participants who performed non-weight bearing activities. CNN had
the best performance in general and on each day (Normalized Root Mean Squared
Error (NRMSE) 9.2 ± 4.4%). The Hybrid model (NRMSE 12.4 ± 3.4%) was able to
outperform NMS (NRMSE 14.3 ± 4.2%). The NMS model showed no significant
difference between measurement days. The CNN model and Hybrid models had
significant performance differences between the first day and all other days. CNNs are
suited for multi-day torque estimation in terms of error rate, outperforming the other two
model types. NMS was the only model type which was robust over all days. This study
investigated the behavior of three model types over multiple days, giving insight in the most
suited modelling approach for multi-day torque estimation to be used in prosthetic control.

Keywords: myoelectric control, neuromuscular modelling, lower limb, torque estimation, motor intent recognition,
machine learning

1 INTRODUCTION

Amputees regain functional abilities by learning to use a prosthesis (Windrich et al., 2016). Most
prostheses are passive and are adequate for most walking scenarios in daily life. However, these
passive prostheses are not capable of producing power. Therefore, the use of these prostheses in daily
life is limited by an amputee’s strength and capacity for gait adaptations. This makes activities such as
stair climbing challenging (Dabiri et al., 2010; Crowe et al., 2019). Actuated or powered prostheses
have the potential to overcome these limitations by providing net power (Windrich et al., 2016).
Commercially available powered prostheses use state-machines to provide control in predefined
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states. The downside of this approach is that the control is limited
in intuitiveness and the user is not able to use the prosthesis
outside of predefined states. Direct control over the knee joint
might result in a more intuitive control of the prosthesis, which
can be beneficial for the user during various tasks of daily living. It
can be beneficial to apply direct control within a discrete state, for
example to reposition the prosthesis while sitting or to control the
speed of a motion. Surface electromyography (EMG) can play a
large role in creating intuitive control, as EMG can be measured
138 ms before the onset of movement (Wentink et al., 2014).
Other sensor information related to movement, such as
acceleration, will always lag behind the intended motion and
will result in a delay within the control scheme. EMG does not
suffer from this delay and translating EMG into joint torque is
therefore a promising method to realize voluntary control.

Machine learning can be a viable tool for joint torque
prediction. Neural networks are a type of machine learning
algorithms that are trained to find the underlying relation
between input and output variables. Several studies used
neural networks for the prediction of knee flexion angles or
torques in able-bodied subjects (Liu et al., 2018; Huang et al.,
2019; Saranya et al., 2019; Wang G. et al., 2019; Deng et al., 2020;
Gautam et al., 2020). Huang et al. (2019) proposed a deep-
recurrent neural network for prediction of knee joint angles in
real-time. The model used EMG signals together with inertial
data from different activities and reported a root mean squared
error of 2.93° over a range of approximately 60° (4.9% error).
Gautam et al. (2020) used a Long-term Recurrent Convolution
Network to classify movements and predict their corresponding
knee joint angles, based on EMG. They reported an average mean
absolute error of 8.1% in the knee angle prediction of healthy
subjects. Zhang et al. (2020) developed an artificial neural
network for the prediction of ankle torque from EMG. Root
mean squared error (RMSE) values ranging within 0.01 and
0.10 Nm/kg were found for ankle plantar- and dorsiflexion on
a range of approximately 1.5 Nm/kg (0.7–6.7% error). All these
studies show low error rates, which indicates that machine
learning can be a valuable tool in predicting knee torque or
knee angle. However, current machine learning decoders might
produce unrealistic estimates in conditions they are not trained in
as the algorithm are not limited by physical bounds (Sartori et al.,
2018). Next to this, the reliability of these methods depend on
correct electrode placement and are thus sensitive to changes in
conditions. Futhermore, the amount of training data is also
usually limited relative to the complexity of the models, which
makes it difficult to obtain a satisfactory generalization
performance (Wang W. et al., 2019). The robustness to EMG
electrode placement, differences in EMG signals (quality), activity
performance and performance over days is thus questionable and
needs futher investigation.

