
Toward Benchmarking of Long-Term
Spatio-Temporal Maps of Pedestrian
Flows for Human-Aware Navigation
Tomáš Vintr1*, Jan Blaha1, Martin Rektoris1, Jiří Ulrich1, Tomáš Rouček1,
George Broughton1, Zhi Yan2 and Tomáš Krajník1*

1Laboratory of Chronorobotics, Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University in Prague, Prague, Czech Republic, 2CIAD UMR 7533, Univ. Bourgogne Franche-Comté, UTBM,
Montbéliard, France

Despite the advances in mobile robotics, the introduction of autonomous robots in human-
populated environments is rather slow. One of the fundamental reasons is the acceptance
of robots by people directly affected by a robot’s presence. Understanding human
behavior and dynamics is essential for planning when and how robots should traverse
busy environments without disrupting people’s natural motion and causing irritation.
Research has exploited various techniques to build spatio-temporal representations of
people’s presence and flows and compared their applicability to plan optimal paths in the
future. Many comparisons of how dynamic map-building techniques show how one
method compares on a dataset versus another, but without consistent datasets and
high-quality comparison metrics, it is difficult to assess how these various methods
compare as a whole and in specific tasks. This article proposes a methodology for
creating high-quality criteria with interpretable results for comparing long-term spatio-
temporal representations for human-aware path planning and human-aware navigation
scheduling. Two criteria derived from the methodology are then applied to compare the
representations built by the techniques found in the literature. The approaches are
compared on a real-world, long-term dataset, and the conception is validated in a field
experiment on a robotic platform deployed in a human-populated environment. Our results
indicate that continuous spatio-temporal methods independently modeling spatial and
temporal phenomena outperformed other modeling approaches. Our results provide a
baseline for future work to compare a wide range of methods employed for long-term
navigation and provide researchers with an understanding of how these various methods
compare in various scenarios.

Keywords: long-term navigation, planning, spatio-temporal modeling, human-aware navigation, scheduling,
pedestrian flows

1 INTRODUCTION

The last decade showed that the advances in the robotics field enable autonomous robots to operate
in human-populated environments (Triebel et al., 2016; Hawes et al., 2017; Coşar et al., 2020). The
human-populated environment includes diverse types of dynamics, such as natural daily (Krajnik
et al., 2014a) and seasonal changes (Neubert et al., 2013) but, most importantly, the dynamics
imposed by human actions (Tipaldi et al., 2013). The robots that take these dynamics into
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consideration and adjust their decisions provide better
performance of their human-centric tasks (Santos et al., 2016,
2017; Hanheide et al., 2017; Hawes et al., 2017; Kunze et al., 2018;
Calderita et al., 2021). Moreover, later works assert that decisions
of autonomous robots that consider human habits are crucial for
robots to be accepted by human society (Triebel et al., 2016;
Palmieri et al., 2017; Vintr et al., 2020). Based on the principles of
modeling the human-imposed dynamics in aforementioned long-
term experiments, we believe that human customs and behavior
are deeply connected to the abstract structure of the time
represented as a calendar and clock. Furthermore, we claim
the robots that are supposed to be part of human society need
to accept this structure, similar to their acceptance of the spatial
structures like walls.

We state that the long-term human-aware navigation needs to
include spatio-temporal maps into the navigation system to
support the decisions in advance of the navigational task. The
traditional approach to robot navigation in an uncontrolled
environment is using a combination of static maps (Elfes,
1989; Cadena et al., 2016) with a reactive approach to
unexpected events. However, many unexpected events are
usually caused by human actions, especially human movement
through the robot’s operational environment. The reactive
replanning of a robot’s trajectory based on sense-plan-act
frameworks, used, for example, in the Robot Operating System
(Quigley et al., 2009) move base, gives people an impression of
clumsiness (Hebesberger et al., 2017) due to their slow response,
which eventually leads to negative emotions toward the robot
(Vintr et al., 2020). This unwanted interaction is mainly driven by
the fact that by the time the robot can detect people walking
around it and replan its trajectories, the person is already taking
evasive action. Therefore, incorporating the expected human
movement through the environment into the robot’s
navigation and planning is of high importance for the
autonomous robots intended to help people in their
environment (Krajník et al., 2020; Rudenko et al., 2020;
Palmieri et al., 2021). To show the fundamental impact on
human acceptance when incorporating spatio-temporal maps
into the navigation, we provide a field robot experiment with
an industrial-grade robotic platform. The experiment studied
how many people traversing the university hall were irritated by
the robot planning its navigation with and without the map.

As the spatio-temporal maps were used in different scientific
fields, we created a comprehensive overview of the spatio-
temporal representations. They provide various aggregations,
like frequency, likelihood, probability, or relative weights. The
authors compare the methods in different ways, on different data,
and using different metrics, making it difficult to assess their
actual performance. To overcome the difficulties in comparison
of different approaches to mapping, we follow the idea from our
previous study (Vintr et al., 2020). There, we proposed a specific
criterion comparing different maps that provided incomparable
costs. In this work, we generalize the criterion into the
methodology to create different criteria from a chosen cost
function that suits the studied attributes of maps. We created
an extensive set of generalized approaches to represent the spatio-
temporal phenomena covering a large part of the current

methods. We applied them to the real-world dataset of
1 month of human detections and compared them using the
two criteria following the proposed methodology. The
straightforward interpretability of the results provides us with
exceptional insight into the strengths and weaknesses of different
approaches.

2 RELATED WORK

2.1 Static Models
2.1.1 Discrete Maps
A straightforward way to include a historical knowledge of
human behavior in the robotic map was proposed in the study
by (Ravankar et al., 2020). The authors divided the map into the
crossings (nodes) and halls (vertices) and projected the map into
the graph. A set of cameras scanned every hall, and the visual
system detected and counted people in these halls. Each vertex of
the graph created a dictionary of observed human movements,
which leads to a historical heat map. The field robot experiment
proved that navigation using historical knowledge leads to
evading congestions. (Nishio and Niitsuma, 2019) included
historical information about the frequency of people in every
cell and usual directions and speeds and also acceleration in the
classical grid-based map. They could detect natural ways people
use in larger areas, where the usual paths are not apparent from
the hall’s structure. They stated that the knowledge of the
acceleration distribution leads to a better understanding of
“smooth flows” in a human movement. In the study by
(Senanayake and Ramos, 2018) the authors proposed a
directional grid map (DGM) that models the distribution of
directions and speeds in the occupancy grid. Each cell applies
an expectation-maximization algorithm to estimate the mixture
of von Misses distributions from historical data.

2.1.2 Spatially Continuous Maps
(O’Callaghan and Ramos, 2012) argued that a continuous spatial
map has better properties for robot navigation than a classical
grid map. They proposed Gaussian process occupancy maps
(GPMOs) that overcome single-scaled maps’ problems and
provide accurate maps even with relatively sparse and noisy
data. However, such an approach cannot be applied to
modeling directions. It suffers from averaging angles, leading
to meaningless predictions when humans traverse positions in
both directions (McCalman et al., 2013). As a solution, they
proposed a combination of the Kernel Bayes’ Rule and the
Gaussian mixture pre-image recovery method (KBR-GM).
Another approach to overcoming weaknesses of discrete
occupancy maps was proposed in the study by (Kucner et al.,
2016). The authors did not use Gaussian processes mainly
because they generally fail to model multi-modal distributions.
Instead, they modeled the continuous distribution of measured
directions and speeds in every cell of a grid using an expectation-
maximization method based on the Independent von
Mises–Gaussian distribution (Roy et al., 2012). Then they
defined an interpolation technique that provides a distribution
estimation at any position. They called it CLiFF-map and applied
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that to the people tracking and wind data. In the following work
(Kucner et al., 2017), they trained the CLiFF-map with sparse
data (75 and 3%) and then reconstructed it to the original
resolution using Monte Carlo and Nadaraya Watson methods.
They proved that it is possible to gather relatively accurate models
from very sparse data. Later, they proposed a robot motion
planner over the CLiFF-map based on RRT* (Palmieri et al.,
2017). They defined the Extended Upstream Criterion (EUC) as a
cost function to favor the robot’s movement with the vector field.
The trajectory found in such a way is most likely to offer a good
trade-off between length and control effort against the dynamics
of the environment. They showed that the model of the
movement of people could be used to navigate the robot
through the crowd effectively. In the study by (Swaminathan
et al., 2018), CLiFF-map was extended with a Down-The-CLiFF
(DTC) cost function for trajectory planning, which explicitly
accounts for the environment’s dynamics and the uncertainty in
the flow model. The cost function incorporates observation and
motion ratios, which, compared to the previous EUC, favors the
less crowded areas and provides information for an
exploration task.

