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Reliable force-driven robot-interaction requires precise contact wrench measurements.
In most robot systems these measurements are severely incorrect and in most
manipulation tasks expensive additional force sensors are installed. We follow a
learning approach to train the dependencies between joint torques and end-effector
contact wrenches. We used a redundant serial light-weight manipulator (KUKA iiwa 7
R800) with integrated force estimation based on the joint torques measured in each of
the robot’s seven axes. Firstly, a simulated dataset is created to let a feed-forward net
learn the relationship between end-effector contact wrenches and joint torques for a
static case. Secondly, an extensive real training dataset was acquired with 330,000
randomized robot positions and end-effector contact wrenches and used for retraining
the simulated trained feed-forward net. We can show that the wrench prediction error
could be reduced by around 57% for the forces compared to the manufacturer’s
proprietary force estimation model. In addition, we show that the number of high
outliers can be reduced substantially. Furthermore we prove that the approach could
be also transferred to another robot (KUKA iiwa 14 R820) with reasonable prediction
accuracy and without the need of acquiring new robot specific data.
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1 INTRODUCTION

1.1 Motivation
Compliant robotic arms have increasingly gained importance during the last years, where
anthropomorphic kinematically redundant serial manipulators with seven degrees of freedom
(DoF) are frequently used for various new applications. Integrated joint torque sensors provide
crucial functionalities for safe human-robot-interactions. Based on the joint torques τ, measured in
each of the robot’s axes, the corresponding contact forces f applied to the robot’s end-effector can be
calculated. Obviously, a higher accuracy of the determined forces leads to enhanced overall
sensitivity of the robot, and therefore allows for more complex applications. On the other hand,
errors in the computational model can lead to dangerous and harmful situations during force driven
operations. For industrial manipulators, no individual but rather general mechanical models are used
for the control algorithms. Manufacturing inaccuracies and individual characteristics of bearings,
sensors and actuators are often neglected. As a result, this leads to further sources of error in contact
force determination and can have a strong influence on the resulting accuracy. In a dynamic scenario
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with high accelerations and velocities, mass induced inertial,
centrifugal and Coriolis forces at the manipulator must be
considered in the control algorithms Khatib (1987). For a
static scenario the determination of end-effector contact forces
is greatly simplified. Finally, only the inverted geometric Jacobian
Matrix is required to express the relationship between forces and
joint torques Schweikard and Ernst (2015). Whenever
computational models use the Jacobian Matrix for motion and
force control, the matrix loses full-rank at singularities, causing
the computation of contact forces to fail Maciejewski (1991).

Furthermore, robots are usually not used in their full
performance range, but operate in a very small range of forces
due to the rather restricted type of specialized applications.
Therefore, an optimized calibration within this specific range
of forces could lead to very precise results, minimized errors and
drastically increased overall system accuracy.

One approach to increase the accuracy of the contact force
calculation is machine learning. Artificial neural networks show
impressive capabilities in solving direct Sadjadian et al. (2005)
and inverse kinematics Raj et al. (2015) as well as in dynamic
control of redundant manipulators Kumar et al. (2011a), Lian
(2014), Li et al. (2017). Earlier research addressed the calibration
of force/torque sensors for serial robotic manipulators, mostly
focusing on optimizing linear relations between joint torques and
dynamic parameters known as the Inverse Dynamic
Identification Model (IDIM) Khosla and Kanade (1985),
Hollerbach et al. (2008), Gautier and Jubien (2014). Learning
approaches to optimize the IDIM were presented in Kumar et al.
(2011b), Pei et al. (1992), Jung et al. (2001). In Lu et al. (1997),
neural networks are used to map measured signals and resulting
forces, to calibrate an external force/torque sensor mounted to an
end-effector. Although the authors show accurate results and
provide time-saving routines, unfortunately, instabilities near
singularities still exist or additional external sensors are
required. Smith et al. showed interesting results by using a
neural-network-based approach to determine contact forces
for haptic devices Smith et al. (2006). Unfortunately, the
authors have to use biased ground truth data and, therefore, it
remains unclear how this affects the calibration accuracy.

An approach using deep learning for reducing errors in
identification of dynamic parameters of a 6-DoF robot is
presented in Wang et al. (2020). Moreover Lutter et al. (2019)
include physical laws of the system (in form of the Euler-Lagrange
equation) into deep neural network architectures. Thus more
accurate models can be obtained whilst ensuring physical
plausibility. However the papers do not relate to force
estimation at the end-effector. This is done in Kružić et al.
(2021), where deep learning is used to estimate end-effector
forces and joint torques of a 7-DoF robotic manipulator. Even
though promising results are shown, a validation of the
estimation end-effector forces and moments on a real robot is
missing.