One potential way to improve robustness, is the use of an NMS
model. Neuromusculoskeletal (NMS) modelling was designed to
gain insight in the underlying process of biomechanical
movement to characterize motor function and how it alters
with pathology (Durandau et al., 2019). An NMS model
consists of multiple components that model this underlying
process. It uses EMG and muscle characteristics from a

musculoskeletal model to predict specific muscle activations
with corresponding forces and resulting joint torques. An
NMS model can provide system robustness since any joint
moment estimate must always exist within the musculoskeletal
model operational space and be therefore physiologically
plausible (Sartori et al., 2018). Another benefit of using an
NMS model is that it provides insight in the underlying
process of biomechanical movement, whereas machine
learning does not. Several studies used an NMS model to
predict joint torque (Wang W. et al., 2019; Sartori et al., 2018;
Durandau et al., 2019, 2018; Sartori et al., 2012, 2016; Kapelner
et al., 2020). Sartori et al. (2012) developed a control scheme to
control a wrist-hand prosthesis by real-time
neuromusculoskeletal modelling. Joint torque was predicted
using EMG and prosthesis angles as input and translated into
low-level control of the prosthesis. They executed a virtual
reaching test in which subjects reached targets using linear
trajectories, thereby successfully actuating a single DOF at a
time with high precision. Path similarity was always
accomplished with R2 > 0.98 across all targets and subjects.
Durandau et al. (2019) predicted lower limb exoskeleton
support torque, using EMG and joint angles as input to an
NMS model. The RMSE for the knee joint control, inside
exoskeleton conditions, were 4.06 ± 2.55° for low gain and
4.58 ± 2.61° for high gain over a range of approximately 40°

(approximately 10–11% error). Correlation coefficients of both
conditions between prediction and reference torque were 0.90 ±
0.16 and 0.92 ± 0.07 respectively. Zhang et al. (2020) used an
NMS model to predict ankle joint torque with RMSEs ranging
from 0.04 to 0.18 Nm/kg for ankle plantar- and dorsiflexion on a
range of approximately 1.5 Nm/kg (2–12% error). Downsides of
NMS modelling workflow are that it can be complex and difficult
to work with. Furthermore, the mapping of EMG to muscle
activation is based on models that are difficult to validate because
activations cannot be measured directly.

Since both machine learning and NMS models show several
shortcomings, the question arises if combining these two
methods into a hybrid version will provide better joint torque
predictions. Machine learning can decrease computational
demands in physics-based modelling. It can be used for
feature extraction from measures of muscle activation and to
synthesize missing data (Saxby et al., 2020). Cimolato et al. (2020)
developed amachine learning driven NMSmodel to predict lower
limb joint torque from EMG and inertial data to control a lower
limb prosthesis during regular gait. They used a GaussianMixture
Regressor to generate a complete set of EMG signals, starting
from the supposed residual subset of available EMGs. These EMG
signals were then used as input for a calibrated NMS model to
predict joint torque, which resulted in an average normalized root
mean squared error (NRMSE) of 24.0 ± 11.0%. Xu et al. (2020)
developed an EMG-based elbow joint torque estimation strategy
using a Hill-Type Muscle Model and a neural network. The
neural network was used to estimate muscle activation which was
used as input for the Hill-Type model. System identification from
EMG signals was used to estimate the elbow angle. The average
RMSE over trials was 1.45 Nm on a range of 25 Nm (5.8% error).
Only one subject was used and three trials were conducted on the
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same day. Although these studies show lower accuracies than
machine learning or neuromuscular modelling, the idea of
combining neuromuscular modelling with machine learning
still holds promise.

In the described studies we have seen that machine learning,
neuromuscular modelling or a combination of both are
promising approaches for knee joint torque estimation.
Despite these positive results, to our knowledge, no
commercial product is available that uses machine learning,
NMS or a hybrid approach for direct control of a prosthetic
knee. One of the reasons is that prostheses need to be used in daily
life and need to function everyday in a reliable manner, being
robust to different environmental conditions, such as electrode
placement and skin conditions, but little is known of the behavior
of these approaches over multiple days.