2.2 Short-Term Dynamics in Maps
In the aforementioned approaches, historical knowledge does
not provide any information about the changes in the dynamics
of an environment. One of the approaches is to include the
short-term changes in the map derived from the actual
observation of the situation. In the study by (Kucner et al.,
2013), the authors proposed a Conditional Transition Map
(CTMap), which models in every cell the probability
distribution of vehicle transitions between the last and the
next cell. As the behavior of the usual vehicle is not random,
the CTMap estimates the probability of the exit direction of the
vehicle from the entry direction. Using the Conditional
Probability Propagation Tree (CPPTree) graph representing
all reachable transitions, the method can predict the vehicle’s
trajectory that entered the scene or provide a convenient
navigational plan for a robot. Another discrete short-term
model can be found in the study by (Wang et al., 2014),
where authors predict the path of a walking person based on
his actual position in the environment using the input–output
Markov model. The model that estimates a human’s future
position directly from observations (Kollmitz et al., 2015) allows
for reactive navigation that respects a human’s personal space
without the need of repetitive recalculations of the robot’s
trajectory. (Senanayake et al., 2020) proposed a static spatial
map that includes distributions of directions and speeds of the
vehicles at the crossroads. It is used prior to the trajectory
prediction, which is updated based on the current observation.
The current observation, for example, the blinking of a car, is
then used to estimate the new directional distribution and,
eventually, the most probable path of the vehicle. (Nardi and
Stachniss, 2020) proposed a graph that represents an
environment and which edges were traversable or not during
a robot’s task. The model learns which edges were traversable
together. Based on this model, they can predict where the robot
can go after observing a small part of the environment. Then, the

information is exploited to provide better navigation plans.
With the advancement of the neural networks that include
long short-term memory, one can find in the literature a vast
amount of the methods for short-term predictions derived from
the actual observation (Rudenko et al., 2020).

2.3 Partly Discrete Spatio-Temporal Maps
2.3.1 Maps With Discrete Temporal Domain
Apart from modeling the directions of the movement of
particles in the environment, the scientific community
focuses on modeling the changes in the environment over
time. A prevalent approach to modeling a time-dependent
phenomenon is to create seasonal windows (usually 1 day
long) and to model the environment over the different parts
of these windows (Van Laerhoven et al., 2008; Blanke and
Schiele, 2009). This approach models patterns of the
environment change, but it is necessary to define the
principal periodicity, that is, the length and the resolutions
of windows. In the study by (Bennetts et al., 2019), the authors
analyzed the flow of the wind. They proposed a continuous
AirFlow Map and called it stf-AFM. It is a set of spatio-(short)
temporal models inserted into the “calendar”. The authors are
searching for periodical features over the calendar using a
combination of autocorrelation, fast Fourier transform, and
clustering over the frequencies. They pointed out that
“knowing periodicities could have some impact.” A bachelor
thesis (Kubiš, 2020) proposed a method of time-window GMM
applied to the taxi demand prediction. Contrary to the
previous article, the essential periods were gathered from
the data in advance and used for creation of proper time
windows. The method then estimates the spatial
distribution using EM-GMM in every time window. The
author showed that it is possible to predict the demand for
a few weeks to the future. A comparable method was also used
for ambulance call forecasting (Bayisa et al., 2020). The
authors proposed a spatio-temporal log-Gaussian Cox
process. They divide the prediction task into multiple
subtasks for different temporal and spatial classes (7 days of
the week, 4 seasons of the year, and 5 regions). In those 140
subsets, they calculate a continuous one-day-long model
derived from the historical data of several years.

2.3.2 Smoothing the Grid
However, the time interval usage suffers from the discontinuity at
the borders of the intervals, which is necessary to overcome
(Chinellato et al., 2017). The bachelor thesis of (Blaha, 2020)
describes the system that was created to help people during the
early times of the Covid pandemic. The system predicts how
crowded places like shops and pharmacies will be (Laboratory of
Chronorobotics, 2019). As the learning data were highly sparse
and unevenly measured, the author employed a histogram-based
temporal model smoothed by spline at every tested place. Despite
the meagre quality data, the system could predict the ideal time
for shopping in the next few days. The smoothing of the spatio-
temporal models is generally a complex task. For example, the
authors (Zhang and Zheng, 2020) applied triangulation over the
space of a discrete spatio-temporal model and interpolated the
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distribution linearly over the sub-spaces so that the distribution is
piece-wise linear and continuous.

2.3.3 Continuous Modeling of Time Over the Spatial
Grid
A specific approach to spatio-temporal modeling is called
Frequency Map Enhancement (FreMEn) (Krajník et al., 2017).
In one of the experiments, the authors created a topological map.
Each place on the map is defined by a set of visual features
detected in the past. Every detection gets an ID, and if detected
multiple times, it creates a binary time series (detected during
observation or not). Every time series is then decomposed by
frequency analysis. Each place at any time is then described by a
set of the most probably detectable features. It is also possible to
represent each place as an occupancy grid where each cell holds
the binary time series that specify the occupancy state. All
modeled phenomena are understood as static or periodic,
which allows predicting future states of any feature at any
time. Therefore, it is also possible to predict the most probable
position of static and dynamic obstacles. The authors also define
the persistence of the features, which allows the map to include
unpredicted obstacles that were actually detected. Moreover, an
open-source library integrated with ROS for long-term mobile
robot mapping called FROctomap (Krajnik et al., 2014a) is
available.

Experiments and applications of FreMEn provide the most
complex insight into benefits obtainable from incorporating
spatio-temporal models into robotics. FreMEn was applied in
the task of mapping (Krajnik et al., 2014b). The experiments
showed the ability of the method to model binary states with very
high precision. Applying it to the occupancy grid map lowered
the prediction error compared to the static approach by 60%.
Then, it was applied to the localization task (Krajník et al., 2014b).
The experiment was accomplished at eight places that were
supposed to be distinguished using two different approaches.
The first approach described each place using a “fremenized”
occupancy grid, and the second approach modeled the places
using image features whose detection probabilities were also
fremenized. The experiment proved that incorporating the
FreMEn improved the localization ability of the robot. They
also stated that the most prominent period was most
influential in a long-term experiment as it persists over a more
extended time. (Fentanes et al., 2015) proposed a topological map
in which there was the traversability of the edges modeled by
FreMEn. They implemented the time-indexed Navigation
Markov decision process that improved the planning of the
navigational tasks in the changing environment. In a robotic
search task (Krajník et al., 2015a), the performance of Frequency
Map Enhancement–based and Periodic Gaussian Mixture–based
modeling were compared. The robot was supposed to search for
people and objects in three different environments. Compared to
the stationary models, the experiment showed a decrease in the
search time of about 25% and a decrease of places of about 33%
using both proposed methods. The authors speculate that finding
periods using FreMEn and approximating the events with the
mixture of Gaussian distributions can lead to a better output.
Although the fremenized occupancy grid holds the parameters of

the binary time series in every cell, it was successfully applied to a
directional grid map over a large area of mall halls (Molina et al.,
2018). FreMEn was also subsumed into the Human-Aware
Allocation proposed for cooperation between multiple robots
in a human-populated area (Surma et al., 2021). Its
predictions were employed in the multilayer Map of Dynamics
to ensure the optimal division of tasks with human presence in
the environment. Considering the ability of a robot that uses
FreMEn to recognise “when” it observed the most informative
situation, the novel information-based Monte-Carlo scheduler for
exploration was proposed (Santos et al., 2016). Eventualy,
different exploration strategies (Krajník et al., 2015b; Santos
et al., 2017; Molina et al., 2019) and exploration–exploitation
dilema (Kulich et al., 2016) were studied. In the study by (Jovan
et al., 2016), FreMEn was redefined into the Addition Amplitude
Model (AAM). The most significant frequencies were iteratively
discovered from learning data and actual reconstruction
differences, that is, model errors. The main difference to the
original FreMEn resides when the frequency with the highest
amplitude in the errors is part of the frequencies that established
the reconstruction. In such a case, the amplitudes of those two
(identical) frequencies are summed up, and the shift is averaged.

2.4 Continuous Spatio-Temporal Maps
The main problem of the approach above is the spatial
independence of the neighboring cells. It can be addressed by
spatial ordering (Cliff and Ord, 1975), but the spatial ordering has
to be predefined a priori and cannot be changed during the
learning process (Shi and Yeung, 2018). The necessity to model
spatial dependencies in the dynamic environment leads to a
continuous spatio-temporal representation of the environment.
Although the continuous models of the environment changes are
computationally demanding, they are beneficial due to their
memory efficiency (O’Callaghan and Ramos, 2012; Vintr et al.,
2019b) and robustness to the outliers (Zhi et al., 2019).

2.4.1 Maps With Limited Number of Periods
The continuous spatio-temporal models were successfully used in
ambulance demand prediction. (Zhou et al., 2015) proposed a
time-varying Gaussian mixture model. They created 2-h windows
with a 1-week periodicity, and applied GMM in each window.
Moreover, they apply constraints for the weights of each Gaussian
in a way that timely preceding and subsequent weights, and
weights from identical time windows of preceding and
subsequent days, directly influence the current weight. In this
way, they also include 1-day periodicity and smoothness to the
model change in their model, which they refer to as short-term
serial dependence. Later, they proposed a warped kernel density
estimation model that produces geometrically better density
estimation than time-varying GMM (Zhou and Matteson,
2016). The warping kernels are derived from spatial geometry.
The spatial positions of the ambulance demand constitute clusters
projected to a weighted graph as nodes. The edges are derived
from the highways and roads, and weights correspond to the
usual traffic. The parameters of the graph then influence the
shapes of the spatial clusters. Such an approach provides a “fit to
structure” distribution. The fundamental periodicity in the
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proposed model was 1 week. Due to the computational
complexity, the model used an 8-week-long sliding window
for learning while prediction was tested in the consequent 4
weeks. Continual learning also served as “forgetting” and
provided different predictions in different seasons (winter/
summer). However, the model did not prove its improvement
over initial methods when applied to a crime prediction in Bogota
(Garrido Mejía, 2018).