The use of neural networks for calibrating the robotic system
provides several advantages. The system is capable of learning
unique mechanical characteristics of the manipulator and the
robot can therefore be calibrated in a highly specialized way.
Furthermore, critical arm positions and singularities can be

directly learned from the network as training points. Using a
sufficient amount of diverse input data, these points can be
uniquely identified and integrated into the model, resulting in
a more robust calibration.

1.2 Contribution of This Paper
The aim of this work is to improve the accuracy of static end-
effector contact wrench estimation using the robot’s integrated
sensory technology. A scenario with comparatively small contact
forces (up to 20 N) well below the maximal capacity of the robot
and small distances to the force application point in the tool (up
to 0.15 m) is chosen. This scenario represents our use case
holding an ultrasound probe, which is attached to the end-
effector, in safe contact with the body. Even though this task
can be considered quasi-static since the robot may move slightly,
the dynamic effects due to the movement are very small
compared with the gravitational forces as well as the external
force exerted by the human body being in contact with. Thus, the
movement can be seen as a point-to-point motion, with a wrench
estimation being taken at each point while the robot is not
moving and therefore is in a static state at the time of
measurement.

1.2.1 Contact Wrench Generation
Standard approaches for acquiring ground truth data for contact
wrenches by using force/torque sensors or additional
collaborating manipulators require expensive hardware and
introduce various sources of errors due to mechanical issues.
We present an alternative method to generate contact wrenches
by mounting calibration loads to the end-effector. By using the
gravity force in combination with different robot base
orientations, we obtain a homogeneous representation of
contact forces in all directions. An extensive database
consisting of 330,000 randomized data points was created.

1.2.2 KUKA Iiwa Accuracy Analysis
Our database allows for a detailed analysis of the robot’s
integrated sensors and the accuracy of the proprietary force
estimation model (PFEM).

1.2.3 Gravity Torque Estimation
We present a data-driven method based on linear regression to
approximate the static gravity torques without any knowledge of
the link masses nor the centers of gravity of the links. The
approach is easy to implement, data-saving and performs
slightly better than the robots integrated estimation of gravity
torques in a static case.

1.2.4 Wrench Estimation Error Reduction
We follow a learning approach to train deep feed-forward
artificial neural networks (ANNs) with simulated created as
well as real data to estimate the contact wrenches applied to
the end-effector based on the measured joint torques and
information about the robot’s current pose. Estimation error
and robustness close to singular joint configurations will be
improved. Moreover we show that the approach could be
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transferred to another, similar robot (KUKA LBR iiwa 14
R820) with reasonable performance.

2 MATERIALS AND METHODS

We used a KUKA LBR iiwa 7 R800 robot for our experiments and
data acquisition. However, the methods described in this paper
are applicable to general serial kinematics equipped with joint
torque sensors.

2.1 Robotic Manipulator
KUKA’s LBR iiwa 7 R800 is a kinematically redundant serial light-
weight manipulator with integrated joint torque sensors Bischoff
et al. (2010). The robot has an additional 7th joint, allowing for
motion of the elbow on a circular path. The kinematic structure,
related joint torques and end-effector contact wrenches are
shown in Figure 1A. The manipulator provides seven DoF
and has an S-R-S (spherical-rotational-spherical) kinematic
structure. Different types of torque sensors are integrated in
the axis of the robot. The sensors in the first two joints have a
measuring range of ±176 Nm with a resolution of 1.344e-3 Nm.
The sensors in joint 3-5 cover a range of ±110 Nm with a
resolution of 0.88e-3 Nm and the sensors in joint 6 and 7
measure torques in the range of ±40 Nm with a resolution of
0.334e-3 Nm. The axis specific relative measuring error is 2%.