The goal of this study was to compare three model types to
predict knee joint torque from EMG, to be used for multi-day
control of a transfemoral prosthesis in non-weight bearing
situations. In this work we used a convolutional neural
network (CNN) using recurrent layers to predict knee joint
torque, as this architecture is useful for biomedical time series
modeling (Gautam et al., 2020). To our knowledge, CNNs have
not been applied before for knee joint torque prediction. We
evaluated the models over multiple days, to see their robustness
when applied in a multi-day setting. Our expectations are
threefold. Firstly, CNN models will show excellent
performance on the training day, but performance will
decrease on subsequent days. Secondly, NMS models will be
robust from day to day, hence outperforming machine learning
on subsequent days, but would not reach as high performance as
CNN models on the first day. Finally, a combination of these two
model types in a hybrid model, is expected to incorporate the best
of both worlds: reaching as high performance in knee joint torque
prediction as CNNmodels, while being as robust as NMSmodels.

2 METHODS

2.1 Experimental Data
Data were collected at the Roessingh Research and Development
(RRD), in Enschede the Netherlands, as part of the MyLeg
project. Ten able-bodied subjects (sex: 4m, 6f, age: 23.7 ±
2.4 years, length: 173.8 ± 6.4 cm, weight: 71.0 ± 8.8 kg),
participated in this study. The protocol was reviewed and
approved by Medical research Ethics Committees United
(MEC-U) Nieuwegein, the Netherlands, with trial number
NL67247.044.18. The participants provided their written
informed consent before inclusion in the study.

Bipolar EMG was recorded from four muscles on both legs:
rectus femoris (RF), vastus lateralis (VL), biceps femoris (BF) and
semitendinosus (ST). All EMG electrodes were placed according
to SENIAM guidelines (Hermens et al., 2000). The data was
acquired using the Cometa Wave electrodes at a sampling
frequency of 2000 Hz. The RF, VL, BF and ST were included
for this study since the intended application is for a prosthetic
knee and these muscles extend over the knee. The RF and VL
contribute to knee extension, whereas the BF and ST contribute to

knee flexion. Kinematics were measured using eight IMUs (Xsens
Link, Enschede, Netherlands), placed on the sternum, pelvis and
bilaterally on the thigh, shank and foot of the subject. Data was
recorded with a sampling frequency of 240 Hz. Joint angles were
reconstructed from Xsens MVN software. Only knee joint angles
in the sagittal plane were used in this study. EMG and kinematics
were time synchronized and resampled to 1000 Hz.

Each subject was measured four times: three measurements
were conducted on three subsequent days on day 1, 2 and 3 and
the last measurement was four days later on day 7. The subjects
were measured during the same time slot on each day. Before each
measurement the EMG of the maximal voluntary contraction
(MVC) of each muscle was measured to normalize EMG. The
subjects were asked to perform a trial containing a set of activities,
including level-ground walking, stair ascent/descent, ramp
ascent/descent, sit-stand motions and non-weight-bearing
activities on a stool. Only the non-weight-bearing activities
were used in this study as these form the starting point for
safely implementing a torque estimation strategy. The subject had
to sit on a stool and lift one leg off the ground (knee
approximately 90°), as can be seen in Figure 1. Then, the
subject had to fully extend the knee while keeping the foot
perpendicular to the lower leg. After, the subject performed
maximal plantarflexion of the ankle, followed by maximal
dorsiflexion. The knee was then brought back to a knee angle
of approximately 90°. Then, only knee extension and flexion
needed to be performed. Lastly, only ankle plantar- and
dorsiflexion needed to be performed while keeping the knee
angle at 90°. After, the foot was set down on the ground and
the routine was repeated with the other leg. The trial in which this
routine was included, was performed twenty times. Then, the
routine was slightly changed for another twenty trials: the subject
had to first perform ankle plantar- and dorsiflexion, then the
combination of both knee and ankle extension and flexion, and
finish off with only knee extension and flexion. Although ankle
movements were performed, only the knee joint torque was of
interest for this study. In total forty trials were performed.

FIGURE 1 | Non-weight-bearing setup: subject is seated on a stool with
one foot slightly lifted off the ground.
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2.2 Data Pre-Processing
The smoothed rectified envelope (SRE) of the raw EMG data of
the four muscles (RF, VL, BF, ST) was obtained by high-pass
filtering at 20 Hz, rectifying and low-pass filtering at 6 Hz. All
filters were zero-lag 2nd order butterworth filters. The SREs were
normalized by values obtained from the MVCs. Torque reference
data was obtained using OpenSim 4.1, an open source software kit
to develop musculoskeletal models and make dynamic
simulations (Seth et al., 2018). First, the OpenSim lower
extremity and torso model Gait2392 was scaled using subject
body measures to create a subject-specific model. knee joint
torque was obtained using the measured kinematics and the
Inverse Dynamics tool, without using external ground reaction
forces. Next, the torque was low-pass filtered using a 2nd order
zero-lag butterworth filter with a cutoff frequency of 1 Hz. The
resulting knee joint torque was used to train and calibrate the
developed models in this study. Muscle moment arms andmuscle
tendon unit lengths of the MTUs were extracted from the scaled
model. These parameters were used in the NMS and Hybrid
models.