In the following work (Pabón et al., 2020), kernel warping was
applied to the homicide prediction in Bogota. The authors explain
the inefficiency of the model in several ways: the relatively low
amount of homicides, changes of positions of problematic groups
across historical data, and the direct impact of patrolling strategy
of police known as “runaway feedback loops.” They solve the
known issues by enriching the data with street fights, which are
very connected to the homicides, and including temporal decay
components in the studied models. Temporal decay helped all the
models, and the kernel warping model provided the best
predictions. In the study by (Zhou and Matteson, 2015), the
spatio-temporal ambulance demand is modeled in a way that the
dataset is divided into spatio-temporal cells. By applying
autocorrelation to the data, the authors estimated two main
periods. Then those periods were exploited to create a
continuous spatio-temporal model by applying kernel-based
GMM to the weighted aggregations in the cells. The weights
were derived from the distances of cells in time-considering
found periods. The method is referred to as spatio-temporal
kernel density estimation (stKDE). stKDE was also used for a
modeling ambulance intervention in Milan (Gilardi et al., 2021).
The authors pointed out that it is possible to use fast Fourier
transformation instead of autocorrelation to estimate periods in
the data. In the study by (Nilsang and Yuangyai, 2021), a spatio-
temporal model based on stKDE with one periodicity was used as
a part of the method for an allocation of ambulance bases.

Spatio-temporal models were also applied to the spread of
disease prediction. In the study by (Senanayake et al., 2016), the
authors modeled the propagation of influenza. They created a
spatio-temporal model based on Gaussian processes consisting of
spatial, temporal, and spatio-temporal components. Except for
the temporal decay, the model also consisted of the 1-year
periodical temporal component. The periodicity was chosen
based on general knowledge. Similarly, a continuous spatio-
temporal map of disease spread over Turkey consisted of 1-
year periodicity (Ak et al., 2018). The authors stated that the
continuous spatio-temporal model could predict the disease
spread in unmeasured regions inside Turkey in the future.

2.4.2 Periods Gathered From the Data
Although the aforementioned models were continuous and
spatio-temporal and included seasonality, only one or two
periodicities were employed. In many cases, the periodical
component was obtained not from data but a priori
knowledge or expertise. In long-term robotics, a robot has to
obtain the natural periodicities of the dynamic environment from
its observations, and some of them are likely out of usual human
expertise. Moreover, some human-populated environments do
not necessarily follow the day/week/year pattern. The flow of

continuous media was modeled in the study by (Guizilini and
Ramos, 2015) by applying Gaussian processes to the measured
data. The algorithm used a covariance matrix formed by the
spatial and temporal components. The periodical temporal
components were obtained iteratively using frequency analysis
over the model’s errors. The temporal components also include
temporal decay. The spatial and temporal components of the
covariance function are calculated separately and multiplied at
the end. Nevertheless, the computational complexity of the
Gaussian processes grows fast with the number of data points
(Jovan et al., 2016; Senanayake et al., 2021). The extraction of
multiple periodical features from the data was targeted in the
study by (Tompkins and Ramos, 2018) proposing Fourier Feature
Approximations for Periodic Kernels and its multidimensional
variant (Tompkins and Ramos, 2020). Although it was not
applied to the spatio-temporal modeling, together with
formerly proposed Hilbert maps (Ramos and Ott, 2016) that
were subsequently improved to be updated incrementally
(Senanayake and Ramos, 2017), it should be taken into
consideration.

In the study by (Krajník et al., 2019), the authors proposed a
continuous spatio-temporal model based on a projection of
linear time into the closed subset of higher dimensional
vector space, warped hypertime. The projection has its roots
in the seasonal windows, but the windows are coiled into circles.
Such an approach ensures continuity of the model on the edges
of a window. Projected circles form a multidimensional Clifford
hyper-torus (Leonard, 2020). The seasonality is obtained
iteratively from an error of the actual model. The error forms
a time series that is analyzed using FreMEn. The FreMEn
returns the most dominant periodicity found in error, and
the periodicity forms a new circle. The authors then showed
in experiments that the proposed method is equal to or better
than FreMEn when applied to the robotics tasks. In the study by
(Vintr et al., 2018), Warped hypertime was applied to the task of
detecting anomalies. It was proved that the model learning on
binary data is faster and converges to a better quality model than
in other state-of-the-art methods. Later, it was applied to the
detection of novelties (Rektoris, 2021) in one-dimensional time
series without any trend, and it proved the similar quality of the
model to the state-of-the-art regression methods while
performing better in modeling time series with
multimodality. Applied to a human presence prediction
(Vintr et al., 2019b), it showed high memory efficiency with
a slight boost to the prediction compared to the discrete
methods. In the study by (Vintr et al., 2019a), the hypertime
version derived from the binary version was applied to the
directions of people. To avoid ambiguity caused by averaging
angles, the model’s spatial part was four-dimensional—the
method also modeled speeds, that is, velocities, and the
resulting angles were calculated by integrating velocities over
the angular intervals. It was not computationally rational to
calibrate the model using a grid of aggregations similar to the
previous work (Vintr et al., 2019a). Instead, the authors
extended the data with “negative measurements;” they added
random noise labeled as “not a human.” Two models (humans
and artificial nonhumans) were learned, and the “calibration”
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was done similarly to the approach used for binary data (Vintr
et al., 2018). Although the addition of artificial zeros is
meaningful in some two-dimensional spatial cases
(O’Callaghan and Ramos, 2012), generally, it is not a
convenient approach—weigh how many possibilities of “not
detected velocity” one has to take into consideration.

2.5 Benchmarking Spatio-Temporal Maps
The authors that propose new mapping methods apply a wide
variety of quality measuring techniques. It is not uncommon to
provide only a discussion about the visual quality of the map
regarding the most common directions (Kucner et al., 2013,
2016), reconstructed signals (Fentanes et al., 2015), or changes
of the heat map over time (Vintr et al., 2017; Nilsang and
Yuangyai, 2021). Such an approach is usually used to provide
insight into the proposed concept’s basic behavior.

A very popular measure of the quality of discrete or
discretized maps is mean square error (Senanayake et al.,
2016; Yan et al., 2017; Senanayake and Ramos, 2018;
Krajník et al., 2019) and rooted mean square error
(Guizilini and Ramos, 2015; Jovan et al., 2016; Zhou and
Matteson, 2016; Vintr et al., 2019a; Senanayake et al., 2020).
Apart from the fact that, in general, the maps not providing the
frequency of measurements need to be normalized (Ak et al.,
2018), the difference between maps is very small (Vintr et al.,
2019a, 2020), which leads to the necessity to enhance the
differences of results (Vintr et al., 2019b), and the rank of
methods is dependent on the coarseness of the grid (Kubiš,
2020). Similarly, a popular measure is an average (negative)
log-likelihood that can be applied to the continuous maps
(McCalman et al., 2013; Zhou and Matteson, 2015, 2016;
Senanayake and Ramos, 2018; Zhi et al., 2019) but is only
meaningful when a probability measure can be derived. It
suffers mainly because the map is tested only against
detections, that is, in places with testing data points.

Many authors treat their maps as binary predictors and test
their quality using measurements derived from the confusion
matrix. For the predictors with a predefined threshold, we can
find a ratio of true positives (O’Callaghan et al., 2011; Krajnik
et al., 2014c), ratio of false positives (Molina et al., 2018), hit rate
(Garrido Mejía, 2018; Pabón et al., 2020), and accuracy (Massey,
2019). Some authors do not predefine the thresholds and use
measures like an area under the curve (O’Callaghan and Ramos,
2012).

We can find also unique measurements of a map quality like
the Pearson correlation coefficient (Ak et al., 2018), Cramer-von-
Mises criterion (Bennetts et al., 2019), Kullback–Leibler
divergence (Rudenko et al., 2020), and k-NN Universal
Divergence Estimator (Kucner et al., 2017). Rarely, we can
find average probability density (Senanayake and Ramos, 2018;
Senanayake et al., 2020) and chi-square distance (Vintr et al.,
2019a; Molina et al., 2019; Stuede and Schappler, 2022).

In the robotic community, there exists also the possibility to
compare the maps in simulations (Palmieri et al., 2017; Nardi and
Stachniss, 2020), or simulated robotic tasks built on the real data
(Krajník et al., 2014c; Krajník et al., 2015a; Krajník et al., 2017;
Vintr et al., 2020). The ultimately self-evident measures of the

quality of the map then come with real robot experiments
(Krajník et al., 2017; Ravankar et al., 2020).

