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Chefs frequently rely on their taste to assess the content and flavor of dishes during
cooking. While tasting the food, the mastication process also provides continuous
feedback by exposing the taste receptors to food at various stages of chewing.
Since different ingredients of the dish undergo specific changes during chewing, the
mastication helps to understand the food content. The current methods of electronic
tasting, on the contrary, always use a single taste snapshot of a homogenized sample.
We propose a robotic setup that uses the mixing to imitate mastication and tastes the
dish at two different mastication phases. Each tasting is done using a conductance
probe measuring conductance at multiple, spatially distributed points. This data is used
to classify 9 varieties of scrambled eggs with tomatoes. We test four different tasting
methods and analyze the resulting classification performance, showing a significant
improvement over tasting homogenized samples. The experimental results show that
tasting at two states of mechanical processing of the food increased classification F1
score to 0.93 in comparison to the traditional tasting of a homogenized sample resulting
in F1 score of 0.55. We attribute this performance increase to the fact that different
dishes are affected differently by the mixing process, and have different spatial
distributions of the salinity. It helps the robot to distinguish between dishes of the
same average salinity, but different content of ingredients. This work demonstrates that
mastication plays an important role in robotic tasting and implementing it can improve the
tasting ability of robotic chefs.

Keywords: electronic tongues, mastication, robotic chef, robotic cooking, taste feedback, salinity sensing,
conductance sensing

1 INTRODUCTION

Culinary arts is one of the activities where human dominates over automated robotic systems
with a great advantage. Automation of culinary tasks necessitates solving challenges in many
fields. Some of these challenges were tackled, including translation of recipe Beetz et al. (2011)
and human chef body pose Danno et al. (2021) into robotic action. Few attempts to build
commercial robotic kitchens were made, including integrating robots into kitchens (Moley
Robotics, 2022) and launching a robotic restaurant (Spyce Ltd, 2021). Visual feedback was
used to adjust frying time of a sausage, but only simple and not robust approach of background
masking and averaging the hue was used Mauch et al. (2017). Teleoperation was also used to
help the robotic chef at cake decoration Bolano et al. (2019). Loading dishwashers with robotic
arms was also investigated Voysey et al. (2021). Some robotic chefs can improve their cooking

Edited by:
Zhongkui Wang,

Ritsumeikan University, Japan

Reviewed by:
Yang Tian,

Ritsumeikan University, Japan
Yosuke Suzuki,

Kanazawa University, Japan

*Correspondence:
Grzegorz Sochacki
gks33@cam.ac.uk

Specialty section:
This article was submitted to

Bio-Inspired Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 28 February 2022
Accepted: 04 April 2022
Published: 04 May 2022

Citation:
Sochacki G, Abdulali A and Iida F

(2022) Mastication-Enhanced Taste-
Based Classification of Multi-Ingredient

Dishes for Robotic Cooking.
Front. Robot. AI 9:886074.

doi: 10.3389/frobt.2022.886074

Frontiers in Robotics and AI | www.frontiersin.org May 2022 | Volume 9 | Article 8860741

ORIGINAL RESEARCH
published: 04 May 2022

doi: 10.3389/frobt.2022.886074

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.886074&domain=pdf&date_stamp=2022-05-04
https://www.frontiersin.org/articles/10.3389/frobt.2022.886074/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.886074/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.886074/full
http://creativecommons.org/licenses/by/4.0/
mailto:gks33@cam.ac.uk
https://doi.org/10.3389/frobt.2022.886074
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.886074


based on a feedback from diners Junge et al. (2020) or
replicate a human cooked dish using its own taste
Sochacki et al. (2021).

However, one of the most influential differences between the
cooking procedure of robotic and human chefs is that the latter
continuously taste the food during the cooking. Moreover, the
chewing process enhances tasting, as in addition to the flavour of
a bite, the mastication enables tasting flavour changes during the
mechanical processing of the food. An example of such flavour
changes is chewing a tomato, causing it to release the juice, and
changing the perceived taste. Saliva release is also a part of
mastication. It is causing at least two types of effects–wetting
the food and introducing digestive enzymes. Examples of these
effects are melting of a sugar cube inside amouth, which releases a
strong sweet taste, as well as sweet taste arising after keeping
bread in the mouth for a moderately long time–effect of exposure
to enzymes from saliva. All these effects take a part in the tasting
process and need to be understood to match the human ability to
taste with a robotic setup.