2.3 Convolutional Neural Network
The first data pipeline contained a machine learning model,
consisting of a convolutional neural network (CNN) which
maps the windowed SREs to knee joint torque. SREs were
windowed using a window of 128 ms and a stride of 16 ms.
Corresponding knee joint torques were windowed as well and the
average torque value over a window was used as reference.

The CNN extracts local features from input images, using a
convolutional layer with a local receptive field. It then uses layers
with certain activation functions to map these features to the
desired output. In this work a Long Short TermMemory (LSTM)
layer was added to the CNN. An LSTM is an artificial recurrent
neural network architecture (Saranya et al., 2019), which has
internal mechanisms that can regulate the flow of information
and learn which data in a sequence is important to keep or
discard. For this study, no fixed CNN model architecture was
used. The model architecture was determined using Bayesian
optimization by minimizing the loss between predicted and
reference torque for all subjects on a training set of the first
measurement day. The loss function used in this study was the
mean squared error over the correlation coefficient:

loss �
1
n∑n

i�1 Yi − Ŷi( )2
r2

(1)

r � corr Y, Ŷ( ) > 0
1e − 2 otherwise

{ (2)

Herein is Y the reference torque and Ŷ the estimated toruqe.
Correlation values less that zero were set to 1e-2 to avoid
numerical instability. By using the correlation coefficient in
combination with the mean squared error the shape of the
curve of the torque prediction could also be taken into
account (correlation coefficient), while still penalizing large
deviations (mean squared error). Each model architecture
existed of a variable number of convolutional layers with relu
activation, an LSTM layer, a drop out layer with variable dropout

rate and a final dense layer with linear activation. The used
hyperparameters and corresponding search space were: the
number of convolutional layers {1,2,3,4}, the number of filters
in the convolutional layer {16, 32, 64}, the convolutional kernel
size {3,5,7}, the number of LSTM units {16, 32, 64}, whether to use
batch normalization after each layer {True, False}, and the drop
out rate {0.01,0.1,0.2,0.3,0.4}. The optimizer was Adam with a
learning rate of 0.001. The optimization routine ran for 200
iterations. During each iteration a model was trained with a
maximum of 100 epochs. Training was stopped early if the loss
did not reduce for 5 epochs. Overview of the fully-optimized
architecture is shown in the results section.

After hyperparameter optimization the optimized model
architecture was used for all subjects. The model was trained
per leg of each subject, to make the model subject specific. The
predicted torque was low-pass filtered with a second order zero-
lag low-pass filter and a cut-off frequency of 1 Hz to obtain a
smooth prediction.

2.4 NMS Model
The second data pipeline used a neuromusculoskeletal model
(NMSmodel) whichmaps EMG to knee joint torque. In this work
we implemented Hill-type muscle models as described by Thelen
(Thelen, 2003; Miller et al., 2018). The NMS model consists of
four parts:

2.4.1 Neural Activation Dynamics
The muscle activity a was determined by a first order differential
equation (Thelen, 2003) and a non-linear transfer function
(Sartori et al., 2012).

_u � emg − u

τa u, emg( ) (3)

a � eAu − 1
eA − 1

(4)

Herein is emg the SRE of the muscle of interest, u the neural
activation and a the muscle activation. A determines the shape of
the transfer function. τa is a time constant that varies with
activation level:

τa u, emg( ) � τact 0.5 + 1.5u( ) emg> u
τdeact/ 0.5 + 1.5u( ) otherwise

{ (5)

The time constant for activation τact and the time constant for
deactivation τdeact were parameters that were optimized.