3 GENERALIZED NATURAL CRITERION

3.1 Genesis of Criterion
The question of the proper evaluation of spatio-temporal models
for service robotics has been highlighted in previous work (Vintr
et al., 2019a; Vintr et al., 2020). Some authors strongly imply that
generic criteria used to quantify the success of regression
methods, for example, mean squared error (MSE), are
unsuitable for this task (Wang and Bovik, 2009; Vintr et al.,
2019a; Kubiš, 2020). It is mentioned that these criteria struggle to
differentiate between state-of-the-art methods meaningfully and
are not reliable. Small changes in the hyperparameters of the
testing procedures can cause significantly different results, even
changing the rank of the methods. More importantly, they do not
provide a useful proxy of the measure of how well the people in a
robot’s environment perceive the robot’s behavior, that is, some
robot acceptance cost (RA), as they generally have no connection
to the application (Wang and Bovik, 2009).

In this work, we build upon a criterion called expected
encounters (EE) developed in the study by (Vintr et al., 2020).
First, we define it according to (Vintr et al., 2020), and then we
generalize the ideas to get a universal framework for defining
similar metrics for evaluating various robotic maps. Then, we
define in detail two specific criteria, which we use in this study to
compare methods.

The metric falls into the class of utility metrics, and its primary
goal is to measure the usefulness of the learned model for the
robot’s navigation in human-populated environments. The EE
criterion specifically tests the method’s ability to model the
phenomena of human presence in time and space. It does so
by presenting a robot with a trained model and a set of
navigational tasks that happen at different times. The robot is
then supposed to plan its path through the environment for all
these tasks minimizing the number of people it expects would
cross its path. Path planning tests the method’s ability to model
the phenomena in the spatial domain. Another principal idea is
introduced to test the temporal domain: the servicing ratio. The
robot is asked to select a specific percentage of times out of all the
times presented where it will execute the navigational task, again
to minimize the expected number of encounters with people. All
the selected plans are then executed and compared with the
positions and movement of people in the testing dataset. The
testing environment calculates the encounters between the ‘blind’
robot and ‘blind’ people—the system does not provide any
artificial reaction of any element involved.

To formally define the original EE criterion, we first define the
service disturbance function SD(r) with the parameter r ∈ [0, 1],
which we interpret as the servicing ratio, that is, the ratio of
navigational tasks the robot is required to perform. The robot is
given a set of navigational tasks at times {ti}Ni�1, and for each one of
them, it plans a path with cost ci defined by the spatio-temporal
model of human presence to be evaluated. The testing dataset
then, for a given trajectory, gives the number of weighted
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encounters ei (see Section 4.2.1) that would occur for the given
planned trajectory. The service disturbance function is then given
as follows:

SD r( ) � ∑
�rN�

k�1
eπ k( ), (1)

where π is a permutation which orders times ti so that ∀k: cπ(k) ≤
cπ(k+1), where ci corresponds to ti, as defined above.

The interpretability of the service disturbance function alone
provides us with quite an interesting insight into the performance
of individual models. To arrive at a single-value aggregation of
this function, we adopt the interpretation where we understand
this function to be the quantile function of the ordered
human–robot encounters. The quantile function allows us to
compute the expected value of the distribution, which we denote
expected encounters, and we compute it as follows:

EE � ∫1

0
SD r( )dr. (2)

Note that the service disturbance function satisfies the necessary
conditions of being cumulative and defined on the [0, 1] interval.

3.2 Generalized Definition
The criterion was explicitly developed for comparing different
approaches to the spatio-temporal modeling of pedestrian flows
(Vintr et al., 2020; 2019a) with the necessity of evaluating the
predictions producing very different values. Consider the
outputs of histograms over seasonal windows (Blanke and
Schiele, 2009), CLiFF-map using different cost functions
(Palmieri et al., 2017; Swaminathan et al., 2018), Time-
window GMM (Kubiš, 2020) producing the values limited
only from below by zero, binary-map approaches based on
Frequency Map Enhancement (Krajník et al., 2017), and
probabilistic STeF-map (Molina et al., 2019). However, the
original criterion focuses only on one specific aspect of
human-aware navigation. There are a lot of different
opinions as to what criterion influences the acceptability of a
robot in human society most (Talebpour et al., 2015; Kostavelis
et al., 2017). Besides, the acceptability need not necessarily be
the only point of view that defines the quality of performing the
task (Krajník et al., 2015a; Fentanes et al., 2015; Kulich et al.,
2016).

The general idea of comparing the spatio-temporal maps is
applicable and helpful in comparing different robotic models
predicting diverse phenomena useful in miscellaneous robotic
tasks. There are two essential prerequisites needed for the
application of the idea of the criterion—a predictor producing
(at least) ordinal values that are tailored for the robot to decide on
its task, and a measure of the impact of the robot’s decision
usually denoted as a cost.

To formalize the generalized definition, we start by having a
specific task for the robot to perform, during which it relies on
information provided by a model and an observable measure of
how expensive it was for the robot to perform its task—the true
cost. This true cost can but does not have to be directly tied to the

predictions of the model—a predicted cost. This task is supposed
to be performed under different values of the model’s
explanatory variable (e.g., time or space) {vi}Ni�1 and for every
i, the robot acquires a predicted cost c (vi) of its hypothetical task
from the predictor. Then, we define a true cost function
C: {1, . . . , N} → R, which provides a true cost for every i.
Finally, we define a quantile function of the distribution of
the ordered true costs as follows:

Q r( ) � ∑
�rN�

k�1
C π k( )( ), (3)

where π is a permutation, which orders indexes i so that ∀k: c
(vπ(k)) ≤ c (vπ(k+1)) All interpretations like the servicing ratio hold
in the generalized case as well and it is again possible to compute
the expected value of the ordered true costs:

EC � ∫1

0
Q r( )dr. (4)

3.3 Methodology
We strongly disagree with applying statistical tools developed to
describe or compare repeatable experiments to experiments
involving people. The same applies to other uncontrollable
entities, like animals, wind, or traffic. For human-aware
robotics, we need to follow the general idea of natural
experiments (Dunning, 2012) and apply the methods in real-
world situations. However, autonomous robotics is not in the
development stage in which the field robot experiments can be
accomplished securely in large enough repetitions to provide
comparable results. We suggest that the comparison should be
performed (at least) in the simulations built on the real-world
data. In these simulations, we can repeat the same real situation
and apply the different methods.

The proposed generalized definition of the criterion can be
applied to various robotic tasks a robot performs. We need to
specify the predicted costs c (vi) and the true cost function C
that provides the true cost during the robot employment in the
simulated, real-data–based experiment. Using the proper
definition of the true cost function, we can compare the
approaches and specify which aspect of the proposed
approach is better than another. Moreover, we can also
elaborate on what aspects should be compared by designing
new criteria following the generalized one. As the proposed
criterion and its usage are derived from the general idea of
natural experiments, we denote it the Generalised Natural
Criterion, GNC.

The general template for applying GNC for a particular
predictor then has the following steps:

1) execute or simulate the experiment with different settings of
the investigated environment,

2) order the measured costs by the predictions of the method and
accumulate it, as described in Eq. 3, and

3) calculate the expected value of the cost of the robot’s
behaviour, as in Eq. 4.
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3.4 Application of GNC
GNC and the concept described above are generally applicable to
the scenarios where the robot can estimate what the cost of
solving the task in different situations is. The predictor providing
the estimation uses some explanatory variables as input, like a
relative position of a robot to an obstacle, the time of task
execution, or actual weather.

Then, we need to define a function, referred to as true cost
function C, which provides a measurement of the quality of the
performed task. For example, in the study by (Kostavelis et al.,
2017), the quality of human-aware navigation is measured by the
mean distance between the moving human and the robot, the
time spent in areas associated with the personal zone, the human
discomfort, and the total navigation time needed for the robot to
reach the desired goal. Such true costs are directly applicable, and
the different approaches to solving the problem can be compared.
In the case of testing different spatio-temporal maps (Vintr et al.,
2020), the authors defined the true cost function as the cost of the
optimal path.

We mentioned that the predictor needs to produce at least
ordinal values. The optimal predictor produces real values with
the probability of obtaining identical values close to zero. The
following sections discuss some scenarios where the direct
application of the methodology defined above is not
straightforward because the predictions are not real values. It
needs some additional effort to utilize the method entirely.

3.4.1 Binary States
Many environmental models in mobile robotics are composed
of independent binary states, such as the presence or absence
of people, the visibility of landmarks, and the traversability of
certain areas (Krajník et al., 2017). As an example, let us
consider the task of traversing an environment using its
time-varying topological map as quickly as possible
(Fentanes et al., 2015; Nardi and Stachniss, 2020). Although
the robotic methods usually provide more nuanced prediction
than just 0 or 1, for example, a probability of the state being 1,
it happens that a confident predictor forecasts that the
traversability in more than one situation will be 0 or 1. In
such a case, the ordering needed in Eq. 1 would have several
different solutions. We can divide the predictions into
successful (1) and unsuccessful (0) classes and understand
the values of 0 and 1 as an ordinal variable. Inside those classes,
the ordering can be done randomly, and the expected cost
value can be calculated as an average of multiple random
reorderings.

3.4.2 Ordinal Variables
When the target variable is ordinal, the ordering can be solved
similar to the binary states by multiple random reordering. If
available, the predicted values can also be weighted by the
system’s confidence or the probability of each class. Another
approach consists of applying a regressor function to predict the
targeted value, as in the bachelor thesis by (Rektoris, 2021). Both
approaches exploiting the confidence provide a continuous
output of the prediction, and therefore, it is possible to order
the costs with ease.