While few electronic tongue implementations are proven
effective Di Rosa et al. (2020), and some are even
commercially available ASTREE (2022), Insent (2022), they
all require precise and elaborate preprocessing for any non-
liquid samples. For example, e-tongue was used for detection
of meat adulteration, but the samples required 3 min of
mincing Tian et al. (2019). Similarly, tracking the taste of
Dezhou-Braised Chicken required homogenization with
distilled water and centrifugation Liu et al. (2017). Other
examples include mixing cheese samples with distilled water
for 10 min Valente et al. (2018), while in the case of cheddar
analysis the sample was homogenized with chloroform,
before the addition of methanol and water and waiting for
20 min Lipkowitz et al. (2018). Some liquids like honey and
sugary syrups also required dissolving in water and 10 min
wait before tasting Oroian et al. (2018). Classification of oils
was also done, but the samples needed to be mixed with
distilled water, alcohol and mixed for 10 min Dias et al.
(2014). Voltammetric sensors were used for classification
of grapes, but required freshly squashed must to be
prepared Rodriguez-Méndez et al. (2014). Similarly,
mandarin quality was assessed with e-tongue based on its
juice Qiu et al. (2015). Other studies limit themselves to liquid
samples Zhang et al. (2019).

Equipment necessary for discussed preprocessing prohibits its
application in kitchens. Furthermore, the required time delays the
feedback, effectively making it impossible to react in time when
cooking. Therefore, existing solutions are not compact and fast
enough for robotic chef applications. Furthermore, the tendency
to produce a wet homogeneous pulp for the sensor trivializes a
large part of a human experience of tasting, and human’s agency
over the measurement result–mastication, tongue movement,
saliva production and more. Noticeably, all the spatial
structure of the dish is completely lost. Additionally, the whole
time sequence of measurements usually available for a human
taster across stages of mastication is reduced to a single
measurement, effectively removing the time dimension of the
tasting experience.

In this paper, we developed a robotic setup reproducing the
human mastication process to extract additional time-variant
information. We show that tasting at several states of mechanical
processing of the food can significantly increase the classification
performance of the food with different amounts of the same
ingredients. To prove the concept, we built a robotic setup
equipped with a salinity sensor for taste measurements. We
prepared the sample set of nine dishes of scrambled eggs with
tomato, containing different quantities of tomato and salt in each
dish. The experimental results show that tasting at even two states
of mechanical processing of the food increased classification F1
score to 0.93 in comparison to the traditional tasting of a
homogenized sample resulting in F1 score of 0.55. We also
highlight how different compositions of a dish can result in
the same measurement outcomes after homogenization,
therefore making the classification task impossible.

2 MODEL OF TASTING

We model the tasting process as a series of measurements at
different moments in time and stages of chewing. Moreover, we
take into account the fact that the human tongue has multiple
receptors distributed across its surface. This fact is represented in
the experiment by tasting in multiple spots and representing
flavour as an array of measurements. The robot used is fitted with
a single salinity sensor. To mitigate this limitation we fit the
sensor on a robotic arm and physically move the sensor to
multiple spots. Furthermore, the known location of samples
enables showing the data as an image (further referred to as a
taste map). This approach is shown in the middle of Figure 1. The
taste map is further shown in Figure 3.

Mastication is the process of crushing and grinding food and
its main purpose is to reduce the average size of the food particle.
Smaller particles present a larger surface area for digestive
enzymes to act. However, chewing also plays an important
part in the tasting process, as the flavour changes while
chewing. Our setup simulates it with a mixer shown in Figure 1.

Every tasting model needs a computation component to
produce a meaningful signal Di Rosa et al. (2020), otherwise,
it remains a collection of measurements. In our application, we
use previously established taste metrics Sochacki et al. (2021) to
reduce the dimensionality of data. These taste metrics relate to the
average salinity and “mixed-ness” of a dish. Various subsets of
these samples are then used to train and validate the support
vector classifier. Support vector machines were previously used
for taste-based classification with success Ouyang et al. (2013),
Zhang et al. (2019). This computation part of sensing is
represented by the right part of Figure 1.

