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Social robotics represents a branch of human-robot interaction dedicated to

developing systems to control the robots to operate in unstructured

environments with the presence of human beings. Social robots must interact

with humanbeings by understanding social signals and responding appropriately to

them. Most social robots are still pre-programmed, not having great ability to learn

and respond with actions adequate during an interaction with humans. Recently

more elaboratemethods use bodymovements, gaze direction, andbody language.

However, thesemethods generally neglect vital signs present during an interaction,

such as the human emotional state. In this article, we address the problem of

developing a system to turn a robot able to decide, autonomously, what behaviors

to emit in the function of the human emotional state. From one side, the use of

Reinforcement Learning (RL) represents a way for social robots to learn advanced

models of social cognition, following a self-learning paradigm, using characteristics

automatically extracted from high-dimensional sensory information. On the other

side, Deep Learning (DL) models can help the robots to capture information from

the environment, abstracting complex patterns from the visual information. The

combination of these two techniques is known as Deep Reinforcement Learning

(DRL). The purpose of this work is the development of a DRL system to promote a

natural and socially acceptable interaction among humans and robots. For this, we

propose an architecture, Social Robotics Deep Q-Network (SocialDQN), for

teaching social robots to behave and interact appropriately with humans based

on social signals, especially on human emotional states. This constitutes a relevant

contribution for the area since the social signalsmust not only be recognized by the

robot but help him to take action appropriated according to the situation

presented. Characteristics extracted from people’s faces are considered for

extracting the human emotional state aiming to improve the robot perception.

The development and validation of the system are carried out with the support of

SimDRLSR simulator. Results obtained through several tests demonstrate that the

system learned satisfactorily tomaximize the rewards, and consequently, the robot

behaves in a socially acceptable way.
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1 Introduction

Initially applied predominantly in industrial

environments, robotics is increasingly present in residential

and domestic environments. Robots are no longer mere tools

to become assistants in everyday tasks in direct partnership

with human beings. To allow this evolution, the robotics

community must address several challenges, in particular,

in the area of Human-Robot Interaction (HRI), especially

in the sub-area of Social Robotics (Fong et al., 2003).

HRI is a field of study dedicated to understanding,

designing, and evaluating robotic systems to interact and

be used by humans (Goodrich and Schultz, 2007). Social

robotics directs its interest to interactions between humans

and robots, establishing a communication similar to that used

between humans. The applications of social robotics range

from tasks that involve search and rescue to education to

assistive robotics and several other applications that require

some social skill.

Considering the definition of SPARC Robotics, 2016

“Cognition is the system-wide process that provides an agent

with the ability to understand, given only partial knowledge, how

things might possibly be, not just now but at some point in the

future, and to use this understanding to influence action”. Since

robots and humans communicate, this interaction should occur

at the same cognitive level. Predicting the future requires the

robot to remember the past, so learning is fundamental for all

cognitive systems.

It is desirable that social robots can interact with humans by

understanding social signals and responding appropriately to

promote a “natural” interaction between humans and robots.

This ability depends on both interaction skill levels and cognitive

ability levels (SPARC Robotics, 2016). Most social robots are still

pre-programmed, lacking the ability to learn and update

information (Qureshi et al., 2016). More elaborate methods

use body movements, gaze direction, and body language.

However, these methods generally neglect necessary

interaction signals, such as emotional state and more complex

social signals. These signals can provide vital information to

assess the success of user interaction.

The ability to interpret emotional signals is essential for social

interaction (Kessels et al., 2014). Emotions can help in the

interpretation of an individual’s internal states and,

consequently, help in the prediction of future actions

(Breazeal et al., 2016). Emotions are categorized as purely

cognitive, the mental representation of an emotional

experience includes both motor and visceral components as

well as cognitive components (Dantzer, 1993). Thus, robots

must recognize and interpret emotional signals and internally

map this information to interact with humans.

The use of Reinforcement Learning (RL) represents a way for

social robots to learn to behave and interact appropriately with

humans, following a self-learning paradigm, seeking to maximize

some aspect of the interaction. Through computer vision

techniques, such as Deep Neural Networks (DNN) or Deep

Learning (DL), robots can capture data from the environment

in much more detail, abstracting complex patterns of visual

information, including automatically extracted advanced social

cognition information. Combining these two techniques is

known as Deep Reinforcement Learning (DRL).

In this work, we adopted the use of Ekman’s six basic

emotions (Ekman and Friesen, 1971), which are expressed

through the human face and are independent of culture.

These basic emotions are: happiness, fear, disgust, surprise,

anger, and sadness. We address the use of these emotions and

other social signals so that robots can behave themselves, with a

self-learning paradigm, more socially accepted. In this way, we

propose a system based on DRL and Deep Q-Network (DQN)

(Mnih et al., 2015) so that social robots can identify human

interactive behaviors and act appropriately considering social

signals, such as the focus of attention and emotions, in addition

to captured images of the environment. The robot must learn to

identify when the human is willing to interact and which action

to select for each case from these signals. This architecture is

proposed in this article and is called Social Robotics Deep

Q-Network (SocialDQN).

Further, we will present the results obtained through training

the proposed model to demonstrate its efficiency. We used the

Simulator for Deep-Reinforcement Learning and Social Robotics

(SimDRLSR) developed by Belo and Romero (2021) to assist in

the SocialDQN training. This simulator aims to provide an

environment for training and validating reinforcement

learning systems aimed at HRI and social robotics.

This article is organized as follows. In Section 2, a panorama

is presented about works related to the research involving

reinforcement learning, use of emotions, social signals, and

HRI. In Section 3, some technical and theoretical concepts

used in this work are described such as RL, DQN for HRI,

and emotions. In Section 4, the proposed architecture,

SocialDQN, is presented as well as the emotions considered,

mapping the environment, rewards used, actions, among other

aspects. The SimDRLSR simulator, used to assist this work, are

presented in Section 5. Experiments and results involving

SocialDQN and SimDRLSR simulator are shown in Section 6,

as well as a brief discussion in Section 7. Finally, in Section 8,

conclusion and future work are presented.

2 Related works in DRL for social
robotics

Modeling the complex social norms established among

humans defines a significant research challenge for Social

Robotics.

An essential area for social robotics consolidation is cognitive

science area that seeks to build models that represent the complex
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dynamics present in development and human relationships

involving characteristics such as perception, memory, mental

representation, reasoning and action choice (Abrahamsen and

Bechtel, 2012).

Breazeal (2003) reinforced the importance of emotions in

social interaction from experiments with a robotic head, named

Kismet, capable of expressing emotions through movements in

facial features, such as eyelids, eyebrows, lips, and ears. The

catalyst for social engagement occurs with the recognition of

human movements with the use of cameras. In fact, one of the

challenges of social robotics is to merge the interests of the

robotic system with information from the environment to define

the robotic agent action.

In this direction, research involving social learning gains

relevance in contrast to the use of rigid pre-programmed

procedures. In the line of social learning, Boucenna et al.

(2014) presented how learning by imitation can be used to

generate complex behaviors such as social referencing

(American Psychological Association, 2022). Moving in the

same direction as social learning, we have examples of

research that seek to model human cognitive development

through the continuous learning of the robotic agent carried

out through interactions with humans (Boucenna et al., 2016).

A promising approach to modeling social norms consists of

strategies for learning from demonstrations (LfD). In particular,

we are interested in the Deep Reinforcement Learning (DRL)

technique in this work.