4 EVALUATION

4.1 Human Disturbance Experiment
The assessment of how the occurring people in the
environment accept the robot’s presence is not
straightforward. In some robotic studies, we can see, for
example, an effort of the scientists to learn a robot to evade
accessing a human’s personal space (Kostavelis et al., 2017) or
breaking pair-wise social relations (Okal and Arras, 2016).
However, the survey on the experience of people with the long-
term autonomous robot (Hebesberger et al., 2017) shows that a
major disappointment is caused by robots’ inability to adapt
their behavior to the general pattern of human activity. The
lack of adaptation results in having to break ongoing social
interactions because of a more critical task (e.g., battery
charging) or awkward evasion manoeuvres during
human–robot encounters in crowded areas. From our
observation, the inability of the robot to adapt its activity to
the temporal patterns of its workplace causes it to be perceived
as unintelligent, awkward, annoying, and useless. Eventually,
as a robot provides a service nobody wants at the right time,
people start to push it to stay away, turn it off, or otherwise
treat it as an unwanted entity.

While a robot certainly needs to adequately react to the
arising situations and avoid people in a socially acceptable
way, people perceive the robot better if it can schedule and
plan its activities to avoid socially inappropriate situations
completely.

Our primary hypothesis states that the robot that can decide
when to provide a service disturbs people less than a robot
without such an ability. To prove the hypothesis, we run a
robot in a human-populated environment using two types of
navigation systems. The first one used a traditional occupancy
grid, containing static obstacles, to plan the paths, which were
traversed using an industrial-grade reactive navigation system,
provided by the manufacturer of the HSR robot used for the
experiment; we call this Reactive navigation. The second one,
named Anticipative navigation, also used the build-in
navigation of the HSR robot. However, the paths and times
of navigation were planned using a spatio-temporal-
directional map of pedestrian flows.

We measured people’s discomfort during the experiment by
counting only the strong negative reactions toward the robot,
which eventually led to an intentional search for a way to
complain. A human that goes and complains was, in our
interpretation, so distracted that he changed his original plan
and started to solve the unexpected situation—similarly to the
strong negative reactions that led to pushing a robot out of society
(as mentioned earlier).

4.1.1 Robotic Platform
As shown in Figure 1, a Toyota HSR robot (Yamamoto et al.,
2019) was employed for experiments, which is equipped with
an Xtion RGB-D camera (for obstacle avoidance only), a
Hokuyo UST-20LX 2D LiDAR (for obstacle avoidance and
global path planning), and other sensors that were not used in
the experiment. The human-aware navigation system was
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deployed on a laptop with an Intel i7-7700HQ processor and
32GB RAM, wired to the robot, and carried on its back. All the
software was implemented into the Robot Operating System
(ROS) (Quigley et al., 2009) with high modularity using C++
and Python mixed coding, running in real time on Linux
Ubuntu 18.04 LTS (64-bit) and ROS Melodic.

4.1.2 Experimental Setup
The real-world experiments were conducted with the HSR robot
on the afternoon of the 12th of December and the morning of the
13th of December 2019 and both in the same place, the hall of the
UTBM building. The experiments were designed by researchers
who do not work at UTBM, and there was no advance notification
to anyone involved in the experiment. In each experiment, we
allocated two 40-min slots to perform 10 patrols, during which
HSR had to visit three predefined waypoints. By integrating our
spatio-temporal model with the HSR’s own navigation system,
the robot polled three waypoints in a counterclockwise sequence
while adapting its movement to the moving people using HSR’s
built-in collision avoidance. If people occupy a waypoint, the
robot waits until the waypoint is free.

Moreover, as shown in Figure 2, three paper sheets were
placed with removable tags near the three waypoints. These sheets
asked people to remove a tag if they felt that the robot was causing
a nuisance by forcing them to avoid it. The idea was to count how
many people were distracted by the robot that they performed an
intentional operation due to the stressful situation.

4.1.3 Results of Human Disturbance Experiment
The robot was supposed to drive through the environment
10 times in every time slot. Every run took approximately
2 min, which means that the task took up 50% of the
assigned time. The reactive navigation went through the
hall in uniformly distributed times, covering whole
timeslots. The anticipative navigation decided on the
proper times by exploiting the predictions from the spatio-
temporal map of pedestrian flows (similar to
FreMEn_WHyTeS_Clusters, Section 4.2.3). In Figure 3,
the graph represents the prediction of the robot acceptance
(RA) cost in the area, that is, the disturbance to the people
caused by hypothetical execution of the patrolling task

FIGURE 1 | Left: Toyota HSR robot including an Xtion RGB-D camera and a Hokuyo UST-20LX 2D LiDAR. Upper right: experimental environment. Lower right:
occupancy grid map for robot navigation. The red points are representative of the positions of the removable tags, and the blue points are the locations of the waypoints.

FIGURE 2 | Three paper sheets placed with removable tags near the three waypoints.
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regarding the prediction of pedestrian flows (Vintr et al.,
2020). A control experiment was also performed to evaluate
how often people would indicate they were annoyed with the
robot regardless of its behavior. The robot was removed from
the vicinity of the experiment, but the recording apparatus
was left in place.

The experimental results are summarized in Table 1. The
column ‘People total’ describes the number of people passing
through the area within the appropriate time window. The
number of people in the hall while the robot was performing
its task is listed in the ‘People involved’ column. The last column
summarizes a number of paper tags removed by people who
considered the robot’s behavior annoying.

The morning timeslots chosen for the experiment included
more people walking through the hall than evening timeslots. The
observed distribution of people was not uniform. For example,
when the robot was performing its tasks, we manually counted
that in the time (sub)slots 9:50–10:00, 10:00–10:15, and 16:00–16:
10, there were approximately 70, 90, and 20 people passing
through, respectively. It corresponds to the prediction of the
RA cost, as shown in Figure 3.

While performing the control experiment, 211 people passed
through the hall, and none of them recorded that the robot was
annoying them. That indicates that the people passing through
the hall were not distracted by the equipment so that anybody
would search for a way to complain. The robot taking advantage
of anticipative navigation decided to perform all the tasks during
time slots 9:20–9:40 and 16:20–16:40. Incorporating the spatio-
temporal model into the robot’s planning led to evading the most
crowded time slots, as seen in the column ‘People involved.’ The

robot incorporating only reactive navigation and performing its
tasks uniformly drove through the hall even in very crowded
situations when people were in a hurry. The robot’s presence
inevitably affected the flow. People were distracted by replanning
their trajectories, which resulted in the intentional change of their
original plan from ‘to pass the hall’ to ‘to complain,’ as
documented in the ‘People annoyed’ column.

We proved that the navigation system that follows human
routines distracts people less than the one lacking this capability.
We also showed that predictions from the spatio-temporal maps
of pedestrian flows provide good enough information to evade
socially inappropriate behavior and strongly support reactive
navigation. The difference between the anticipative and
reactive navigation was so substantial that we did not need to
use subtle quantitative metrics developed for the assessment of
human-aware navigation methods (Okal and Arras, 2016;
Kostavelis et al., 2017).

4.2 Comparison of Spatio-Temporal Maps
4.2.1 Two Criteria for Spatio-Temporal Map
Comparison
We claim that human-aware navigation needs to include spatio-
temporal maps and use them for the decisions in advance of the
navigational task. Therefore, we want to compare the maps in
their ability to support navigation systems.

The predictions produced by approaches in our comparison
(Section 4.2.3) are real values. They are interpreted as the
likelihood of human presence at some position in space and
time in spatio-temporal scenarios and as the likelihood of people
moving with a specific velocity at some position and time in
spatio-temporal-directional scenarios. We created simulated
scenarios at different times, where the goal for the robot was
to visit 3 distinct places in a university hall. The predictions filled
a spatial grid with the predictions, and Dijkstra’s algorithm found
the cheapest path considering the predictions. We let the system
choose the order of the visits in each run, which lets the robot
follow the predicted pedestrian flow.

Following our previous work (Vintr et al., 2020), we compare
the quality of the spatio-temporal map primarily by the expected
encounters EE with the associated quantile function SD(r),
referred to as service disturbance. The encounters are obtained
using simulated movement of the robot. The robot follows the

FIGURE 3 | Forecasted (8 months horizon) robot acceptance (RA) cost and timeslots allocated for the experiment. Note that the bottom of the troughs is sharp due
to the model not using sinusoids. Courtesy of (Vintr et al., 2020).

TABLE 1 | Comparison of reactive and anticipative navigation.

Evaluated Time People People People

Behavior Total Involved Annoyed

Anticipative 9:20–10:00 115 17 0
Reactive 10:00–10:40 132 46 2
Anticipative 16:00–16:40 43 6 0
Reactive 16:40–17:20 23 14 1
Control 9:20–10:40 211 - 0
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path obtained from Dijkstra and continually recalculates people
in its predefined vicinity every 10 cm. As we hypothesize that the
disruption of people is highly correlated with the unexpected
replanning of their movement, the contacts with people are
weighted w by a mutual robot and human direction of
movement and referred to as encounters:

w � 1 + vh · vr
‖vh‖||vr‖, (5)

where vh and vr are the velocities of a human and a robot,
respectively. The weight w follows the idea of the upstream
criterion (Ko et al., 2014), providing us with information
about whether the given model correctly predicts the
directions of pedestrian flows. The encounters represent the
true costs, while the aforementioned method to obtain them
represents the true cost function.