2.2 Proprietary Force Estimation Model
A detailed description of the proprietary robot control
architecture is given in Albu-Schäffer et al. (2007), Haddadin
et al. (2017). For the sake of clarity, the following section discusses
essential force control formulations and points out how the
proprietary model calculates end-effector contact forces. In the
presence of external joint torques due to contact forces, the
following dynamics model of robots with flexible joints is
considered:

M q( )€q + C q, _q( ) _q + g q( ) � τJ + τext. (1)
M(q) ∈ Rn×n is the symmetric and positive-definite inertia matrix,
C(q, _q) ∈ Rn is the centrifugal andCoriolismatrix, and g(q) ∈ Rn is
the gravity vector. We denote τext ∈ Rn as the external joint torque

and τJ ∈ Rn is the elastic torque transmitted through the joints as τJ
= KJ (θ − q) where KJ ∈ Rn×n is the diagonal and positive definite
joint stiffness matrix and θ ∈ Rn×n are the motor positions. Let
F ecs ∈ R6 be the wrench at the end-effector as

F ecs � f ecs

m ecs[ ] (2)

consisting of contact forces f ecs ∈ R3 andmoments m ecs ∈ R3. By
using the transposed geometric Jacobian matrix J(q) of the end-
effector we can calculate the external joint torques as

τext � JT q( )F ecs. (3)
Finally, by including (3) in the general robot dynamics from (1)
we can calculate the end-effector contact forces as

F ecs � JT q( )−1 M q( )€q + C q, _q( ) _q + g q( ) − τJ( ). (4)

2.3 Acquisition of Datasets
The aim of this work is to determine contact wrenches at the end-
effector. It is investigated whether the contact wrench can be
predicted from corresponding joint positions as well as joint
torque data. Different datasets, both simulated and real have been
acquired to train and evaluate neural network models.

2.3.1 Simulated Training Data
A large simulated dataset is generated, varying the applied
forces, the distances of the end-effector to the force application
point as well as the applied external torques for randomized
joint configurations. Thus, randomized end-effector contact
wrenches are generated and the corresponding joint torques
for an ideally static case can be calculated. In our scenario
forces between −20 and 20 N are applied at a point with a
distance between 0 and 0.15 m to the end-effector. The range
results from our application to measure the force acting on an
ultrasonic probe attached to the end-effector of a robot.
Moreover an additional external torque between −2 and
2 Nm is applied at the end-effector. The steps of generating
the simulated training data are explained as follows: Let
F ecs ∈ R6 be the wrench at the end-effector consisting of
contact forces f ecs ∈ R3 and moments m ecs ∈ R3 according

FIGURE 1 | (A) The end-effector contact wrenches f ecsx , f ecsy and f ecsz are related to the measured joint torques τ1, . . . , τ7. (B) The robot wasmounted in six different
base orientations to record the training data with a homogeneous distribution of gravity vector directions.
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to (2). For each data point a valid joint configuration, a contact
force f ecs ∈ R3 and distance rfap to the force application point
as well as an additional external contact torque mecs,ext are
chosen randomly. The resulting moment mecs applied at the
end-effector can be calculated by

m ecs � r fap × f ecs +m ecs,ext. (5)
By using the transposed geometric Jacobian matrix J(q) of the
end-effector we can calculate the corresponding external joint
torques according to (3) considering an ideally static case. The
simulated dataset consisting of 3,000,000 data points is named
datasettrain,sim.

2.3.2 Real Training Data
The aim of this work is to precisely determine corresponding contact
wrenches at the end-effector from given joint positions and torque
data. Contact wrenches at the end-effector can result from various
impacts: by external forces such as pushing or pulling by hand, or
while the robot actively pushes against an object with its tool attached
to the end-effector. From a mechanical point of view, the resulting
wrenches are the same for both cases and can be measured via the
joint torques. In this study, the wrenches are simulated by mounting
different masses on the end-effector. Gravity produces an equivalent
force, which pulls the mass towards the ground. Obviously, this static
force will always point in the same direction in the world coordinate
system, but for varying robot positions it will create different contact
forces in end-effector coordinates. With only one direction in world
coordinates not all contact forces can be represented. Hence, six
different base rotationswere used to solve this problem. The robotwas
therefore mounted in different orientations, shown in Figure 1B,
resulting in a more homogeneous representation of the contact forces
in all directions. To determine an exact ground truth for the end-
effector forces, specially manufactured calibration weights were used.
The weights are built from symmetric metallic discs. By appropriately
stacking combinations of these calibration weights on a metallic rod,
which was attached to the robots tool flange along the z-axis, we were
able to generate 10 equidistantly distributed end-effector forces in 2 N
steps in our target range from 0–20 N. The precise total weights
resulting from the combinations of stacked calibration weights aremj

∈ {0, 202, 391, 616, 818, 995, 1199, 1401, 1603, 1808, 2002} g, for j ∈ {1
. . . 11}. Examples of how the calibration weights are stacked on the
metallic rod to generate specific end-effector forces are shown in
Figure 2. For each mass, 5,000 measurements in newly randomly
generated poses were acquired. Thereby sensor hysteresis is part of the
data since we approach a multitude of different poses with different
combinations of approach directions for each joint. In total a dataset
of randomized 330,000 data points with varying base rotations and
calibration weights was acquired. The force application point is
chosen as the resulting centre of mass of the metallic rod with the
appropriately stacked calibration weights. The centers of mass of the
corresponding combinations of the metallic rod and the calibration
weights are comj ∈ {0, 2.5, 25.5, 28.2, 30.9, 33.4, 38.2, 40.7, 43.2, 42.3,
50} mm, for j ∈ {1 . . . 11}. Thesewere determined froman accordingly
created CAD model in SolidWorks, where the different materials as
well as their densities were taken into account.