2.4.2 Contraction Dynamics
The muscle fiber force is described by Eq. 6.

Fm � Fmax0 afv
_lm( )fa lm( ) + fp lm( ) + dm

_lm( )cos α lm( ) (6)
Herein is Fm the muscle fiber force, Fmax0 the maximal isometric
force, a the muscle activity, fv the force-velocity relationship, fa
the active force-length relationship, fp the passive force-length
relationship, dm the velocity damping factor and α the pennation
angle. All relationships depend on the normalized muscle fiber
length lm and its derivative the normalized fiber velocity _lm. The
fiber length was normalized by the optimal fiber length at
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maximal isometric force, lopt0. The normalized fiber length was
adjusted for activation level in fa as described by Lloyd and Besier
(Lloyd and Besier, 2003; Miller et al., 2018). The tendon force Ft
was depended on the tendon strain ϵt Eq. 8 via the tendon length
lt Eq. 7 as described by Thelen (2003). The tendon length
depended on the muscle-tendon length lmt which was
determined using the scaled Gait2392 model using the
corresponding joint angles.

lt � lmt − lm cos α lm( ) (7)
ϵt � lt − lslack

lslack
(8)

The normalized fiber length lm was determined by finding the
root of the equilibrium Eq. 9 using sequential least squares
programming.

|Ft − Fm| � 0 (9)

2.4.3 Joint Mechanics
The muscle force Fmj was multiplied with corresponding
moment arm rj to obtain the torque contribution of muscle
j. The knee joint torque was obtained by summing all the
muscle torque contributions. The moment arms r were
determined using the scaled Gait2392 model using the
corresponding joint angle.

∑Fmjrj (10)

2.4.4 Optimization Routine
For each muscle made subject specific by optimizing
hyperparameters. These hyperparameters and corresponding
search spaces for each muscle were: the activation and
deactivation time constants τact {10–80, step = 0.1} and τdeact
{10–80, step = 0.1}, the shape factor of the non-linear transfer
function A {-3 to −0.01, step = 0.001}, the isometric strength
coefficient cstr {0.5–1.5, step = 0.05}, the slack coefficient cslack
{0.85–1.15, step = 0.05}, and the optimal fiber length coefficient
copt0 {0.85–1.15, step = 0.05}. The latter three coefficients adjust
parameters from the contraction dynamics:

F̂max0 � cstrFmax0

l̂slack � cslacklslack
l̂opt0 � copt0lopt0

A Bayesian optimization routine was used to find the optimal
hyperparameters using the same loss function as seen in Eq. 1.
The optimization routine ran for 2000 iterations per leg per
subject on the training set of the first day. The predicted torque
was low-pass filtered with a second order zero-lag low-pass filter
and a cut-off frequency of 1 Hz to obtain a smooth prediction.

2.5 Hybrid Model
The third data pipeline contained a Hybrid model which
consists out of parts of both the CNN and NMS model. A
CNN was used to replace the activation component of the NMS
model described by Eqs 3–5. The CNN model architecture was

built from the hyperparameters found by the optimized ML
model. The activation of the last dense layer of the ML model
was changed from a linear to a sigmoid function, to limit the
output activation per muscle between zero and one. Hereafter a
simplified force component of the NMSmodel was used, which
is described by Eq. 11. The difference with Eq. 6 is the removal
of the passive force component to simplify the model. Next to
that, only two coefficients were optimized, cstr and cslack to
further simply the model. This was necessary as the
optimization routine would be too complex otherwise and
no adequate solution would be reached.

Fm � Fmax0 afv
_lm( )fa lm( ) + dm

_lm( )cos α lm( ) (11)
The training process was a combination of the CNN and NMS
calibration. First the NMS parameters were adjusted based on the
SREs without any activation dynamics for 500 iterations using a
Bayesian optimization routine as described before. Hereafter the
CNN part of the model was used to estimate the activation based
on the windowed SREs and trained for 10 epochs. After this, the
NMS parameters were adjusted again, this time using the CNN-
based activations as input, again for 500 iterations and then the
CNN was trained again for 10 epochs. Hereafter the NMS
parameters and CNN-parameters were optimized for a final
time. The loss function was the same as for CNN and NMS
models, see Eq. 1.