A search in Scopus1 reveals that this is an incipient area

presenting 55 works in the last 5 years (since 2016). Only

19 results are directly associated with the theme, and

36 results do not directly involve HRI: 19 works are directed

to robot navigation, 10 are outside the scope of the search, 6 are

associated with publications in proceedings, and one is

duplicated. To follow, the main works found are presented

jointly with a discussion about the advantages and

disadvantages of each one.

Qureshi et al. (2016) presented an architecture called

Multimodal Deep Q-Network (MDQN), which allows a robot

to learn human-like interaction skills through a trial and error

method. The strategy used involves using MDQN to learn the

human protocol with the compliance action as an external

reward. The robot Softbank Pepper (SoftBank Robotics, 2022b)

is used, interacting with people through the actions wave,

handshake, look and wait. In Qureshi et al. (2018) this

architecture was expanded by using the facial expression smile

and eye contact as an additional event associated with handshake.

The authors modeled a conditional action prediction network

(Pnet) and an action-value state network (Qnet). This set turned

possible the proposal of an intrinsically motivated deep

reinforcement learning framework to learn social interaction

skills in the real world of scarce rewards.

The use of artificial intelligence, particularly DRL, can

represent a questionable facet in HRI by creating expectations

and misunderstanding in the actions performed by the agent

(Fiske et al., 2019). The lack of understanding of behaviors and

interactions by humans and robots compromises collaboration

tasks between both agents (Hayes and Scassellati, 2013;

Nikolaidis and Shah, 2013; Hayes and Shah, 2017). Based on

these questions, Hayes and Shah (2017) presented a set of

algorithms and a monitoring system for enabling robotic

agents to answer questions about their actions, intentions, or

plans. In addition, a mechanism was presented for modeling

robot control policies. The advantage of this proposal is to allow

non-experts in the field to obtain insights into the operation of

autonomous agents, improving expectations about agents’

behavior.

In the same vein as the MDQN architecture proposed by

Qureshi et al. (2016), Clark-Turner and Begum (2018) presented

a system that uses DRL, especially the DQN method, capable of

learning by demonstrations. For this, a teleoperated Softbank

NAO robot (SoftBank Robotics, 2022a) and a set of participants

were considered in the experiments. The participants had its

gaze, voice, and gestures analyzed by the robot in the context of

an Applied Behavior Analysis (ABA) for social greeting

intervention. By capturing the image and audio sequences, the

network analyzed signals and responses from participants by

selecting a set of three actions, Prompt, Reward and End. The

Prompt action correct the response when the participant exhibits

behavior that is not socially acceptable in response to a social

greeting. Reward is responsible for giving a positive reward in

response to positive action by the participant. Finally, the End

action is performed after a correct answer or after the participant

has answered incorrectly several times. The model created

showed an accuracy of 68.1% during the simulation and

achieved similar results in a real environment.

The real-time emotion recognition increases the applicability

of HRI systems. The work proposed in Kansizoglou et al. (2019)

explored the temporal quality of human emotion in interactive

scenarios using two models of Convolutional Neural Networks

(CNN) to extract emotional characteristics through audio and

video modalities, jointly to a CNN for a fusion of these models.

The DNN output is routed to a Long Short-Term Memory

(LSTM) network. Dynamic behavior is achieved through a

Reinforcement Learning (RL) agent that monitors the hidden

state of the LSTM layer and stops the processing of the video

according to its internal confidence. According to the author, this

integration is advantageous compared to other models by

reducing the time of emotion identification.

Finally, the work proposed in Gao et al. (2019) explored the

strategy of gathering a group of people respecting social norms.

This work proposed a model called Staged Social Behavior

1 Search string = ((“human robot interaction”) OR (“human-robot
interaction”) OR (“social robotic”) OR (“social robotics”)) AND (“deep
reinforcement learning”).

Frontiers in Robotics and AI frontiersin.org03

Belo et al. 10.3389/frobt.2022.880547

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.880547


Learning (SSBL), for consolidating a previous model of

approximation strategies using simulation and applying the

knowledge generated in experiments with human participants.

The model used a DL scheme associated with a reward function

that follows the proxemic theory (Hall et al., 1968).

From the works related to the use of DRL in HRI, we conclude

that they have in common the fusion of different types of Neural

Networks (NN) to process the multimodal information of the

environment (gaze, speech, gestures, emotion). This fusion alone

is not enough to model complex human social relationships. Thus,

the works use the LfD and RL strategies with DRL to mimic human

behavior. The presented studies used widely simulators to accelerate

the learning process. However, despite promising, the results

achieved are still far from the concrete use of the systems produced.

The present work contributes to this research proposing the

architecture, SocialDQN, and the simulator, SimDRLSR, to

accelerate learning and training considering also human

emotions as input information for DRL system.

3 Models and techniques for
social HRI

In this section, we will present the models, techniques, and

theoretical foundations used to develop this work. The work

done in Qureshi et al. (2016) and Qureshi et al. (2018) proposed a

multimodal reinforcement learning architecture in order to

provide “Social Intelligence” for humanoid robots. These

works use simple social signals such as a handshake, smile,

and human focus of attention.

In the present work, we are proposing to include the analysis

of human emotions during the interaction. By interpreting these

emotions, robots can infer how to approach and interact with

humans. In this way, this work presents a relevant contribution,

since that it considers also the human emotions expressed

through the face for taking an appropriated action.

Reinforcement learning and deep learning systems require

thousands of interactions of the robot and the environment to

maximize the exploration of states and possible actions and

minimize punishments (or maximize rewards) in a given task.

This factor can cause wear on the robot and delay the validation

of the system. So, using robots interacting directly with people in

the training phase of reinforcement learning systems represents a

high computational cost solution. To overcome this drawback,

we will work with a robot and people in a simulated environment,

through Simulator for Deep-Reinforcement Learning and Social

Robotics - SimDRLSR proposed by us in Belo and Romero

(2021).

RL algorithms aim to maximize a reward signal when

performing actions considering a given situation (states) and

past interactions. In this context, an agent must identify which

actions generate more reward without preliminary information

using a trial and error strategy. In more elaborate cases, actions

can affect immediate and subsequent rewards for future states

(Sutton and Barto, 2018).

According to Sutton and Barto (2018), the understanding of

RL depends heavily on the concept of state, which works as an

input to the policy and value function. The Markov Decision

Processes (MDP) defines the formal definition of a state, where a

state is any information available to the agent about its

environment.

In MDP model, an agent interacts with the environment

continuously, it selects actions and the environment responds to

these actions by presenting new situations to the agent. The

environment also generates rewards, values that the agent seeks

to maximize over time through the choice of actions. Formally, at

each t step (t = 0, 1, 2, 3, . . .) the agent receives a representation of

the state of the St ∈ S environment, and performs an action

At ∈ A(s). When performing an action, the agent receives a

reward Rt+1 ∈ R ⊂ R, in addition to the next state St+1. Figure 1

represents the model of MDP in an agent-environment

interaction.