2.1 Salinity Sensing
The robot recreates salinity taste with a conductance sensor. A
conductance sensor determines the degree of ease for current to
flow through a sample. This is achieved by measuring the current
flowing through the sample between two electrodes, under pre-
determined voltage. The dominant mechanism behind the
conductivity is the movement of ions, therefore the salinity
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increases with ion concentration, ion mobility and the ionic
charge. Due to low cost, robustness and ease of use, salinity
sensors are a prime candidate for robotic applications.
Conductance sensing is also used in the food industry, for
example, to detect milk adulteration Sadat et al. (2006) and
determination of salt content in different foods Benjankar and
Kafle (2021).

For the need of this experiment, we created a salinity sensor
probemade out of a testing tip of a standard salinity sensor testing
device (ExTech salinity probe) same as in our previous work
Sochacki et al. (2021). The same calibration procedure was
followed, as well as placing the sample on a non-conductive
(ceramic) plate. The main differences between this
implementation and the human taste of saltiness are the lack
of ion specificity (saltiness is selective for Na+ and K+ ions) and
the ability to pierce the sample (tongue is limited to tasting the
surface).

Moreover, the contact between electrodes and the dish can
influence the reading. For example, piercing the dish at different
depths will result in conduction paths of different depths,
therefore different conductances. This effect was mitigated by
always piercing at the full length of the electrode, resulting in
conduction paths of the same depth for all the samples.
Temperature can also affect the conductance, therefore the
dish was always chilled down to room temperature before tasting.

3 EXPERIMENTAL SETUP AND
PROCEDURES

3.1 Robotic Setup
The setup for the experiment, shown in Figure 2, consists of a
UR5 robotic arm fitted with a conductance-based taste sensor.
The sensor is placed in a place of an effector and is controlled by
Arduino UNO, which provides an interface to a laptop via USB.
The sensor is able to achieve 2 Hz sampling rate, including all

interfacing to the laptop and saving the data. UR5 arm is also
controlled by the laptop, effectively making the laptop a centre of
the whole system. The robotic arm is placed on a trolley, allowing
its convenient placement in the kitchen. Python program is used
to process information from the sensor, store it, and analyze it.
Dishes are prepared using a pan on an induction hob. A
prescribed amount of salt is measured using a scale with an
accuracy of 0.05 g. A porcelain plate is used as a waterproof and
non-conductive platform for the tasted dish. Mastication is
recreated using a mixer.

3.2 Ingredients and Produce
The cooked dishes were made of three products only, leaving out
ingredients like butter to make the dishes more consistent. We

FIGURE 1 | Experiment overview. Nine dishes is prepared for robotic tasting. Each of the dishes is tasted by the robot before and after mixing. A set of taste metrics
is then extracted from each tasting and used to train a test SVM classifier.

FIGURE 2 | Experimental setup. UR5 robot is fitted with conductance
sensor for saltiness tasting. Induction hob is used for cooking. Food is
presented for tasting on a ceramic plate. The whole setup is controlled by a
program run on a laptop.
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use large free-range eggs (The Co-operative Group;
United Kingdom) for the experiment. We weight and
measured with a calliper 12 of them, obtaining an average
weight of 68.1 g with a standard deviation of 2.37 g, an
average diameter of 45.6 mm with a standard deviation of
0.72 mm, as well as an average height of 58.3 mm with a
standard deviation of 1.03 mm. All tomatoes come from a
local store (The Co-operative Group; United Kingdom). These
are vine tomatoes rated as class 1, grown in Italy, and are of a
standardized size (radius between 47 and 67 mm).We weight and
measured with a digital calliper 12 of them, obtaining an average
weight of 82.1 g with a standard deviation of 19.57 g, and an
average diameter of 53.4 mm with a standard deviation of
3.46 mm, as well as an average height of 47.8 mm with a
standard deviation of 4.05 mm. All of the measurements are
presented in concise form in Table 1. We use standard table salt
(The Co-operative Group; United Kingdom), purchased in a large
bottle.

3.3 Tastemaps
The taste information acquired during the experiments can be
mapped and shown as an image. Using an image enables
effortless understanding of the data for humans. Our setup
produces taste maps based on two parameters–the number of
test points and plate size. The test points are placed on a square

grid, which is generated by constructing a square around the plate
with a side length equal to the plate’s diameter. Then a required
number of test points is distributed evenly inside the square. This
number is limited to squares of integers to ensure that test points
are placed on a square grid. In the next step, the check is done
which of the points lay inside the plate, rather than in the part of
the square outside the plate. Only points inside the plate are
sampled, while the value of all other points is set to 0. An example
of this method at work is shown in Figure 3, where we map a
trivial meal composed of unsalted scrambled eggs, unsalted
scrambled egg whites, and blended tomatoes using this
method. These measurements are further used for taste
metrics extraction.