Windowed SREs were used as input and mapped onto
muscle activations by the CNN. These predicted activations
were used as input for the remaining NMS model. Windowed
muscle-tendon lengths and moment arms were used in this
remaining NMS model. The predicted torque was low-pass
filtered with a second order zero-lag low-pass filter and a cut-
off frequency of 1 Hz to obtain a smooth prediction.

2.6 Data Evaluation
Three different models were trained for each leg from each
subject. A fixed train/test split of 80/20% was made on data
from the first measurement day. All models were trained and
validated on the training set (80%), in which a shuffled train/
validate split of 80/20% was made. All models were tested on
the test set (20%) and all data from remaining measurement
days. This separation in data was made for the intended
application: it would be ideal to train a model on just one
day and to have it perform well on every other day. With this
method, robustness of all models against varying
circumstances could be tested.

The performance metric used for this study was the
normalized root mean squared error (NRMSE (%)), calculated
by Eq. 12. x̂ denotes the predicted datapoint, with x as reference,
N equals the total number of datapoints of which t indicates one
specific datapoint. max(xt) and min(xt) are the highest
respectively lowest torque reference value of all trials of one
leg and are used to normalize the data.

NRMSE %( ) �














1
N∑N

t�0 x̂t − xt( )2
√
max xt( ) −min xt( ) · 100% (12)
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Robustness was indicated by not-significant differences at the
0.05 significance level, in mean NRMSE values on different
measurement days.

2.7 Statistical Analysis
To analyze the performance of the models, NRMSEs of all legs, of
all trials from separate days were computed with each model. A
Mixed Model analysis with Šidák correction was used to
determine significance (α = 0.05) between the general
performance of each model compared to one another and the
performance of each model from day to day, compared by day
and by model. A log transformation was performed on the
NRMSE values to get normally distributed data.

2.8 Software
All models were built in Python 3.9. The CNNs were built using
Tensorflow 2.4 (Abadi et al., 2015) and Bayesian hyperparameter
optimization was done using Optuna 2.0 (Akiba et al., 2019). The

Mixed Model analysis was performed using IBM SPSS Statistics
Version 27.

3 RESULTS

CNN hyperparameter optimization led to the following
architecture: three convolutional layers, with 32 filters and a
kernel size of 7 and an LSTM layer with 64 filters. Batch
normalization was applied between each layer and a dropout
rate of 0.1 was used. For the CNN part of the Hybrid version a
similar architecture was used. See also Table 1. An example of the
torque predictions by the three different type of models can be
seen in Figure 2.

3.1 Model Comparison
Overall results are shown in Figure 3 and the comparison of
models over days is shown in Figure 4A. Average NRMSE was

TABLE 1 | Optimized architecture of the CNN model and the CNN part of the hybrid model.

Layer Size No. Parameters Notes

Batch Normalization 128
Convolutional layer 1D 32 928 kernelsize 7, relu activation
Batch Normalization 128
Convolutional layer 1D 32 7,200 kernelsize 7, relu activation
Batch Normalization 128
Convolutional layer 1D 32 7,200 kernelsize 7, relu activation
Batch Normalization 128
LSTM 64 24,832 tanh activation, sigmoid recurrent activation
Batch Normalization 256
Dropout rate 0.1
Fully connected layer 1 or 4 65 or 260 linear (CNN) or softmax (Hybrid) activation

FIGURE 2 | Example of torque estimation on the test set of one subject by the three different models over the four measurement days. In black the reference torque,
in red the predicted torque by the CNN model, in blue by the NMS model and in green by the Hybrid model.
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9.2 ± 4.4% for the CNN model, 14.3 ± 4.2% for the NMS model
and 12.4 ± 3.4% for the Hybrid model. The CNN model
outperformed the NMS and Hybrid models overall (resp.
p< 1e-4, p< 1e-4), on day 1 (resp. p< 1e-4, p< 1e-4), day 2
(resp. p = 0.007, p = 0.019), day 3 (resp. p = 0.004, p = 0.029)
and on day 7 (resp. p = 0.001, p = 0.015). The Hybrid model
outperformed the NMS model overall (p = 0.001) and on day 1
(p = 0.001).