The agent interacts in the environment, accumulating

experiences S0, A0, R1, S1, A1, R2, S2, A2, R3 . . . over time

through the MDP. These experiments allow the agent to

choose an action at from the set of actions A(s) to be

executed in the state st, using a policy π(at|st) to select the

action. The agent uses a policy to map the probability of

selecting an action given a state to obtain an estimate of how

well this execution performs. The agent then receives a reward rt
and advances to the next state st+1, given the reward function

R(s, a) and the transition probability of state P(st+1|st, at). This
process continues until the agent reaches a terminal state in an

episodic problem. At the end of the cycle, is returned the

accumulated reward with discount calculated by the discount

factor γ ∈ (0, 1]. The reward function can be expressed as follows:

Rt � ∑∞
k�0

γkrt+k+1 (1)

In general, the agent aims to maximize the long-term return

expectation for each state. In this way, the action-value function

FIGURE 1
Interaction of an agent with the environment in an MDP
(Sutton and Barto, 2018).
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aims to calculate the expected return reward from a state s,

following a given policy π, taking an action a. Naturally, at least

one policy is always better than or equal to all other policies. For

this, Mnih et al. (2015) defined an optimal action-value function

Q*(s, a) as “the maximum expected return achievable by

following any strategy, after seeing some sequences and then

taking some action a”.

For example, the algorithm Q-learning (Watkins and Dayan,

1992) updates the optimal policy using policies independent of

the policy in question, i.e., the algorithm can use a policy p (e.g.,

random policy) to choose the following action At and update Q

while evaluating the policy p′ (greedy policy, for example). This

type of algorithm is called off-policy. The algorithms on-policy,

such as SARSA for example, use the same policy to execute and

evaluate this policy (Li, 2018).

To enable convergence to an optimal policy, Q-learning has a

parameter ϵ, which configures an exploration value. In the ϵ
greed approach, with ϵ ∈ (0, 1), an agent selects a greedy action

for state s, with probability 1 − ϵ and selects a random action. This

method ensures that the algorithm does not get stuck to a given

policy π, randomly exploring actions that may or may not

maximize future rewards (Sutton and Barto, 2018).

The logic behind algorithms such as Q-Learning and Sarsa is

given through the Bellman equation, which according to Mnih

et al. (2015), obey the following intuition: “If the optimal value

Q*(s′, a′) of the sequence s′ in the next time step has been known

for all possible actions a′, so the optimal strategy is to select

action a′ by maximizing the expected value of r + γQ*(s′, a′),
from the next equation:

Qp s, a( ) � Es′~ϵ r + γmax
a′

Qp s′, a′( )|s, a[ ], (2)

However, as the environments become complex, algorithms

such as Q-learning may need millions of action-state pairs to

map the environment, which is computationally infeasible.

Gradient policy optimization algorithms can provide necessary

information taking into account sets of actions and states (Sutton

and Barto, 2018), being modeled, generally, through Artificial

Neural Networks (ANN) and DL. Such algorithms learn the

policy from a parameter that can select actions without

querying a value function. The use of these techniques

together with RL, allowed the rise of DRL, mainly by DQN

(Mnih et al., 2015).

Mnih et al. (2015) refers to an ANN to model the action-

value function Q (Equation 2), as Q-Network. This network is

trained by minimizing the Loss function,

Li(θi) � Es,a~ρ(.)[(yi − Q(s, a; θi))], that changes at interaction

(i), where the target for interaction i is defined by

yi � Es′~ε[r + γmaxa′Q*(s′, a′)|s, a], and ρ(s, a) represents the

probability distribution over states (s) and actions (a). From this,

the authors present the gradient descent function as follows:

∇θiLi θi( ) � Es,a~ρ .( );s′~ε r + γmax
a′

Q s′, a′; θi−1( ) −Q s, a, θi( )( )∇θiQ s, a; θi( )[ ], (3)

where ε represents samples of environment, and previous

iteration parameters θi−1 are kept fixed when optimizing the

loss function. In the context of DQN agents, the model uses this

equation to perform gradient descent steps during the training

and adjustment phase of the agent’s weights.

Several works have shown the ability of DQN network to

learn through high-dimensional visual inputs, working in various

areas of robotics, including HRI. For example, in Qureshi et al.

(2016), the architecture MDQN is presented for a robot to learn

social interaction skills from the experience of interacting with

people, which makes use of two DQNs for understanding the

environment using high-dimensional visual information. In

Qureshi et al. (2018), the authors use a second predictive

network in order to calculate the MDQN reward.

In MDQN, the agent interacts for 14 days with the

environment for 4 h a day. After each day (episode), the

system trains the robot model with the collected experiences.

In Belo and Romero (2021), the authors replicated these

experiments with the MDQN model using the SimDRLSR

simulator with the same training process and interaction

conditions.

In the present article, we use several MDQN concepts to

propose a new architecture, SocialDQN, that uses human social

signals to aid robot learning to promote interactions that are

socially acceptable by humans based on their emotional state. For

example, this approach includes scenarios where the person does

not want to interact with the robot, which must exercise actions

relevant to this situation. In addition, we solved the problem of

instability in agent training, as observed in Belo and Romero

(2021), by generating thousands of episodes and optimizing

several parameters.

4 SocialDQN: An architecture for
social robotics

This section presents the architecture SocialDQN that is the

core of this work. This architecture combines social signals from

interactions between humans and robots to concepts well

established in the literature, such as Q-learning, DNN, and

the fusion of these two techniques, the DQN models. The use

of images of the environment for training the network represents

a way of abstracting complex information from human

interaction that may be inherent to cultural and

environmental aspects, generating behaviors that are difficult

to catalog and classify. However, actual computational methods

can easily abstract information from human interaction, such as

emotions and facial expressions. This information serves as a tip

to the robot on interacting with humans.
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SocialDQN aggregates experience collected from an

environment to train a reference model for teaching the robot

to interact in this environment. In Figure 2, it is presented the

SimDRLSR (Belo and Romero, 2021), that is the simulator

responsible for modeling human, robot, objects, locations, etc.

In Section 5 will be presented this simulator in details.

The modules composing SocialDQN architecture are shown

in Figure 3. They are RL Environment, Agent, Experience Replay

and Main. In addition, we can observe the states, rewards,

actions, and other aspects relevant for training and

communication with the robot. In particular, we present the

captured states of the environment generated from emotions and

grayscale images.

4.1 Overview

SocialDQN is a model for the robots to learn, through trial

and error, to perform human interaction actions. For this, the

agent receives positive or negative rewards depending on its

interaction with the environment. This approach allows

SocialDQN to assess the quality of its actions in different

situations. Unfortunately, robots and computers have sensor

and memory limitations to store all the environment

information. The abstraction of the environment performed

by the agent is known as state.

In SocialDQN, a state is composed of 8 sequences of grayscale

images and a vector with the processed information of human

social signals. In this work, the agent uses the emotion detected

through the human face to compose this vector. In this way, the

agent must use state information to decide what action to take.

For example, given a sequence of images where a human is

approaching the robot, and the vector with the social sign

informs that the human is happy, the agent shoud decides

among to wave to get the attention of the human, perform a

handshake, look at him or simply wait for him/her to approach.

The selected action can generate punishment or reward for the

agent.

The agent receives a maximum reward for successfully

executing a handshake but receives a penalty if the human

FIGURE 2
SimDRLSR and SocialDQN.
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does not match the gesture. The same happens when the robot

waves, but in this case, the agent checks if the human looks back

at it, indicating that the robot got the human’s attention.

In addition to sociability issues, the robot must learn the

relationship between states and actions to get the human’s

attention before establishing a handshake. For example, for a

person walking in the environment, the robot must wave to him

first, and if he approaches, execute a handshake.

4.2 SocialDQN architecture

This architecture follows the classical structure of a DRL

system in which, initially, the agent, the environment, the neural

network are created and initialized from parameters and hyper-

parameters defined for the execution, training, and validation of

the model.