During performing the comparison, we encounter the need
for the differentiation between models that force the robot to
always go around the walls and the models that additionally
provide information about when it is possible to choose a short
path directly through the hall. Therefore, we defined a second
true cost function that provided us with the distance traveled
by the robot in each run. We denote the secondary measure of
the quality as an expected length EL and associated quantile
function as a traveled distance TD(r). It provides information
on the ratio of the chosen paths predicted as ‘safe’ regarding
meeting people and the ratio of safe and short paths. Such
information can be exploited to estimate the robot’s ability to
decide on safe and fast traversals of the environment when
using a given model.

In general, the patio-temporal maps provide predictions to the
navigation systems, while the reactive navigation solves the
current situation a robot encounters. As such, the criteria we
used in our comparison are not focused on testing specific
manoeuvres like in pure human-aware navigation studies,
(Okal and Arras, 2016; Kostavelis et al., 2017) but cover the
similar principles directly connected to the specialized human-
aware manoeuvres. If the scientist focusing on human-aware
navigation recognizes the need for another, more specialized
criterion to compare the predictive ability of maps, they can
follow the methodology proposed in Section 3.3.

4.2.2 Dataset Collection
The dataset collection was performed in a hall of approximately
500m2 on the UTBM university campus. As shown in Figure 4, a
Velodyne HDL-32E 3D LiDAR was placed in the reception near
the building door to ensure safe 24-h operation. The spatial
placement of the LiDAR was carefully determined to ensure
maximum field-of-view (i.e., approximately 200m2) of the hall
beyond the glass windows. The raw data of the LiDAR was
recorded to ROS rosbags 24 h a day.

Our dataset consists of 1 month, March 2019, of continuous
human detection used as the training set. The testing dataset
consisted of 7 days from 1 week in December. More than 6
million human detections were generated from the LiDAR
recordings. They were extracted using the FLOBOT human
detection and tracking system Yan et al. (2017). The false-
positive detections were removed by searching for extraordinarily
stable and immovable human detections. Later, we filtered out
reflections of people by manual localization of places producing
those reflections. Compared to the dataset used in our previous work
(Vintr et al., 2020), the training dataset was twice as long, and the
testing dataset did not immediately follow the training period. We
also utilized our experience in filtering out the false-positive
detections, which led to more effective scripts.

Due to the temporal and spatial continuity of data, the dataset
reflects people’s regular activities, like students entering the
building lobby at the beginning of class, leaving after class,
and eating and chatting in the lobby during lunch break.

4.2.3 Approaches in Comparison
Our comparison focuses on the general principles rather than the
optimization of the parameters of the methods tailored directly to
the analyzed data. The methods found in the literature can be
divided into a few overlapping groups of approaches. Compared
to the related work section, we excluded a group of methods
incorporating short-term dynamics and included a time series
forecasting approach that estimates the number of people over
the whole map at a specific time:

1) spatial-only models (Section 2.1) that do not take time
into account (Kucner et al., 2016; Senanayake and Ramos,
2018),

FIGURE 4 | Left: a Velodyne HDL-32E 3D LiDAR placed in the reception near the UTBM building door. Right: the occupancy map built by a Toyota HSR robot
(Yamamoto et al., 2019) with a Hokuyo UST-20LX 2D LiDAR.
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2) time series forecasting methods that do not take the structure
of the space into account (Vintr et al., 2018),

3) partially discrete and partially continuous models, (Section
2.3.3), which incorporate continuous models in the cells of a
predefined grid (Krajnik et al., 2014a; Molina et al., 2018).

4) methods that model spatial and temporal features separately
(Section 2.3.1) and understand them as independent
(Bennetts et al., 2019; Kubiš, 2020),

5) continuous spatio-temporal methods (Section 2.4.2) that
model the spatio-temporal phenomena together (Vintr
et al., 2019b; Krajník et al., 2019), and

6) continuous spatio-temporal methods (Section 2.4.1) that
model the temporal evolution of the continuous spatial
model (Zhou et al., 2015; Zhou and Matteson, 2016).

We implemented various predictive spatio-temporal maps
deduced from state-of-the-art principles. The names of the
compared approaches are derived from the names of the
original methods to make the following text as readable as
possible. Our aim was not to systematize the names of the
approaches but to maximize the clarity and minimize the time
a reader needs to spend learning the differences between
approaches’ internals. The description of the methods’
functioning is simplified, and readers who would like to
implement them should follow the original proposals.
Although some of the compared approaches were not
published, they follow known principles, and they are not
presented as newly proposed methods.

4.2.3.1 Spatial Models
As a representative of the discrete spatial models, we choose a
spatial grid including the ratio of detected people within each cell
to all detections, denoted as MeanGrid. We also included the
OccupancyGrid model as a fundamental robotics domain way to
represent a map. The occupancy grid captures the environment
structure only and neglects dynamic obstacles. Such an approach
results in cells with values close to 0 regardless of the number of
people moving through them. The continuous spatial model is
represented by an expectation–maximization algorithm for fitting
a mixture of Gaussian models (Dempster et al., 1977) with its
probabilistic prediction, referred to as GMM.

4.2.3.2 Time Series Forecasting
We included 3 time series forecasting methods recently applied to
forecasting human presence and pedestrian flows. Those methods
can be viewed as spatio-temporal models, whose spatial map is
OccupancyGrid. Frequency Map Enhancement FreMEn (Krajník
et al., 2017) is derived from the Fourier transform as it was
initially proposed for binary data containing binary states. It had
to be reimplemented for data that do not contain states but
events. It should be noted that although the computational
effectiveness of our implementation was greatly enhanced, the
predictive ability was lowered due to the inaccuracy of the
estimation of heights of amplitudes. (Krajník et al., 2019)
proposed a method for time series forecasting referred to as
warped hypertime. Based on the definition, we incorporated its
two variants, hypertime HyT and warped hypertime WHyTe.

Those methods exploit the ability of FreMEn to detect prominent
periods in data. They project time into the multidimensional
vector space forming a Clifford torus and apply GMM with one
component to the projected data. The most prominent periods
are gathered iteratively by applying FreMEn to the series of errors
between reconstruction and the measurements. They differ in a
metric used for the distance calculation.WhileHyt uses Euclidean
metric, WHyTe uses cosine metric. We also wanted to include
Prophet (Taylor and Letham, 2018) as a representative of a time
series forecasting method that not only can analyze time series
with an unequal step between measurements but is also able to
model trends. However, we faced difficulties applying Prophet on
such extensive data with predictions too far into the future, and
we subsequently removed it from the list of the compared
methods. The only discrete forecasting method used in the
comparison was histogram over the week-lengthy time
window with 168 bins, each covering an hour, HistWeek.

4.2.3.3 Continuous Models in the Grid Cells
Every aforementioned forecasting method can be employed in the
spatial grid forming spatio-temporal models similar to the
original idea of the ‘map enhancement’ in the study by
(Krajnik et al., 2014b). We included FreMEnGrid in the
comparison as a representative of continuous ones in the
temporal domain and HistWeekGrid as a fully discrete spatio-
temporal model. We omitted HyTGrid and WHyTeGrid as their
computational demand in the stage of prediction was
considerably higher than that of the previous two, and the
straightforward optimization of code would violate the design
of the testing environment. The third not fully continuous model
included is time_window_GMM (Kubiš, 2020) which expands
HistWeek with GMM connected to each cell. Its prediction then
consists of GMM predictions in each cell weighted by HistWeek
forecast.

4.2.3.4 Independent Modeling of Spatial and Temporal
Features
Modeling space independently to time can sound illogical. On
the other hand, considering robotic topological maps, we can
assume that different nodes will show standardized behaviour
that is sometimes more relevant and sometimes almost
unnoticeable. We included 7 combinations of spatial and
temporal models, whose predictions are multiplications of
their independently modeled components:
HistWeek_X_GMM with a discrete temporal and continuous
spatial model, three models including a continuous model of
time and a discrete model of space, FreMEn_X_MeanGrid,
HyT_X_MeanGrid, and WHyTe_X_MeanGrid, and three
continuous maps, FreMEn_X_GMM, HyT_X_GMM, and
WHyTe_X_GMM.

4.2.3.5 Continuous Spatio-Temporal Models
The continuous maps that model the time and space together
show significant differences in the computational demand. The
most demanding are spatio-temporal models based on
hypertime. Although they proved their ability to model space-
time effectively (Vintr et al., 2019b; a; 2020) by means of the
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model quality and size of the model, their use on real robots is
questionable since their iterative nature consumes many
recourses. We included FreMEn_HyTS_clusters derived from
the HyT algorithm and FreMEn_WHyTeS_clusters derived
from the WHyTe algorithm. Contrary to their time series
forecasting variants HyT and WHyTe that iteratively choose
the best periodicity, our implementation of those spatio-
temporal variants first applies FreMEn to the data to gather
the most prominent periods and then project data to the
hypertime-space. Both apply GMM over the projected data to
get the model regarding respective metrics. We also included
‘lightweight’ versions that apply GMM using only one
component, and we denoted them as FreMEn_HyTS and
FreMEn_WHyTeS, respectively.