3.2 Model Performance Over Days
Performance of the models over days is shown in Figure 4B.
For the CNN the error was 5.8 ± 1.6% on day 1, 10.0 ± 5.2% on
day 2, 11.0 ± 4.1% on day 3 and 10.2 ± 3.9% on day 7. The error
on day 1 differed significantly from the other 3 days (resp.
p < 1e-4, p < 1e-4, p < 1e-4). No significant difference was
observed between day 2, 3 and 7. For NMS the error was
14.2 ± 3.4% on day 1, 13.4 ± 3.0% on day 2, 15.2 ± 5.1% on day
3 and 14.6 ± 4.9% on day 7. No significant difference was
observed between day 1, 2, 3 and 7. For Hybrid the error was
10.0 ± 1.6% on day 1, 12.6 ± 2.4% on day 2, 14.1 ± 4.2% on day
3 and 13.1 ± 3.5% on day 7. The error on day 1 differed
significantly from the other 3 days (resp. p = 0.002, p = 0.001,
p = 0.004). No significant difference was observed between day
2, 3 and 7.

4 DISCUSSION

The main goal of this study was to find the most suitable model to
predict knee joint torque from EMG, to be used for multi-day
control of a prosthetic knee joint in non-weight bearing
situations. Three different models were developed and
validated on both legs of ten able-bodied subjects, using multi-
day measurements. The CNN model had the overall lowest
prediction error (9.2 ± 4.4%) and performed significantly
better than NMS and Hybrid on all days. To the best of our
knowledge, our convolutional neural network was the first of its
kind able to successfully predict knee joint torque from EMG
input data. Next to that, we implemented state-of-the-art NMS
models which showed robustness from day to day. We also
successfully combined a convolutional neural network and a
Hill-type muscle model to create a Hybrid model, which is
also first of its kind. This Hybrid model was able to
outperform NMS. This study indicates that convolutional
neural networks are a suited approach to be used in knee joint
torque estimation over multiple days.

The CNN showed the lowest error on the training day and had
an increased error on subsequent days, which was in line with our
expectations. However, the increase in error did not continue
after day 2 and results showed that the CNN was robust over the
other three days, showing no significant differences between day
2, 3 and 7. This is not completely in line with expectations from
related work. Convolutional neural networks are known to have
robustness issues (UličnỲ et al., 2016; Ghosh et al., 2018; Arcaini
et al., 2020). For example, if electrodes are placed differently on
day 2 and MVC values differ from day to day, the EMG envelope
images that are created can differ too much from day 1 for the
CNN to make a good prediction. This may explain the significant
differences between day 1 and all other measurement days.
However, our findings show no significant differences between
day 2, 3 or 7, thus being robust over days, which contradicts
literature. A possible explanation is that the variance in EMG
envelopes, and thus the input data for the CNN, within a subject
is small enough to be handled by the CNN. Another explanation
is that the output of the CNN used in this study is low-pass
filtered to smooth any outliers, improving the NRMSE and
robustness. Next to that, related work suggested that a black-
box machine learning method could predict torque values outside

FIGURE 3 | Average NRMSE (± SD) per model over all days. Asterisks
indicate significance level: p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***.

FIGURE 4 | Average NRMSE (± SD) per day per model (A) and per model per day (B). Asterisks indicate significance level: p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***.
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of a physiologically plausible space (Sartori et al., 2018). We were
able to develop a CNNmodel with low-pass filter, which was able
to predict torques within a small range of the reference value. This
study showed that a CNN model is suited for torque estimation
within plausible ranges.

Compared to related work, our study shows similar results for
the CNN model. To our knowledge no studies into the
performance of knee joint angle or torque prediction over
multiple days were conducted, thus only the first day
performances could be compared. We observed an average
error rate of 5.8 ± 1.6% on day 1, which is comparable with
related work. Huang et al. reported an average error of 4.9% and
Gautam et al. reported an average error of 8.1% for knee joint
angle prediction. Zhang et al. reported an average error of
0.7–6.7% for ankle torque prediction.