The system starts capturing the state of the environment at

time t. The Social Neural Q-Learner (SocialNQLearner) module

retrieves this information, selecting an action from the ϵ-greed
algorithm. In turn, RL Environment is responsible for

communicating with the real or simulated robot, being

responsible for sending the action generated previously. The

system once again captures the state of the environment but in

time t+1. In Figure 3, the connection arrows between modules

represent this continuous movement of information.

Based on the MDQN network, the SocialDQN architecture

maps four actions to the robot’s interaction with the

environment, wait, look, wave, and handshake. In the first

action, wait, the robot changes its head orientation to look at

a random location. In the second, look, the robot seeks and

maintains its focus of visual attention on a human. The wave

action involves waving the hand while the robot looks at a

human. Finally, the last action, handshake, consists in the

robot projects its arm forward in order to greet the person. If

matched, the robot shakes the person’s hand. We expected that

the agent executes each of these actions in the correct context,

trying to get the human’s attention until it manages to obtain the

highest possible reward from successful execution of the

handshake action.

The agent stores in Replay Buffer the experiences

generated from its experience in the environment. Each

experiment, associated with execution in time t, is

represented by the tuple < st, at, rt, st+1 > , with the term st
being the combination of the sequence of eight grayscale

images and social signals obtained from the emotion, at the

action taken for that state, rt the reward given by the

environment, and st+1 the state at time t + 1. The

Experience Replay stores this experience, overwriting the

older ones in case the Replay Buffer reaches its maximum size.

This cycle is repeated by the agent collecting information

from the environment and performing actions while learning the

FIGURE 3
The SocialDQN architecture follows the pattern of a traditional reinforcement learning system. The agent captures the states, selects an action
through a policy (ϵ-greedy), receives a reward, extracts state information again, and stores the interaction information in a replay buffer. Periodically,
the system trains the model. The cycle is repeated until the algorithm reaches a terminal state, and it can restart this cycle for n iterations.
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actions that maximize the reward value. At MDQN network,

there was a stage of data collection and training. The data

collection stage in MDQN involved long interaction steps

before performing the model’s training, with few training

episodes. Different from MDQN, SocialDQN trains its model

after a few interactions in the environment during thousands of

episodes. This aspect ensures a smoother agent learning, as the

system constantly trains the model, which allows evaluating and

updating the weights present in DQN network and avoiding the

agent staying stuck in local minimal.

The SocialDQN is trained by several episodes in which the

agent interacts in the environment until it reaches a terminal

state. It is considered that the robot reaches this state when it

successfully executes the handshake action, that is, a human

corresponds to this action. The system considers one second

type of terminal state. This state occurs when the agent reaches

a pre-defined maximum amount of interactions, resulting in a

negative reward.

The Main module communicates directly to RL Enviroment.

The latter can have several instances connected to a robot instance

(real or simulated). RL Environment aims to configure the robotic

agent, process states and rewards, and standardize communication

with the external system.

Algorithm 1. SocialDQN pseudo algorithm

In the Algorithm 1 we present the SocialDQN pseudo

algorithm, based on the pioneering work of Mnih et al (2015)

who proposed the DQNs. The algorithm follows the same

execution logic presented above, but it is essential to highlight

some points concerning agent training. For

standardization purposes with the algorithm presented in

Mnih et al (2015), we use ϕ as a function to process the

input states.

From various experiences in the Replay Buffer, SocialDQN

randomly selects a set of a few dozen experiences for training.

The training considers the loss Q concerning the target network

Q̂. The Q network aims to calculate the quality of values to the

execution of an action aj given the state ϕ. The target network

processes the future states (ϕj + 1), taking into account the action

a′ that maximizes the network’s return. The SocialDQN trains its

model by performing a gradient descent step according to

Equation 3.

The training aims to make the network learn to estimate

action values from current states concerning future states. The

objective is for the agent to learn to estimate its reward when

performing an action in a specific state. However, the agent must

perform as many interactions as possible, trying to learn the

relationship between state and action.

4.3 Environment states

A state is a total or partial representation of the environment

at a given moment. However, the total representation of an

environment can be expensive and requires an enormous

quantity of sensors, memory and computational resources to

store and process such information. Regardless, the use of images

extracted from the environment can bring valuable information

to the learning systems, as revealed in several works presented in

Section 3.

In the present work, we use sequences of grayscale images as

one of the input channels of the DQN network, responsible for

mapping the action-state values. The human emotion

information captured in time t represents the second channel.

In SocialDQN architecture, we only use the grayscale image

stream to reduce communication latency, an essential factor in

social robotics. Furthermore, grayscale images make training the

DQN less complex concerning RGB images. The use of color in

deep networks usually occurs when this information contributes

to learning. For example, when it is necessary to detect objects,

differentiate other robots by color, and identify elements from

the environment. In the case of this work, the grayscale images

are sufficient to abstract relevant information from the

interaction, as shown in many works in the area of HRI

(Qureshi et al., 2016, 2018; Clark-Turner and Begum, 2018).

In order to formalize each of these state representations, we

will adopt the term Sim for the state represented by the grayscale

images and Sem for the mapping of emotional information. The

complete set of these two pieces of information at a given time is

represented by st, where S is the complete set of all states.

4.3.1 Grayscale image state
We have adopted the same capture parameters used by MDQN

architecture (Qureshi et al., 2016, 2018). Thus, we use eight sequences

of grayscale images of size 198 × 198, converted from color images of

size 320 × 240. Images are captured at a rate of 10 frames per second

through the 2D camera on the Pepper robot head.

TheMDQNnetwork uses a second image channel to map the

depth of the environment. This approach has a high

computational cost, both for storing robot interactions in

Experience Replay and for processing and training these

interactions. As a result, the latency time in sending images to

DQN network is doubled, generating a delay in the robot’s real-

time interaction with humans.
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In Figure 4 are shown 8 sequential images that represent a

state Sim, in a given time t. It is possible to visualize a human

moving himself in the environment through the images collected

by the camera. The DQN network is capable of determining

human movement from 8 captured images. Therefore, the robot

can inhibit or excite certain actions based on the human’s

direction.

In addition to the images, information about the human

emotional state is also considered as input to the network. This

information is presented to follow.

4.3.2 Social and emotion state
The second component of a S state is the processed

representation of the human’s emotion detected in the

environment. This data concerns the human’s facial

expression that is closest to the robot, in the case to have one

or more humans in the scene. For this mapping, we used Ekman’s

six basic emotions, happiness, fear, disgust, surprise, anger, and

sadness.

Human emotion, expressed in the face, is detected by the

physical or simulated robot and sent to SocialDQN network

through the module RL Environment (Figure 3). This approach

allows the processing and detection to be carried out in the image

capture system, avoiding bottlenecks and delays in the

transmission of images to the learning module. As the images

of the Sim state have a reduced size (320 × 240 pixels), emotion

recognition from these images is not feasible, as the facial

information represented in the image is usually not sufficient

for this detection. A viable solution would be to upload an extra

sizable image exclusively for facial recognition. However, some

humanoid robots already have emotion recognition system, as

well as other social signals, integrated into their operating

systems, such as the Softbank Pepper robot (SoftBank

Robotics, 2022b), Softbank NAO (SoftBank Robotics, 2022a),

and some robotic simulators. We consider that implementing of

emotion recognition through the external processing node (robot

or simulation) is more advantageous and practical for the

proposed system.

During the interaction with the environment, the agent

may come across states where there are no humans, or they are

not in their field of vision, or even their face is not visible.