3.4 Classification Task
We set up a classification task to evaluate each of the tasting
methods. We prepare nine variations of scrambled eggs with
tomatoes for the experiment. These are made by adding three
different amounts of tomatoes and three different amounts of salt
to a fixed base of 6 large eggs. The tomato amount is set to 0, 3 or 6
tomatoes. The salt levels are 0, 1.2 and 2.4 g. Each combination of
these levels of additives was used to cook a dish, resulting in 9
dishes, as detailed in Table 2. Each of the dishes is treated
according to the experiment procedure shown in Figure 4.
Cooking starts with placing 6 eggs in a pan, then salting them
evenly with a prescribed amount of salt. After that, each tomato is
cut into 8 sections and added to the dish. The dish is heated on the
hob until the eggs scramble while mixing slowly, but constantly
resulting in smooth eggs. These actions are done by a human, but
constant mixing was done to reduce bias from human cooking
and improve repeatability. Further, the dish is left to cool down to
room temperature, to avoid the effect of temperature as an
additional experimental condition. In real-world scenarios, the
temperature effect on conductance can be compensated for,
which is beyond of the scope of the current study. After
cooling, the first tasting is done, with 400 samples spread

TABLE 1 | Table showing the distribution of size and weight of the products used.

Mean Standard deviation

Egg Weight [g] 68.1 2.37
Egg Height [mm] 58.3 1.03
Egg Diameter [mm] 45.6 0.72
Tomato Weight [g] 82.1 19.57
Tomato Height [mm] 47.8 4.05
Tomato Diameter [mm] 53.4 3.46

FIGURE 3 | Trivial meal (left) and it is tastemap (right) produced with a salinity sensor. Themeal is made out of unsalted scrambled eggs, scrambled eggwhites, and
blended tomatoes, placed separately.

Frontiers in Robotics and AI | www.frontiersin.org May 2022 | Volume 9 | Article 8860744

Sochacki et al. Mastication-Enhanced Taste-Based Classification

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


across 16 × 16 cm square. This number is a result of a trade-off
between time required for experimentation and producing a large
enough dataset, with 400 samples being enough for training and
collecting more is made difficult by the probe size (around 1 cm
spacing between the electrodes). Out of these 400 samples, 324 lie
inside the plate and become test points. Each dish is tasted three
times, but only the first and the last tasting is used for
classification to improve experiment repeatability. The first
tasting is done on not mixed food, giving an experience right
at the beginning of the chewing process. Then, the sample is
mixed for a few seconds and is tasted again. This measurement is
used for visualization only. After another 60 s of mixing on
maximum RPM, the dish is tasted again. This amount of
mixing is more than sufficient for the dish to become a
homogeneous pulp well before the end of the process, hence
making the procedure easy to replicate. This final tasting
measures the flavour of the dish during the final stages of
chewing.

Furthermore, the data is processed to produce multiple
instances for each of the classes. Each class corresponds to
one of the dish types (Dish 1–9). The instances of the classes
are subsets of samples collected tasting a dish of a specific class.
This instance or subset represents a real-world tasting, that is
done with a smaller amount of samples. This procedure
enables leveraging data collected from a single dish for each
of the classes. Therefore, 40 instances of each class were made,
each containing randomly chosen 40% of the samples collected
in the tasting. Each of the resulting instances contains 129
samples collected before chewing and the same number of
samples collected after chewing. The resulting instances are
then split into training and testing data sets at a 4:1 ratio. Next,
each instance is reduced to a set of 4 numbers–mean and
variance, both before and after chewing. These are the inputs
to the SVM classifiers. SVM was chosen due to its good
performance with limited data. This is crucial as acquiring
data is extremely hard when working with food due to the cost
and time involved in cooking. This fact makes approaches like
neural networks or reinforcement learning impossible
to apply.