4.2.3.6 Temporal Evolution of Continuous Spatial Model
We also included continuous spatio-temporal approaches that
first fit the structure of the space and then model the temporal
changes, similar to the work of (Zhou and Matteson, 2016).
WHyTened_kMeans divides the space into disjunct subsets
using k-means clustering algorithm and applies
FreMEn_WHyTeS to every part. The second method,
HyTted_GMM, apply GMM to the space, and its every
component defines the time series by the measurements
matched with it. Those time series are then modeled with
HyT. The predictions in both methods are calculated as a
multiplication of the clustering algorithm prediction and the
spatio-temporal or temporal model prediction. The
WHyTened_kMeans can be understood as multiple disjunct
spatio-temporal models, while HyTted_GMM represent
continuous spatio-temporal models where each component
has its specific temporal characteristics.

4.2.4 Testing Environment Setup
The experiments were conducted in a general testing framework
with a unified interface available for individual methods. The
framework consisted of four stages: training, prediction,
pathfinder, and simulation.

The predictors were trained over spatio-temporal and spatio-
temporal-directional data during the training stage. There are
approximately six million detections of people in the training
data. We also included scenarios where the training dataset
includes only one per mile randomly chosen detections to provide
insight into how robust different methods are to data sparsity.

During the prediction stage, the framework created a
spatio-temporal grid over the testing week. The week was
broken into 40-s windows. For each of these windows, the
area of approximately 200 m2 was broken into a grid of 0.25-
m2 cells. Each spatial cell consisted of 8 directional cells. The
predictors filled the directional cells with their estimations of
how likely a human would be to go at that time and place in
that direction.

The pathfinder applies the Dijkstra search algorithm for each
time window, where the cost of a transition is determined by
prediction from the tested method. The cost for Dijkstra at a
specific position is calculated as an estimation of the cost of an
encounter multiplied by the distance to the next state. The paths

chosen in each time window are saved together with their lengths
and costs. Note that the overall length of paths planned during the
whole testing week was hundreds of kilometres.

The last stage of the evaluation is a self-written kinematic
simulator. The simulation is done per time window for each
model while saving the intermediate results for correctness
verification and recording the runtime duration. The robot
moves by the chosen path at a predefined speed. The
simulator calculates weighted encounters with human
detections on the robot’s trajectory. The sum of weighted
encounters is saved together with length and path cost, which
allows for criteria application.

The framework allows a parametrization of the robot’s
movement and goal placement for planning. The experiments
were evaluated with the following settings: the robot radius is 1 m,
which covers the hypothetical robot radius together with a human
radius, and the robot speed is 0.5ms−1.

Some compared approaches also required parameter setting.
The adjustment of the parameters was not part of our
investigation. The number of components for algorithms
applying GMM (and k-means) was set to 10 except for
FreMEn_HyTS_clusters and FreMEn_WHyTeS_clusters where
we set 5 components (to shorten the computational time). The
number of periodical components was set to 5 in every method
employing FreMEn. We used a computational (floating point)
precision of 64 bits to compare and order continuous values.

4.2.5 Results of Comparison
The comparison of methods applied to spatio-temporal data can
be seen in the subgraphs in Figure 5. The predictors predicted
how likely the robot was to meet a person at a given space and
time coordinates. In each row, we have two subfigures, with the
left one depicting a graph of the dependence of the service
disturbance on the servicing ratio and the right one the length
of the path on the servicing ratio.

In the top row of Figure 5, we compare the quality of the
predictions of the spatial-only models. None of them considers
time, which leads to a random ordering of the costs of the paths.
Therefore, the dependence of the service disturbance on the
servicing ratio grows linearly. Similarly, as the space models
do not change in time, the traveled distances also grow
linearly. The OccupancyGrid predicts only zeros, and therefore,
its expected length of paths is the shortest possible out of all
models. GMM forces the robot to go closer to the walls than
MeanGrid, which leads to longer paths and lower expected
encounters.

In the second-from-top row, we compare models that take
only time into account, which means that those models can order
the costs of the paths, but they always use the shortest path
possible. Such predictions lead to linear growth of the traveled
distance identical to the OccupancyGrid but non-linear growth of
the service disturbance. All methods can estimate the safest 10%
of the time windows to provide the service, while the most
successful, HyT, can predict 50% of the safest time windows.
WHyTe and FreMEn perform similarly and HistWeek is closer in
performance to the HyT than to the other two models. The rank
of the quality of prediction of the compared methods changes at
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70% of the servicing ratio. At a servicing ratio of over 90%,
FreMEn performs best.

In the third row, we compare spatio-temporal models that are
fully or partially discrete. HistWeekGrid performs similar to
time_window_GMM. Both models force the robot to follow
the shortest paths until a servicing ratio of almost 60%. Then,
their predictions start to force robots to follow a longer path,
evading the most critical parts of the hall. Similar to the spatio-
only models GMM and MeanGrid, time_window_GMM forces
the robot to travel longer paths than HistWeekGrid. The
FreMEnGrid model is better than the other two models in
scheduling until more than 70% of the servicing ratio, but at
higher servicing ratios, it loses its edge.

In Figure 6, the top row provides a comparison of the
continuous spatio-temporal models. All of them have a linear

growth of the traveled distance, and neither can provide
predictions that would let the robot travel by the shortest
path. Moreover, the spatio-temporal model
FreMEn_WHyTeS_clusters modeling five Gaussians performs
worse in expected encounters than the similar model
FreMEn_WHyTeS with only one component. The loss of
quality between FreMEn_HyTS_clusters and FreMEn_HyTS is
not so drastic. However, the evaluation of the continuous spatio-
temporal models that applyGMM over the hypertime provides us
with information that the robot always follows a long path. On
the other hand, FreMEn_WHyTeS provides the best expected
encounters between methods already compared.

The following two rows of graphs compare the spatio-
temporal methods that model space and time separately as
independent phenomena. Many of those methods perform

FIGURE 5 | Comparison of different models in the spatio-temporal scenario. The left columns of graphs depict service disturbances, the quantile functions of the
ordered human–robot encounters. The right columns of graphs depict traveled distances, the quantile functions of lengths of paths. The labels in graphs consist of
names of models and the expected values.
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surprisingly well, especially in choosing the right time to go
by the shortest path. HyT_X_MeanGrid and HyT_X_GMM
can lead the robot by the shortest path in 35% of the time

while evading almost every encounter in 50% of the time.
Other methods exchange the performance in the length of
the path for safety. FreMEn_X_MeanGrid,

FIGURE 6 | Comparison of different models in the spatio-temporal scenario. The left columns of graphs depict service disturbances, the quantile functions of the
ordered human–robot encounters. The right columns of graphs depict traveled distances, the quantile functions of lengths of paths. The labels in graphs consist of
names of models and the expected values.
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FreMEn_X_GMM, and HistWeek_X_GMM were unable to
evade encounters.

Based on the results above, we combine the good qualities of
the previously tested ones. As the HyT_X_MeanGrid and
HyT_X_GMM perform very well in raw combinations of
spatial and temporal models and extending FreMEn_HyTS
with multiple components, FreMEn_HyTS_clusters, did not
result in a positive change of the quality, we combined HyT
and GMM in a way that every component has its own temporal
model. The method is denoted as HyTted_GMM. A similar
process led us to create WHyTened_kMeans.
FreMEn_WHyTeS performed quite well in the sense of
expected encounters but did not find the shortest path. This
behavior led to the idea of “natural” divisions of space by k-means

clustering while applying the successful spatio-temporal method
to the subsets. The comparison of these two models with
HyT_X_GMM and FreMEn_WHyTeS can be seen in graphs in
the bottom row of Figure 6. We can see that the disturbance
distribution functions of HyT_X_GMM, FreMEn_WHyTeS, and
HyTted_GMM are very similar. Out of these three models,
HyT_X_GMM provides the best expected encounters, and
FreMEn_WHyTeS the worst. WHyTened_kMeans performs
much worse than others, and it did not even get the ability to
provide the robot predictions that let it go through the
environment with the shortest path. HyTted_GMM
acquired the ability to predict short and safe paths more than
15% of the times while being a fully continuous spatio-temporal
method.

FIGURE 7 |Comparison of selected models under different scenarios. The left columns of graphs depict service disturbances, the quantile functions of the ordered
human–robot encounters. The right columns of graphs depict traveled distances, the quantile functions of lengths of paths. The labels in graphs consist of names of
models and the expected values. First row: models trained over the sparse, spatio-temporal data. Second row: models trained over the spatio-temporal-directional data.
Third row: models trained over the sparse, spatio-temporal-directional data.
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We choose the three best-performing methods for the
comparison in the subsequent scenarios, HyT_X_GMM,
HyT_X_MeanGrid, and HyTted_GMM, together with
HistWeekGrid which provided the best ability to lead the
robot by the shortest path while performing exceptionally in
evading encounters. On the top row of Figure 7, we provided a
comparison of chosen methods in the spatio-temporal scenario
when we randomly selected only one per mile of human
detections from the training dataset to train the models. The
HistWeekGrid lost its ability to provide predictions. In the
previous scenario, predictions in each cell were calculated
from approximately 2000 values, while in this scenario, they
were calculated only from 2. The other three methods performed
well. TheHyTted_GMM is the worst of the rest of the methods in
the range of 50, −,85%, but it can choose 25% of the safe and short
paths, which is almost similar to the other two functional models.
Moreover, HyTted_GMM and HyT_X_MeanGrid found shorter
“safe” paths than HyTted_GMM, which can be deduced from
different inclinations of the traveled distances.