Thus, we use an additional classification called No Face to

model a state in which it is not possible to identify the face of a

human.

This information is of great importance for learning the

DQN network because a No Face state may indicate an unlikely

human response to any stimulus or robot action in the

environment. Otherwise, a visible face may indicate that the

human is facing the robot (partially or directly), which increases

the chances of the robot being in the human’s field of vision. This

information also concerns the presence of a human susceptible to

interaction with the robot in the environment. Then, we assume

that the Sem state aggregates social signals of emotion and visible

human face.

FIGURE 4
Grayscale images that are part of the state Sim. The sequential images help the robot learn according to the direction of humanmovement. The
sequence goes from left to right, top to bottom.
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For Neutral, No Face classes and the six emotions used, the

Sem state can currently represent eight possible values. Unlike the

Sim state, which aggregates eight sequences of images, SocialDQN

uses single information for emotion during that state. There may

be several humans with different emotions or even changing

emotions during capture in a given scenario. In these cases,

SocialDQN network considers the most present emotion in the

eight images for a given state.

SocialDQN network maps social signals using one-hot vector

encoding, which consists of mapping classes into vectors with

non-repeating combinations, filled with ‘0’ values and a single ‘1’

value. This mapping can also be represented through an identity

matrix. The number 1 in a row position in this matrix indicates

the class to which the analyzed emotion belongs.

Despite the use of eight classes for the Sem state, the network

used in SocialDQN allows to aggregate or reduce the number of

social signals in the system. For example, it is possible to group

emotions into Positive, Negative, Neutral and No Face, implying

in the use of less information about social signals and human

emotions. Alternatively, for more complex systems one can add

other information, such as social signals from human speech,

gestures, number of people in the environment, and other

aspects.

4.4 Agent and social deep Q-Network

In RL, the Agent instance is responsible for receiving

information from the environment in the form of states and

selecting an action from there. In general, the action leads the

agent transit between states. The reward is responsible for

helping the agent to choose the action that takes it to a

desirable state. In SocialDQN network, the agent is named

SocialNQLearner.

In SocialNQLearner, the DQN network is modeled. This

network has two data inputs, one for each of the types of

states possible, Sim and Sem. DQN is a DL-based (DNN)

action-value approximation function, taking as input a state

and output a vector K-dimensional, in which the k-nth

element corresponds to the k-nth action. This way, the

system trains the DQN network to adjust each output

value given the expected return.

The DQN network proposed in this work is presented in

Figure 5. The first entry of the network precedes a series of

convolution layers and filters responsible for learning the simple

and complex visual patterns coming from the Sim states. We

adopt the MDQN hyper-parameters for these layers. This input

receives eight images of size 198 × 198. They pass to the first

convolutional one, where 16 filters of size 9 × 9 are applied. After

that, a Rectifier Linear Unit Function (C1+ReLU) is used to

generate 16 maps of size 64 × 64. In the first sub-sampling layer

(S1), the network performs a max-pooling 2 × 2 operation from

the output of the previous layer. The max-pooling process

consists of discretizing a sample to reduce the dimensionality

of the data, allowing the network to make assumptions about a

sub-region of the data. Layers C2+ReLU, S2, C3+ReLU, and

S3 follow the same logic as the previous layers, but now with

filters of size 32 and 64, with max-pooling 5 × 5, the output is

connected to a linear layer fully connected with 256 ReLU

neurons (FC1+ReLU).

FIGURE 5
CNN of SocialDQN. The network classifies grayscale images and social signals in the environment interaction phase to generate action values.
Each output represents an action, and the action with the highest value is selected. There are two networks identical to the one in the image, a target
network and another to be trained in the training phase. Examples of interactions stored in the Replay Buffer are used to evaluate each network,
utilizing the reward values obtained in each interaction added to the outputs of the target network to adjust the weights of the main network.
The Loss Function performs this adjustment. After n iterations, the target network updates its weights with the values of the main network.
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The second layer receives a one-hot vector, responsible for

mapping the information of the social signal detected in the

environment. The network directs this input to a fully connected

layer (FC2+ReLU) with 256 ReLU neurons. This layer and

FC1+ReLU are concatenated, forming a layer of size 512,

responsible for aggregating the two information flows from

the state of the environment. A third and final layer is

(FC3+ReLU) fully connected to the output layer with four

neurons, each one representing a possible action.

We use the ϵ-greedy algorithm for the action selection policy.

This approach aims to regulate the execution of random actions

versus execution through the DQN network (Sutton and Barto,

2018), as we presented in Section 3. This rate can vary between

1 and 0, decreasing slowly with training. Thus, at the beginning of

training, the agent tends to perform random actions to diversify

the experiences concerning the action-state. At the end of the

training, the objective is to use a lower ϵ-greedy value so that the
agent applies the knowledge obtained while trying a small

number of random actions to improve the reward obtained

from the environment.

In the training phase, we follow the training model described

by Mnih et al. (2015). In this model, Experience Replay returns a

batch with a set of random experiences. Randomness in selecting

experiences is a feature that the system uses to prevent the agent

from learning to correlate sequential experiences.

The Learning phase aims to generalize state-action values,

using the reward of the environment to adjust the weight of the

network. The local network classifies the states s at time t (st) and

target network the states s at time t + 1 (t + 1). As we presented in

Section 3, the local network is trained to achieve a given action a′
that maximizes the values for the next state in the target network.

The idea behind this is to adjust the network weights according to

the equation Equation 3 presented earlier concerning a target

network.

The target is the estimated value function (local network),

used as a target to be reached during the training. This

approach aims to make the local network chase the target

network values for a few steps, trying to minimize the loss

between the two networks. After some iterations, the target

network receives the parameters from the main network, the

parameters of the target network are frozen, and the process

is repeated until the agent ends its training. This strategy is

used in DQN to guide and stabilize agent training (Kim et al.,

2019).

The Q values for the st states are updated, according to the

expected return, rewards obtained, and a discount factor. After

that, the system calculates the value of the loss function based on

the difference between target network values and the values of the

local network. The loss is optimized (Equation 3), and, after n

training interactions, the system updates the target network to

serve as a reference for future training.

4.5 Rewards

Rewards are values that the environment generates given the

action performed by the agent. The SocialDQN models the

reward in different ways. Two of the actions used in our

proposal have rewards attached to them.

The handshake action generates a positive reward when a

human matches the gesture. Otherwise, the environment

generates a negative reward. In wave action, the goal is to get

some human’s attention. When the robot performs this action,

the focus of human’s attention is verified. If the focus is the robot,

the system generates a reward value. The negative case can occur

because no human has been interested in looking at the agent, has

its back turned, is busy, or even is not present in the environment.

Currently, the other actions do not have rewards linked to them.

In this way, SocialDQN assigns neutral values when the agent

executes them.

The values for rewards are not fixed and can assume negative,

positive, or even neutral values. In the current implementation,

we use the value “0” for the positive reward of the wave action.

This configuration is necessary to prevent the robot from

preferring to maximize the total reward by waving several

times to the human in sequence, a behavior that is not

socially accepted.

In Table 1 the current rewards supported by SocialDQN are

listed with their respective values. In the same way as emotions,

the events that generate the rewards (touching the robot’s hand,

directing the person’s gaze) are captured by the robot or external

processing system, and DQN is not responsible for processing

these events.