The exact contact forces for the ground truth can be
determined as follows:

For a serial manipulator we can compute the position and
orientation of the end-effector by coordinate transformations
from the base along the joints by

0M7 � 0T1
1T2

2T3 . . .
6T7. (6)

Using (6) we can also compute the transformation 0Mi, i ∈ {1 . . .
7} to every joint i.

Let −1M0,i be the robot base transformation defined by

−1M0,i � Rz,ΨiRy,ΘiRx,Φi (7)
using homogeneous rotations with six different combinations of
the three Euler angles Ψi, Θi and Φi, i ∈ {1 . . . 6}, denoted in
Table 1. Let g0 � 9.806 m

s2 be the gravity constant. the acceleration
vector due to gravity is

g � 0 0 −g0[ ]T (8)

FIGURE 2 | Calibration weights were stacked on a metallic rod attached
to the end-effector of the robot to generate 10 equidistantly distributed end-
effector forces in our target range from 0–20 N. Examples of appropriately
stacked calibration weights to generate an end-effector force of 8 N (A)
and 18 N (B) are shown.
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Then the forces induced by the calibration masses mj acting in the
robot base coordinate system (bcs) can be described by

f bcs
i,j � −1M0,i

g ·mj

1
[ ] (9)

for i ∈ {1 . . . 6} and j ∈ {1 . . . 11}. Now let 0R7 be the end-effector
rotation as upper 3 × 3 rotational matrix based on the
homogeneous transformation from (6), i.e.

0M7 �
0R7 t
0 1

[ ] (10)

with vector t as translational part. We denote

0R7 �
0R7 0
0 1

[ ] (11)

as the end-effector rotation as homogeneous transformation with
zero translation in the robot base coordinate frame. Then the forces
acting in the end-effector coordinate system (ecs) can be described by

f ecs
i,j,n � 0R −1

7n · f bcs
i,j (12)

for i ∈ {1 . . . 6} base rotations, j ∈ {1 . . . 11} calibration masses and
n ∈ {1 . . . 5,000} measurements.

The forces are not acting directly in the end-effector coordinate
system, but in the centre of mass of the metallic rod with the
appropriately stacked calibration weights. Thus, a moment mecs is
generated in the end-effector, which can be calculated by

m ecs
i,j,n � r com

j,n × f ecs
i,j,n. (13)

For every end-effector wrench w ecs
i,j,n � [f ecs

i,j,n m ecs
i,j,n]T, the

corresponding joint positions qi,j,n and joint torques τi,j,n are
measured using the robot control software KUKA Sunrise with
the Fast Research Interface (FRI) v1.13 (Schreiber et al., 2010).
However, the measured torques include the self-weight of the
robot links. The resulting torques depend on the joint positions
and, more importantly, on the base orientation and the inherent
direction of gravity. To decouple the data, only the torques
generated by the specific calibration weights are used for
training the neural network. To identify these isolated torques,
the gravity torques without mounted calibration weight τ0 (m0)
have to be estimated first (see Section 2.4) and subtracted from
the measured joint torques with mounted calibration weight τj
(mj). The torques resulting only from the additional weight can
therefore be determined by

τΔj � τj − τ0 (14)
for j ∈ {1 . . . 11} calibration weights. To have a database for the
estimation of the gravity torques as well (see Section 2.4), two
discrete measurements were performed at each of the randomized
positions. First the joint torques without mounted calibration
weight τ0 (m0) were recorded. In a second measurement, the
torques with mounted calibration τj (mj) were recorded at the
very same positions. Collecting the training data required
approximately 11 weeks of continuous operation of the robot.
This large training dataset consisting of 330,000 randomized
positions is named datasettrain, real.