The NMS model did not differ significantly over days as
expected and is the only model that met our definition of
robustness. It was expected that robustness was shown over
every measurement day (Durandau et al., 2018; Sartori et al.,
2018). Related work showed the model’s ability to predict torque
in untrained activities, thereby proving its robustness by their
definition (Durandau et al., 2018). Our definition of robustness is
different since it refers to time and not the model’s ability to
predict untrained activities. To our knowledge, little related work
investigated robustness from day to day. Just one study calibrated
the NMSmodel on one day and tested themodel the day after, but
did not test for between-days variance (Sartori et al., 2018). This
study showed that NMS is also robust over multiple days. The
error observed on day 2, 3 and 7 by the NMS model was
significantly higher than the error of the CNN model, which
was not expected. Next to that, the average NRMSE of 14.3 ± 4.2%
was slightly higher than observed in related work. Durandau et al.
reported an average error of 10–11% and Zhang et al. reported an
average error of 2–12%. It could be that the model was too
complex for the task that was performed. Furthermore, the
activities performed in this study find the physiological
boundaries of the knee angle and thus of the muscle
parameters, which might cause this model to perform less
compared to findings in literature.

The performance of the Hybrid model was midway between
the performance of the CNN model and NMS. It was not as
robust as NMS and did not reach as high performance as the
CNN model, thus it did not meet our expectation. Similar
robustness behaviour was found compared to the CNN model:
robustness was found over day 2, 3 and 7. This can be explained
by the fact that Hybrid and CNN models both make use of a
CNN, of which its robustness was explained before. The error
overall and on day 1 was significantly lower than that of NMS,
thus combining NMS with a CNN can lead to better performing
models. A possible explanation is that the muscle activation
computed by the CNN is more accurate than the muscle
activation calculated by the activation component of the NMS
model. The Hybrid model thus uses the best features of both the
CNN model and NMS: the CNN is used to find a better relation
between EMG and muscle activation, and the NMS components
provide information about the underlying process of
biomechanical movement.

Compared to related work of Hybrid modelling, we found an
average NRMSE of 10.0 ± 1.6% on day 1. As no multi-day studies
into knee joint angle or torque prediction based on EMG were
performed to our knowledge, we cannot compare the results of
the other days to related work. Cimolato et al. (2020) found an
average NRMSE of 24.0% with their Hybrid model and Xu et al.
(2020) found an average RMSE of 5.8% with their Hybrid
approach. The application of Xu et al. was on the upper limb
which is different than our application in the lower limb. This
might explain the difference in error rate compared with our
study as the system that needs to be modelled around the elbow is
less complex than around the knee. Our Hybrid approach has an
error rate which falls between these two studies.

The findings of this study are promising for the use in a
transfemoral prosthesis. The CNN model proves to be the best of
three models to be used for knee joint torque estimation.
However, future work remains to investigate if this finding
extends to an online application with amputees as well. The
input of the CNNs were windowed to obtain EMG images, which
would introduce a real-time delay of the window size (128 ms) +
sampling period (16 ms). Output was filtered by a second order
low-pass filter with a cut-off frequency of 1Hz, which would cause
an additional real-time delay of 1 sample (16 ms), resulting in a
total delay of 160 ms. Therefore, with the intended use in mind, it
is essential to test performance of these models in real-time using
an actual transfemoral prosthesis, using amputees instead of able-
bodied subjects. Futhermore, the sample size of ten subjects is
limited and could be extended for a more clear result between the
different models. Another limitation of this study is that the
influence of the maximum voluntary contractions on the EMG
data and model performance have not been investigated. The
MVC that was performed for this study cannot be done by a
transfemoral amputee. An extension of this study should
investigate the use of different MVCs, for instance by using a
submaximal contraction to estimate maximum contraction as
proposed by Kishimoto et al. (2021) and investigate how different
MVCs affect the model performances.

5 CONCLUSION

This study provides new insight into what modelling framework
performs best in predicting knee joint torque from EMG data
during non-weight bearing activities in healthy subjects. Three
models (CNN model, neuromusculoskeletal model and a Hybrid
model) were designed and tested on multi-day measurements to
gain knowledge about the robustness of each model to time-
varying parameters. Results indicate that the CNN model
performed best compared to the other models (NRMSE 9.2 ±
4.4%) and that the Hybrid model (NRMSE 12.4 ± 3.4%) was able
to outperform the neuromusculoskeletal model (NRMSE 14.3 ±
4.2%). The NMS model was the only model that was robust over
all days. The CNN model and Hybrid models showed only
significant differences in performance between the first day
and all other days, a promising finding for the robustness of
each model. These results contribute to the development of a
direct control scheme for a transfemoral prosthesis by providing a
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clear comparison of all three modelling frameworks evualated
over multiple days.
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