It is worth mentioning that works involving MDQN only

apply the reward to model handshake as failure and success. In

Qureshi et al. (2018), a network models this reward, however, the

authors did not provide open access to the code and

implementation details of this network, and it is not possible

to consult details of the prediction network. Therefore, the

additional rewards that we defined in this work represent an

additional contribution concerning previous works in

reinforcement learning and social robotics.

TABLE 1 Default rewards for SocialDQN.

Reward Type Rewards Value

Successfull Handshake 1

Fail Handshake −0.2

Successfull Wave 0

Fail Wave −0.1

Neutral (other actions) 0

Fail Episode −1
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4.6 Additional features

SocialDQN was developed in the Python 3.8 programming

language, using PyTorch to model and train the DQN network

and several other libraries to assist in developing the proposed

architecture. The code is available in the GitHub repository

through the link github. com/JPedroRBelo/SocialDQN, under

the GNUGPL v3.0 license, which allows the community to access

the code, being able to modify, publish and share the code freely

and to replicate the results presented here.

SocialDQN and the robotic system communicate through a

TCP/IP socket, with standardized messages in text format duly

converted in each module into their original formats. This

technology supports systems with different architectures and

operating systems to operate together with ease.

The proposed architecture also allows the customization and

configuration of the parameters and hyper-parameters, both the

architecture itself and the robotic system. In the latter case, it is

possible to change the initialization parameters of a robotic

simulator, such as SimDRLSR, for changing the execution

speed, screen resolution, size of captured images, graphic

quality, and other configurations. Regard to SocialDQN, it is

possible to configure several agents, the number of actions,

images, social signals, reward values, number of episodes, size

of replay buffer, network hyper-parameters, such as number of

neurons, size of maps, and max-pooling, among other countless

parameters providing versatility and facilitates training

automation.

As it was mentioned, the use of a robotic simulator is

advantageous within the scope of SocialDQN, as it speeds up

and makes the training and validation process more flexible,

allowing control of the environment and system variables and

avoiding the wear of the real robot in initial validation tests.

Next, we present the SimDRLSR simulator adopted in

this worl.

5 Simulator for deep reinforcement
learning and social robotics

SimDRLSR is a simulator that aims to provide a HRI system

development tool with a self-learning paradigm. This tool

provides an environment for social robots to learn and

identify interactive human behaviors through images and

processed social signals. In Belo and Romero (2021), the

simulator was initially proposed and used to train the MDQN

architecture. It was shown that the simulator can assist in the

testing and development phases of social robots for interactions

using vision information.

SimDRLSR simulator uses the Unity 3D game engine (Unity

Technologies, 2022) for its development. This tool is free and has

extensive documentation and a repository where users can share

packages (assets) for developing objects on the platform. In

Figure 6 is shown the modeled environment, a robot, and a

human avatar.

The robot emulated in the simulator is based on the real

robot Softbank Pepper, respecting the physical limitations of the

joints and rotations. It can perform actions, capture images in

grayscale depth, and detect events (social signals), initially

supporting the needs of MDQN and now SocialDQN.

In Belo and Romero (2021), SimDRLSR maps the four

actions presented in Section 4.2: handshake, wait, look and

wave. An external system controls the simulated robot,

sending the actions that the robot must perform. The robot

offers grayscale and depth image capture to map the state of the

environment. Both images are saved on disk, initially following

the limitations of MDQN. However, this approach depends on

both systems having access to the same disk limiting independent

processing nodes. To avoid this limitation the current versions of

the simulator also allow sending, via TCP/IP socket, messages of

rewards, actions, and configuration commands.

Further to the images, the robot can detect events and social

signals relevant to the system states and rewards. There are three

events to detect, handshake, human focus, and emotion. The

human avatar in the simulation express emotion through the

face, which is static throughout the episode.

The simulator models the human behavior through

predefined scripts and probability tables. As shown in Belo

and Romero (2021), scripts model a group of commands

defined as Behavior Tasks. This group establishes which

interactions the human will perform in the environment and

are independent of the robot. A second group, called HRI Tasks,

uses probability tables to help model human behavior. This

group aims to define actions for the human avatar to interact

with the robot. These actions are selected based on several

variables such as the robot’s focus of attention and action,

interaction distance, engagement, and human emotion.

The SimDRLSR simulator is openly available to the

community through the GitHub repository, at the link

github. com/JPedroRBelo/simDRLSR, under the GNU GPL

v3.0 license.

6 Experiments and results

This section presents the results obtained from experiments

carried out with a social robot trained with SocialDQN. The

SimDRLSR simulates the robot, which aims to support the

training and validation of the robot’s learning. Furthermore,

we use the results and conclusions of the work carried out in Belo

and Romero (2021) to guide the conduction and configuration of

parameters in this work.

The presented experiments focus on validating the

architecture SocialDQN, aiming to verify the ability of this

architecture to provide a framework for training social robots

to learn interactive and socially acceptable actions.
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The presentation of experiments and results is carried out

through the following steps:

1. The system is trained using the simulator that offers an

operating environment composed of a human and a robot

that interact several times until the training is completed.

Details of this step are presented in subsection 6.1 (see

Figure 3 SocialNQLearner).

2. The analysis of agent learning during training is performed

using graphs of the cumulative reward of the process

involving 15,000 episodes. In addition, the robot’s behavior

is analyzed using graphs that relate emotions and actions. This

analysis is presented in subsection 6.2.

3. The trained SocialDQN is exercised during 500 iterations.

Subsequently, the SocialDQN is configured to perform

random actions without applying the learning performed.

A comparison between these two results is performed.

Details of this step are presented in subsection 6.3.

4. Finally, the social acceptance of the system is evaluated using a

set of human judges who analyzed the behavior of the trained

agent. The result of this analysis is presented in subsection 6.4.

6.1 Training and learning setup

In Belo and Romero (2021), it was validated the SimDRLSR

simulator using the training of the MDQN network as a

reference, using the same configuration parameters used in

Qureshi et al. (2016). This validation replicates the MDQN

network training in 14 episodes, with approximately

2,000 interactions in each episode. However, as demonstrated

in the work of Belo and Romero (2021), the training was

unstable, that is, it is not possible to reach a state of

convergence in the cumulative reward during learning.

Based on this result, we decided to increase the number of

training episodes from 14 to 15,000. Additionally, we change the

number of interactions in each episode from 2,000 to a maximum

of 25 interactions. The episode may end sooner with the robot

successfully executing the handshake action (terminal state).

SocialDQN trains the model according to Algorithm 1,

presented in subsection 4.2. The module SocialNQLearner

(Figure 3), learns after each episode when the robot is not

interacting in the environment. This configuration ensures

that human interaction is not compromised.

We use the ϵ-greedy policy for action selection, which starts

by selecting random actions with a probability equal to 1 (100%),

decreasing over the episodes until reaching the value of 0.05 (5%).

As mentioned earlier, the ϵ-greedy approach allows for a balance

between the agent exploring the environment and applying the

acquired knowledge. This configuration helps the agent to be able

to explore the environment beyond the learned situations.

In this work, the emotions were grouped into classes Positive,

Negative and Neutral. The first class aggregates the emotions

happiness (enjoyment) and surprise. The second aggregates the

negative emotions, which are, anger, disgust, fear, and sadness,

following the criteria presented according to Tozadore et al.

(2018). The third class represents the lack of emotion on the

human face. We still use the No Face class to indicate when a face

is not visible, or there is no human in the robot’s view. Thus, the

input vector for the state Sem is of size 4.

The value of the rewards is the same used in Table 1,

presented above. The learning rate parameter, which defines

FIGURE 6
SimDRLSR environment overview. The simulator was developed with Unity Game Engine.