We test a few methods of classification. All of them use an
SVM classifier with the same settings, that performs one-vs-
many classification for each of the classes. We did not see a

noticeable difference in classifier performance varying penalty
factor C in range 0.8–1.2. Therefore, default value of 1 was used
for all the experiments. We use a polynomial kernel and
balance classes weights to correct for an uneven number of
samples, caused by the one-vs-many approach. The methods
differ only by the type of data available to the classifier, but it
introduces a profound change. From the point of view of the
classifier, it brings additional data about every class, and this
data add additional dimensions to the space where the SVM
is finding a boundary between the classes. Each of the
configurations represents a different method of tasting, even
if all the data is gathered in a single experiment where the
chewing is performed in the most general way. The
configurations are shown in Figure 5.

The first configuration recreates the current state of the
art method of tasting a homogeneous pulp. It is done by
computing a mean of the readings from a mixed dish,
which is an approximation of a perfectly homogenized
sample. The second and third configuration takes both taste
metrics–taking the advantage of the spatial distribution of
taste–from either mixed or unmixed dish. It simulates the
tasting only at one moment of the mastication process. The
last configuration uses both metrics, calculated both before
and after mixing to make a classification. It is a configuration
that is closest to natural tasting and implements the tasting
approach shown in Figure 1.

4 RESULTS

4.1 Quantitative Representation of Taste
In this section, we construct taste maps of one of the dishes at
different stages of mastication. The resulting maps, together
with a picture of the tasted dish are shown in Figure 6. The
unmixed sample shows many very distinct areas of lowered
conductivity in the meal, with very sharp borders visible
between these and scrambled eggs. The next sample–half-
mixed - shows less of these regions, and those still present
are less sharply defined. Moreover, the scrambled eggs “area”
itself became less conductive, possibly due to tomato juice
being mixed in into this area. Finally, the last sample shows a
rather homogeneous conductance distribution, with a

TABLE 2 | Table showing composition of 9 dishes used in classification experiment. The listed ingredients are combined with 6 large eggs to make a tomato scramble.

Amount of Tomato

No tomato Medium tomato High tomato

(0 tomatoes) (3 tomatoes) (6 tomatoes)

Amount of salt No salt (0g) Dish 1 Dish 2 Dish 3
No Salt No Salt No Salt
No Tomato Medium Tomato High Tomato

Medium salt (1.2g) Dish 4 Dish 5 Dish 6
Medium Salt Medium Salt Medium Salt
No Tomato Medium Tomato High Tomato

High salt (2.4g) Dish 7 Dish 8 Dish 9
High Salt High Salt High Salt
No Tomato Medium Tomato High Tomato
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conductance value in between the conductance of the tomato
and the eggs. All spatial information is erased, producing pulp
similar to those used for electronic tongues currently.
Moreover, each of the stages of mastication results in a
significantly different taste map, therefore providing
additional information.

4.2 Effects of Mastication
Variances of conductance measurements for each of the dishes
are presented in Figure 7. Analyzing them showed that adding
the tomato significantly decreases post-chewing variance.
Running multivariate linear regressions shows that adding
tomato (any non-zero amount) lowers the post-chewing

FIGURE 4 | The experimental procedure used to taste a dish at various stages of chewing. (a) the dish is prepared according to a recipe. (b) robot sampling
unmixed dish. (c) mastication is represented by mixing. (d) robot sampling mixed dish.
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variance by 0.73 mS/cm and is statistically significant with a
p-value of 0.000019. The amount of salt, another variable in
this model had a much smaller effect size of 0.1 mS/cm and a
p-value of 0.013. This shows that the addition of the tomato is
indeed the dominant factor reducing the variance of
measurements.

Another effect that we observed is the rise of conductance
average during the chewing process, but again only in the cases
when tomato was a part of the dish variance. The difference
between post-chewing variance and pre-chewing variance for

different dish varieties is shown in Figure 8. Matching the data to
a multivariate linear model shows that adding tomatoes increases
this value by 1.15 mS/cm, and it is statistically significant.
Changing the amount of salt does not have a statistically
significant effect.

Histograms showing the effects of adding extra ingredients
are shown in Figure 9. The dish without any additional
ingredients does not change significantly when mixed.
Mixing starts to have much more effects if a tomato is
added, squeezing the histogram at later mixing stages.

FIGURE 5 | Schematics showing classification methods tested. Each dish was tasted twice–before and after chewing, with taste metrics extracted for at
each stage.