In the second row of graphs in Figure 7, we compare the same
four methods in a spatio-temporal-directional scenario with the
full amount of detections. The methods predict when to go, what
path to choose, and what direction is the best to go with the flow

of people. The HistWeekGrid provides us with an inferior model
that can model only the most frequent parts of the spatio-
temporal-directional grid. The HyT_X_GMM and
HyTted_GMM perform similarly up to a servicing ratio of
70%, where HyTted_GMM chooses a more risky and shorter
path to follow. After following the shortest path, the
HyT_X_MeanGrid chooses the longest path out of the three
well-performing models, which means it led the robot in close
vicinity to walls. The best performance by means of evading
people is provided by HyT_X_GMM.

In the bottom row, we can see the performance of the
methods when providing predictions in the spatio-temporal-
directional scenario obtaining only one per mile of samples for
the training. The grid-based methods HistWeekGrid and
HyT_X_MeanGrid were not able to provide a prediction.
The continuous models perform similarly in expected
encounters but differ mainly in the paths they choose. The
HyT_X_GMM retains its behavior from the previous scenario.
However, HyTted_GMM started with the shortest path in the
first 10% of planned services; then, it found out encounters can
emerge and reacted to that ‘hysterically,’ forcing the robot to
go around the walls. At about 30% of the servicing ratio, it
started to follow similar paths to HyT_X_GMM.

TABLE 2 | Comparison of the approaches using popular metrics.

χ2d AUC RMSE MLL PCC

Section 4.2.3.1
MeanGrid 1.319811e+06 0.678204 1.131719e-07 −5.964167e-07 0.004277
OccupancyGrid 1.077451e+05 0.500000 1.107762e-07 −5.714333e-07 0.000000
GMM 1.895740e+06 0.661219 1.119760e-07 −5.838786e-07 0.006606

Section 4.2.3.2
FreMEn 1.088325e+06 0.708411 1.112586e-07 −5.764210e-07 0.017761
HyT 1.157291e+06 0.786832 1.115330e-07 −5.792680e-07 0.018118
WHyTe 1.896955e+06 0.735896 1.128428e-07 −5.929532e-07 0.021518
HistWeek 9.583215e+05 0.770708 1.112834e-07 −5.766781e-07 -0.010873

Section 4.2.3.3
FreMEnGrid 7.824628e+05 0.724162 1.113846e-07 −5.777281e-07 0.019364
HistWeekGrid 4.436296e+05 0.790896 1.109813e-07 −5.735518e-07 -0.019459
time_window_GMM 8.572676e+05 0.811935 1.256092e-07 −7.347102e-07 0.014281

Section 4.2.3.4
HistWeek_X_GMM 9.599045e+05 0.817996 1.112969e-07 −5.768189e-07 -0.011000
FreMEn_X_MeanGrid 7.703107e+05 0.745279 1.112063e-07 −5.758796e-07 0.006380
HyT_X_MeanGrid 8.180353e+05 0.816573 1.112772e-07 −5.766142e-07 0.005943
WHyTe_X_MeanGrid 1.318568e+06 0.768864 1.117257e-07 −5.812720e-07 0.009677
FreMEn_X_GMM 1.088325e+06 0.739453 1.111231e-07 −5.750178e-07 0.015433
HyT_X_GMM 1.154622e+06 0.829502 1.112700e-07 −5.765397e-07 0.013693
WHyTe_X_GMM 1.895740e+06 0.774540 1.141287e-07 −6.065450e-07 0.024228

Section 4.2.3.5
FreMEn_HyTS_clusters 1.578800e+06 0.808032 1.121873e-07 −5.860852e-07 0.023457
FreMEn_WHyTeS_clusters 1.857979e+06 0.788587 1.134001e-07 −5.988245e-07 0.021970
FreMEn_HyTS 1.896951e+06 0.814097 1.140148e-07 −6.053347e-07 0.032425
FreMEn_WHyTeS 1.896950e+06 0.772722 1.135045e-07 −5.999280e-07 0.027456

Section 4.2.3.6
HyTted_GMM 1.152000e+06 0.817629 1.113172e-07 −5.770285e-07 0.013649
WHyTened_kMeans 1.870547e+06 0.783438 1.136826e-07 −6.018122e-07 0.026585

The bold values highlight the best map for each metric.
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4.2.6 Comparison of Approaches Using Popular
Methods
For the sake of comprehensiveness, we compare the
approaches to spatio-temporal mapping using measures of
quality that appeared in the referenced literature (Section
2.5). The most favored measures of the quality of maps are
mean square error, rooted mean square error (RMSE), mean
negative log-likelihood, and mean log-likelihood (MLL). We
choose RMSE and MLL as their representatives in the
comparison. We also included the area under a receiver
operating characteristic curve (AUC) (Hanley and McNeil,
1982) as a complex representative of popular measures derived
from the confusion matrix. We also included chi-Square
Distance (χ2d) (Dodge, 2008), which appeared in articles in
the last few years as an alternative to RMSE. Some measures of
the quality of maps appeared in the literature very rarely. Many
of them are hard to implement, and a few are poorly defined.
We included the Pearson correlation coefficient (PCC)
(Bravais, 1844) as a representative of rare measurements
because we found it the most traditional and feasible to
implement.

Table 2 provides the results of χ2d, AUC, RMSE, MLL, and
PCC. The slight differences between the values representing
the quality of the models led us to compare them with high
precision representations. The best spatio-temporal map is
OccupancyGrid according to χ2d, RMSE, and MLL. We
interpret the result so that the detection of humans is quite
a rare event. Therefore, the best predictor is the one that
predicts almost zero probability everywhere. Other maps
also consist of small valued predictions but higher than
‘almost zero.’ As the detection is one point in space and
time, the (hypothetically correct) predictions in the vicinity
of the detections raise the error of the whole model. Similarly,
the output of PCC for all the approaches gave us almost zero
correlation between maps and the detections. It is not
reasonable to deduce any conclusions from such small
values. Contrary to previous ones, the AUC provided a very
reasonable ranking. We can deduce which of the approaches
gave us good predictions. However, the interpretability of the
outputs is very limited.

We also included the correlation between results of all the
metrics, Table 3. RMSE and MLL are highly correlated,
providing almost interchangeable information. There is also
a rather significant correlation between χ2d and PCC. The
correlation between the AUC and other techniques is
insignificant.

5 CONCLUSION

Derived from our experiences with long-term deployments of
autonomous robots, we hypothesize that respecting essential
human habits improved robot efficiency and acceptability in
the long term. In this study, we narrowed down this
hypothesis for the case of human-aware navigation. We
showed that a mobile robot which takes into account
pedestrian flows and their changes over time is considered less
disturbing. Our experiments indicated that the periodic
properties of the flows allow for forecasting them even months
after they were learned. A mobile robot using appropriate spatio-
temporal maps can plan ahead to avoid situations where its
navigation would disrupt the movement of people.

Therefore, we studied spatio-temporal modeling methods
and provided a comprehensive overview. As those methods
came from different fields and were intended for different
usages, it was impossible to compare their performance in
human-aware navigation. Derived from previous works, we
proposed a methodology for defining a diverse collection of
criteria for evaluating spatio-temporal maps. Those maps
can be compared in their ability to provide beneficial
forecasts for long-term deployments of human-aware
autonomous robots.

We divided known approaches in a spatio-temporal mapping
suitable to support long-term human-aware navigation, defined
criteria for their comparison following the proposed
methodology, and compared them in a simulation built using
real-world data. The results showed that time series forecasting
methods could not support path planning, but they can be used to
avoid peak times. The spatial-only maps allow us to construct
paths that avoid potentially crowded areas, but these paths are
unnecessarily long in times when people are unlikely to be
present. Discrete spatio-temporal maps can provide good
predictions but require a large amount of data to achieve
reasonable granularity. They are also memory inefficient and
not scalable enough to be deployed in large environments.
Continuous spatio-temporal maps modeling space and time
together suffer from high computational complexity. On the
other hand, continuous maps that modeled space and time
independently were scalable, computationally efficient, and
provided good predictions.

In this work, we presented a methodology that can assess the
ability of spatio-temporal maps to support human-aware navigation
and planning of service robots. These maps represent environment
dynamics induced by human activities and habits. Using such a map
to plan the paths the robot is supposed to traverse allows the robot to
better blend into human-populated environments and evade socially
inappropriate situations. We reviewed spatio-temporal
map–building approaches and discussed their ability to support
human-aware navigation.
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AUC 0.29 1.00 0.22 −0.21 0.18
RMSE 0.14 0.22 1.00 −1.00 0.26
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