Frontiers in Robotics and AI frontiersin.org13

Belo et al. 10.3389/frobt.2022.880547

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.880547


the degree of adjustment of the network weights, has been

adjusted to 25–5. Also, we use size 50,000 for replay buffer and

64 for batch size.

We configured the simulator with a robot and a human per

simulation (see Figure 3 RL Environment). At each episode, the

simulator resets, repositions of the localization of the human to a

random location, and sets the cumulative reward to zero. Then,

human emotion is randomly chosen and can assume a positive,

negative, or even neutral emotion.

Video 1 (see Supplementary Video S1) presents some

interactions of the robot with a human after the training of

SocialDQN. In this video the robot executes the wait action in the

absence of a human. Soon after, he performs the wave action to

gain the human’s attention. Finally, the robot establishes the

interaction with a handshake.

6.2 Cumulative reward over training

In Figure 7, in the first graph (A), it is possible to visualize the

agent’s learning curve during the training of the network with

15,000 episodes. The graph shows the moving average (dark

blue) and standard deviations (light blue). Note that the

maximum reward during an episode is ‘1’ because in the ideal

case, the episode ends when the agent successfully executes the

handshake, receiving the maximum reward value. In each

episode, the human presents a random emotion. This emotion

affects how the robot interacts with the human and can reduce

the cumulative reward.

Thus, in the second graph (B), the same cumulative rewards

as in the previous graph are presented. However, the episodes are

regrouped by the emotions detected (positive, negative, neutral).

In SimDRLSR simulator, each type of emotion influences human

behavior differently. Note that the robot has a greater chance of

success when the human has a positive emotion (orange color)

than when it presents a negative emotion (green color). In neutral

emotion (blue line), the agent’s behavior is slightly approaching

the positive emotion between the two other situations. Note also

that the reward curve associated with negative emotion rises with

time, indicating that even if the robot is not successful in

executing a handshake, it learns to avoid performing actions

that will reduce the final reward. That is, it learns to maximize the

cumulative reward for that situation.

Figure 8 illustrates the proportions in the execution of each

action during training, considering the three classes of emotions.

The purpose of this figure is to show how the robot learned to

behave in the face of different groups of emotions. For example,

for negative emotions, the agent tends to perform the actions

wait (A) and look (B). This behavior probably happens because

the agent avoids interacting with humans to reduce punishments.

For positive emotions, the agent tends to perform one of two

actions,wave (C) and handshake (D), because it learns that in this

condition, there is a greater chance of the human responding to

its actions. As in the previous analysis, the robot’s behavior is

maintained between the other two situations when human is with

neutral face.

6.3 Validation tests

We performed several tests in the simulated environment

after training the network to validate the robot’s learning and

verify its behavior. The tests were performed considering two

policies for the selection of actions: random and greedy.

In the random policy, the agent disregards learning and the

DQN network, selecting randomly one of the four available

actions, regardless of the state of the environment. In the

greedy policy, the agent selects the action according to the

DQN network without using the exploration rate.

The simulator restarts when the robot reaches a terminal

state, resetting the position and reallocating another emotion to

the human. However, we disregard the negative reward in case an

FIGURE 7
(A) themoving average shows the robot’s cumulative reward over the episodes in blue. Light blue spacing represents the standard deviation. (B)
cumulative rewards split by emotion detected by robot at each epoch.
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episode ends without the successful execution of a handshake. In

this experiment, we performed five runs, considering

500 iterations each, for each one of the algorithms.

In Figure 9, two results are presented, the first is the Average

Cumulative Reward (A), and the second presents the average

amount of success and failure of the actions handshake and wave

(B). Both results compare the two algorithms used. The first

graph shows that the agent has learned to interact in the

environment to maximize the reward. In this graph, the

greedy algorithm has an average total reward of 21.05 ± 4.22,

while the random approach has an average of −20.8 ± 1.53.

In the second graph, we evaluate the actions handshake and

wave because they have rewards attached, which turns possible to

verify the success and failure of their executions. In this graph,

FIGURE 8
Themoving average shows proportion in executing each action concerning human emotion over training. (A)Wait; (B) Look; (C)Wave; and (D)
Handshake action.

FIGURE 9
(A) Average Total rewards obtained through greedy and random algorithms performed over five runs of 500 interactions each. (B) The average
number of times handshake and wave actions were performed by the robot successfully or failed over 500 episodes.
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the greedy policy is also more successful in executing the actions

than the random policy. It holds to note that the frequency of

performing these actions, especially the handshake, is relatively

reduced in the greedy policy compared to the random one. This

frequency indicates that the robot tends to be cautious,

performing this action only when it considers it opportune.

In the experiments presented, we evaluated the robot’s

actions in a quantitative aspect, focusing on the cumulative

reward. However, it is interesting to evaluate how humans see

the social acceptance of these actions. Thus, to follow we present

results from evaluations with human referees (evaluators) to

obtain their opinion in relation to the robot behavior with the

learning acquired.

6.4 Validation of robot actions

This experiment was performed to evaluate whether the

robot’s actions are socially acceptable in according to the

people’s opinion. The experiment consisted of presenting

different scenarios for 13 human referees (people that

voluntarily accepted to participate of the experiments) and the

action that the robot performed in each one of theses scenarios.

Then, the referee must respond to whether or not the action

taken by the robot was appropriate. If not, the referee informed

the best option for the presented situation.

A scenario is composed of eight images and an emotion

captured by the agent. We grouped the eight images to form a 1-s

movie. The objective is to reconstruct the robot’s perception

during a particular time. In total, 100 scenarios were collected for

evaluation by each referee.

The tool used to assist in experiments with referees is available

at github. com/JPedroRBelo/validation_tool_socialdqn. We

developed this tool in Python3.8 and graphical user interface

(GUI) libraries to facilitate the presentation of scenarios to

referees. The script also presents the action taken by the robot

in that scenario. The referee must answer if this action is socially

acceptable or not. Video 2 (see Supplementary Video S2) shows

some referee interactions with the tool.

The results presented in Table 2 summarize the scores

extracted from the referees’ responses. There were divergent

responses among referees in the choice of actions. We

considered the most voted response (action) for each scenario.

We have also compared the results using two other predictors.

The first is a model trained without consider social signals and

emotions, only with the sequence of grayscale images, and the

second uses a random policy.

SocialDQN outperforms the two predictors in all metrics

presented, reaching an overall accuracy of 89.50%, the

precision of 79.96%, Recall of 80.85%, and F1-Score

78.69%. Note that the accuracy obtained for handshake in

the model without social signals was higher than SocialDQN,

but the other metrics for this action show less success

concerning the SocialDQN model. As handhsake is the

action with the highest reward value in negative cases, the

network without social signals tries to prioritize the

accumulation of this reward at all costs, without

considering social acceptability. On the other hand,

SocialDQN tends to moderate the execution of this action

when there is no guarantee of success, executing other actions

that are more socially accepted, according to the referees. We

can assume that this behavior is a consequence of the social

signals used for decision-making.

It holds to note that the wave action scored lower than the

other actions, with 83.00% accuracy and 59.26% precision.

When analyzing the scenarios, we observed that the robot

learned to perform this action even when a person is turned

away and further away. The referees evaluated that this action

is hardly acceptable when there is no person in the scene or a

person with the back. In addition, in some scenarios, the

referees evaluated that it would be necessary to wait for a

human to get closer before performing the wave action,

especially when the human presented a negative

emotion (sad).