Frontiers in Robotics and AI | www.frontiersin.org May 2022 | Volume 9 | Article 8860747

Sochacki et al. Mastication-Enhanced Taste-Based Classification

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Finally, adding salt moves the histogram to the higher values,
not changing its shape considerably.

4.3 Classification of the Dishes
The quality of classification is measured using the F1 score, as
it punishes both false negative and false positive errors when
evaluating a classifier. We assume that both of these types of
errors are equally undesirable, as we believe that both precision
and recall are important in the future implementation of a
robotic chef. Therefore, the F1 score is chosen as a single
measure balancing the accuracy and recall in a single number.
Results of a one-vs-all classification for each of scrambled
eggs variations are shown in Figure 10. Each of the four

configurations of tasting is shown as a separate bar. We can
see that variations are easier to classify than others, but we also
see that overall classification quality is rising with the
introduction of extra information. Clearer trends are
extracted by looking at the average F1 scores, which are
shown in Figure 11. We clearly see the first method
(homogenized sample tasting) comes with the lowest result
while the last method (tasting both before and after chewing)
scores the highest. Other methods come with medium scores.
Moreover, we investigate the results further. Figure 12 shows
the accuracy, precision and recall of each of discussed
classification methods. Firstly, we see that accuracy varies
between 75% and 95% and follows a trend similar to the

FIGURE 6 | Figure showing the taste mapping of the same tomato scramble after mixing it to three different stages, with unmixed and “visually homogeneous”
being the extreme cases.
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previously shown F1 score. Recall, on the other hand, is always
very high, showing that the classifier almost always recognizes
the dish of the tested class. Furthermore, precision closely
follows the same trend as the F1 score, and due to consistently
high recall. Therefore, we can conclude that the performance
improvements come from improving the precision and
reducing the number of false-positive classifications. We
speculate it is due to our tasting method effectively adding
extra features and placing the dishes in a space of higher
dimensionality, making it easier for the SVM to classify.

5 DISCUSSION AND CONCLUSION

5.1 Tasting Configurations’ Performance
While some of the results seem intuitive, like for example the
homogenized sample performing the worst, there are lots of
effects that were dish specific or pose an interesting question for
future research. Starting from the homogenized sample–it
performed the worst–probably because, in some cases, it
faced an impossible task. It is because mixing different
amounts of salt and tomatoes could bring the same average
salinity. Therefore, due to specific sensor construction, this
tasting mode results in the same readings for different
ingredients mixtures. This applies to almost all of the current
implementations of an electronic tongue, which are hopeless
to distinguish between two dishes of the same chemical
composition. This is a serious limitation especially if
implemented tongue measures a limited number of substances.

Tasting a chewed dish performed surprisingly well given a very
small difference in tasting procedure between it and the
homogenized dish tasting. We believe it deserves some
investigation. We notice that the dish variations without
tomato have a variance of around 1 mS, while the dishes
containing tomato tend to have their variance to fall to almost
0.We believe this is the effect that allowed differentiation between
dishes of very similar average salinity. We attribute it to tomato
juice released while chewing, moisturizing the dish during mixing
and preventing the formation of air gaps in the dish. We confirm
this theory by experimenting once again on the dish containing a
middle salt level and no tomato. This time we taste it at 4 different
points. Two of them are our standard before and after mixing
tastings. We add tasting in the middle of mixing (same as for taste
maps generation). Also at the end of the experiment, we add
around 50 ml of tap water to the sample and mix it further. We
use Dish 4 for this purpose, because it is one of three dishes for
which this experiment is valid (dishes with no tomato), and it is
the dish with a medium amount of salt. Therefore, we think it is
the most representative dish for this kind of experiment. We plot
the mean and variance of this experiment in Figure 13. The
addition of the water enabled the fall of the variance to virtually
zero, as in all dish variations that included tomato. It shows that
the taste perceived by the robot can be affected by dry samples, as
it doesn’t moisturize the sample as it is naturally done by saliva.

Tasting a not chewed sample seems to underperform in
comparison with the previous sample, even if according to
taste maps it seems to contain more information. We believe
it is due to the very simple algorithm we use for classification. All

FIGURE 7 | Figure showing the variance of salinity measurements, before and after mixing, for each dish. Dishes including tomato (red) tend to have much lower
variance after mixed.
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FIGURE 8 | Figure showing the average salinity of gathered samples, before and after mixing, for each dish. Dishes including tomato (red) show an increase in the
average salinity due to mechanical processing.

FIGURE 9 | Histograms of conductance measurements at each of the mixing stages and with different mixtures of additives.
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spatial information is compressed to a single number by
computing variance. Perhaps, taste maps could be processed in
the future similarly to pictures–using computer vision.
Convolutional neural networks may also find use in the future,
but only if making large data sets becomes feasible.

Tasting at both stages of mastication performed the best,
which is not surprising. This is because tasting at different
stages of mastication provides different information, and this
configuration has access to all information available to all other

configurations. Therefore, it can increase the classification quality
by spreading the data into more dimensions, making it easier for
SVM to find a boundary between them.

5.2 Limitations
While a human is continuously tasting while chewing, acquiring
the information at a large number of chewing stages is hard to
recreate with the proposed setup. This is due to the lack of
controllability of the mixing process that makes it impossible to

FIGURE 10 | Figure showing a F1 score for one-vs-all classification done for each variation of tomato scramble. The classification was done based taste collected in
four ways: homogenized sample, mixed sample, unmixed sample and unmixed and mixed sample together.

FIGURE 11 | F1 score averaged from dish specific classifications. It shows a steady growth of F1 score while additional information is introduced.
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apply exactly the same mixing to each of the tasted dishes. We
work around this limitation by limiting the number of tasting to
2. The sensing is therefore done on not chewed dishes and then
on a dish fully chewed. Fully chewed dishes are processed
significantly longer after the dish looks homogeneous.
Therefore, we apply the maximum possible mixing, that is
easy to replicate. Future work should explore the possibility of
sampling at more stages. Moreover, the strong temperature
dependence requires cooling down the dish to room

temperature before sensing. Even though it effectively keeps
the temperature stable, it stops the robot from tasting during
cooking. Implementation of feedback during cooking would be a
huge step towards matching human cooking skills with a robot.

It is reasonable to expect that the proposed approach with
mastication works best for solid-state non-homogeneous dishes,
especially if they contain a significant amount of water. This
group contains all stews, soups, scrambled eggs with additives,
salads or baked beans. Moreover, it is the only known approach

FIGURE 12 | The figure shows accuracy, precision and recall, averaged across all dishes. Precision is the main parameter that improves with more information
provided.

FIGURE13 | Effect of adding water to a dish variety with no tomato. Mean and variance of salinity measurements for three different stages of chewing and additional
mixing after adding 50 ml of tap water.
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that may taste a full course, made of main and sides, where the
spatial distribution of the ingredients matter. On the other hand,
some dishes like liquids and yoghurts may benefit from the
proposed approach less, due to little effect of chewing on
these foods.

5.3 Conclusion and Future Work
In the paper, we simulated chewing with a robotic setup and used
it to extract additional information by taking spatially and
temporally separated samples. We introduced taste maps as a
visualization tool, that proved that additional, non-trivial
information is present at each stage of chewing. We show that
imitation of natural mastication results in higher classification
performance than tasting homogenized samples. We also
investigate some phenomena contributing to these changes like
the role of moisturizing the sample.

Future work should include an investigation of saliva as part of
the robotic tasting, perhaps including chemical reagents to
recreate lipase and amylase present in human saliva.
Moreover, we will investigate the usefulness of the proposed
approach for other dishes in the future. Finally, we want to
investigate the fundamental question of how we approach
recreating the taste, how we process it and what form the taste
output fundamentally is. We should also consider if classification
is a good approach to tasting or should we long for measuring
exact chemical composition as an analogue value. Considering
the lowest level–a single taste receptor on the tongue–it is
recording an analogue signal, but the signal finds its way to
our consciousness in a completely different form. Therefore, on
the higher abstraction level–the psychophysical
approach–classification tasks are frequently used working with
human participants (e.g., asking which of the two samples is
saltier). Furthermore, looking at the basic evolutional role of
taste–bringing information to enable a decision if to eat
something–the taste is used for a classification task. Finally, if

we think about the enjoyment we gain from eating we see it as an
analogue signal, yet again it is not a solid number like a chemical
composition analysis. Therefore, currently, we are using
classification as a convenient benchmark and as a benchmark
that can be used in the future to compare robotic taste to human
taste psychophysical studies, while we believe this concept should
be extended in the future.
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