TABLE 2 Scores from confusion matrix resulted from greedy and random polices. In this table: Acc, Prec, Rec, F1Score, Hands and Avg represent
abbreviations of the measures: Accuracy, Precision, Recall, F1-Score, Handshake and Average, respectively.

Class SocialDQN (%) Without Social Signals (%) Action Random Policy (%)

Acc Prec Rec F1Score Acc Prec Rec F1Score Acc Prec Rec F1Score

Wait 96.00 92.59 92.59 92.59 77.00 75.00 22.22 34.29 55.00 15.38 14.81 15.09

Look 88.00 100.00 63.64 77.78 62.00 40.00 30.30 34.48 56.00 29.63 24.24 26.67

Wave 83.00 59.26 72.73 65.31 58.00 31.48 77.27 44.74 65.00 21.74 22.73 22.22

Hands 91.00 68.00 94.44 79.07 93.00 92.31 66.67 77.42 72.00 29.17 38.89 33.33

Avg 89.50 79.96 80.85 78.69 72.50 59.70 49.12 47.73 62.00 23.98 25.17 24.33
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The actions wait and look had the best evaluations with the

referees. Overall, it is possible to observe that the referees selected

these actions when no one is in the scene, or the human turns

their back. The results presented in Table 2 show more robust

results than those presented in Belo and Romero (2021). In this

last work, which was not using social signals, it is possible to

observe that the robot performs the wave action too much, even

when there was no one in the scene, performing thewait and look

actions minimally. The robustness of these results is given thanks

to the refinement of the model using thousands of training

episodes. In addition, the use of social signals allowed a more

refined understanding of the states.

Finally, from the results obtained, it can be concluded that

the use of social signals in the learning process brings benefits to

the interaction concerning the social acceptance of the behaviors

of the robotic agent.

7 Discussion of results

In the previous section, we presented three experiments for

testing the performance of SocialDQN. The first experiment

focused on the agent training and evolution, the second on

the post-training phase, and the third focused on validation

through referees.

In the first experiment, it was possible to verify that using

social signals, precisely human emotion extracted from the

human faces, provides to the agent flexibility in performing its

actions. Although training encourages the robot to perform the

handshake action (to obtain the maximum reward), there are

situations in which the human does not want to interact with the

robot. Thus, the robot needs to identify these situations and

perform actions that minimize punishments. An example of this

occurred when the human is sad (negative emotion), which

should be associated with a greater likelihood of ignore the robot.

It was also possible to verify that even if a given action

provides a positive and immediate reward to the agent, this

action can lead him to a state that does not have a maximum

global (cumulative) reward. This aspect is one of the advantages

of reinforcement learning, that is, the ability to map and query

the relationship between actions and states, allowing the agent to

anticipate the next states and the estimated final reward.

The second experiment was performed to verify the agent’s

ability to maximize the reward comparing two different policies:

greedy and random, and verifying the success of the actions

handhsake andwave. The greedy policy represents the knowledge

acquired during training and excels over the random policy. One

can see that the greedy policy successfully performs both actions

wave and handshake.

However, the random policy can not perform the actions

very well since some actions depend on the observed scenario,

which does not happen when the agent executes them randomly.

It is worth to mention that the action handshake depends on the

execution of other actions, as this requires the human to be in

ideal conditions for its successful execution. The wait and look

actions validation requires the additional mapping of rewards

associated to them.

In the third experiment, the focus was on validating actions

concerning social acceptance with referees. The results obtained

were quite satisfactory, especially when compared to the random

policy. It is important to evaluate the wave and handshake

actions. They presented lower values of accuracy than other

actions. This is due to the fact that they have a greater influence

on the environment, being able to abruptly change human

behavior and being more susceptible to rejection, unlike wait

and look, which do not directly affect social interactions.

Another critical point is that the system learned to behave

according to the behaviors modeled through the SimDRLSR

simulator, given through probability tables. These tables are

an initial effort to model these behaviors, and it is still

necessary to refine these behaviors to reflect natural human

behavior. Furthermore, the probabilities favor the humans

behave differently, even if the robot performs the same action

in the same situation. For example, if the robot waves to a happy

human, that human has a 90% chance of moving or looking at the

robot, with a 10% chance of ignoring it. Even if the robot

performs a correct action in the social aspect, the simulator

has a degree of randomness that influences the results of

validation tests.

In addition to the above mentioned issues, discussing

possible problems in the transition from learning to the real

robot is interesting. The simulation is a controlled environment

and provides a realistic scenario with people, objects, lighting,

and shadows. However, real environments have dynamic

elements that are difficult to map in simulation. In addition,

image capture, communication, and emotion detection, for

example, depend directly on the hardware of the real robot,

which can lead to latency in communication between systems

and even in the system’s performance process. Knowledge

transition is still an open aspect concerning SocialDQN,

which we will address in future works. It may be necessary to

do a fine-tuning, that is, to train the robot in a real environment

from the heavy training in simulation.

In general, in all experiments, the results indicate that the

robot learned to interact in the environment appropriately and to

maximize rewards, avoiding performing actions that lead to an

unfavorable state.

Finally, the use of SimDRLSR allowed the development,

training, verification, and validation of the SocialDQN

architecture. The training phase was one of the crucial points

in which the simulator was essential given the need to stabilize

the learning of the model by training thousands of interactions

with the environment. This issue is fundamental in RL, as the

mapping of action-values grows exponentially with the number

of actions and possible states, requiring more and more

interactions in the environment to refine the agent’s behavior.
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8 Conclusion and future works

In this work, the architecture Social Robotics Deep Q-Network

- SocialDQN was proposed, which aims to use social signals and

image sequences to learn human interactive behaviors. The main

contribution of this work was to include the emotion analysis of

the human during the interactions with the robot for performing

relevant actions.

The learning was possible thanks the Deep Q-Network

technique that considers high-dimensional sensory data and

rewards from the agent’s actions as a reference. The

architecture SocialDQN was developed, trained with the deep

reinforcement learning technique, and validated with the support

of SimDRLSR simulator, especially customized by this work,

which provides a simulated environment for social robotics.

The results achieved through tests and human referees showed

that the system learned as to maximize rewards as to inhibit

inadequate actions in the several scenarios, presenting an mean

of accuracy of 89.5% for the four classes considered. Other point to

be highlighted is the fact that the architecture SocialDQN obtained

the best values in all of the metrics considered when compared to

other two models: without social signals (only images) and random

policy. Therefore, the use of social signals, in particular human

emotions, collaborated for that the system behaved in amore natural

and socially acceptable way.

It is important to note that SocialDQN and SimDRLSR

adhere to the open-source model with the availability of

versions via a GitHub repository. This provision

encourages the collaboration of other researchers in the

evolution of the architecture and also of the simulator.

The main limitation of this work is related to a few actions that

the agent can take (wait, look, wave, and handshake), implying the

fact that the system is applied only to initial interaction between

robot and human. By adding new actions to the agent, the system

can be trained to execute them and have more complex behavior.

Finally, SocialDQN can support everyday applications,

interacting with people in private and public places. This system

can be applied in library receptions, events, seminars, nursing

homes, schools, hospitals, and other environments, in which the

robot must present appropriate behaviors for each situation.

In future works, we will model additional rewards to refine

the execution and evaluation of agent actions. We will add new

actions, social signals, and memory to the system. Further,

transfer learning could be used for training a real Pepper

robot enabling analysis of the operation in the real world.
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