2.3.3 Real Generalisation Testing Data
As described in Section 2.3.2, six different base orientations are
used to generate combinations of contact forces. In a realistic
scenario, however, these end-effector forces can occur from every
direction. Thus, the network must be capable of generalizing
intra-directionally. To analyze the directional generalization
performance, an additional test dataset was acquired using five
varying, unleveled base orientations (see Table 2). Therefore, the

TABLE 1 | To calculate the six base transformations −1M0,i using (7) as shown in
Figure 1B, different combinations of Euler angles are used.

i Base rotation Ψ [°] Θ [°] Φ [°]

1 g → z − 0 0 0
2 g → z + 0 0 180
3 g → x − 180 −90 0
4 g → x + 0 90 0
5 g → y − 90 0 90
6 g → y + −90 0 −90

FIGURE 3 | The LBR iiwa wasmounted on a hexapod to acquire the test
data (datasetgen,dir), to evaluate the intra-directional generalization
performance.
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manipulator was mounted on a hexapod, as shown in Figure 3.
This dataset is only used for evaluating the performance of our
models (see Figures 5, 6 in Chapter 3.2)–it is not involved in any
form during the training process. Due to the lack of absolute
precision of the hexapod, the actually reached Euler angles, for
calculating the base orientation (see Section 2.3.3), were
measured using an inclinometer with an accuracy of 0.1°. We
used a calibration mass of 1.0 kg (10 N). The first dataset was
acquired with a known base orientation (zero rotation) as
reference. Afterwards the measurements for each orientation
were acquired. The dataset is named datasetgen,dir.

2.3.4 Real Transfer Testing Data
Generating a large robot specific training dataset as described in
Section 2.3.2 is quite time-consuming. To examine the
transferability of our approach to another robot type, an
additional testing dataset was acquired. This dataset is only
used for evaluation purposes (see Figure 7 in Section 3.4), it
is not involved during the training process of the neural networks.
This transfer testing dataset was acquired with the KUKA iiwa 14
R820. This robot has similar geometric dimensions and thus is
well suited for a first experiment/trial. Due to the increased time
required as well as the significantly larger self-weight of this robot,
which does not allow mounting on our lab wall or lab ceiling, we
only generated a dataset in the ground base orientation g → z −
(see Figure 1B). For each calibration weight (0.2–20 N) 500
randomized positions are recorded in the same way as
described in Section 2.3.2. This results in a dataset of 5,000
positions, which is named datasettransf. The gravity torques τ0
(m0) of the KUKA iiwa 14 R820 are greater than for the smaller
KUKA iiwa 7 R800 since the robot links are bigger and heavier.
Thus the gravity compensation parameters according to Section
2.4 have to be redetermined for the KUKA iiwa 14 R820, which is
done in the same way as described in Section 3.1 using the
datasettransf.

2.4 Gravity Torque Compensation Model
For training of the neural network the isolated torques taudeltaj
generated by the specific calibration weight are used. To calculate
them according to (14), the joint torques without mounted
calibration weight τ0 have to be estimated first. In a static case
these torques τ0 depend on the base orientation, the joint
configuration and the weight of the robot links. We use a
simple data-driven approach based on linear regression, which
can be used without any knowledge of the masses as well as the
centers of gravity of the robot links. Yu et al. (2019) showed that
the joint angle and joint driving torque can accurately regress the
relationship between barycentric coordinates of the link and the
mass of the connecting rod in the Cartesian coordinate system.
But instead of identifying the masses and centers of gravity of the
robot links separately, we directly calculate parameters wj by
linear regression, which can be used to approximate the acting
gravity torques due to the following joint link masses. Our
approach is based on the following mechanical relation:

For a 7-DOF manipulator the relationship between a joint
torque τj and the gravity forces Gi acting in the centres of the
following links can be shown to be

τj � ∑7
i�j

JTm,i · Gi (15)

where

JTm,i � zj × rcom,i[ ]T
�

JTm,x,i

JTm,y,i

JTm,z,i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

�
zj,yrcom,i,z − zj,zrcom,i,y

zj,xrcom,i,z − zj,zrcom,i,x

zj,xrcom,i,y − zj,yrcom,i,x

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
T

(16)

is the linear velocity part of the transposed jacobian for the centre
of mass rcom, i of link i. Since we are calculating in the world
coordinate system, the forceGi, acting in the centre of mass of link
i due to the gravity of mi, is described by

gi �
0
0

−mig0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (17)

where mi is the mass of link i and g0 is the gravity constant.
Taking into account all of the joints of the manipulator, the

following equation system represents the relationship from Eq. 15

τ1
..
.

τ7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
JTm,1 / JTm,7

..

.
1 ..

.

0 0 JTm,7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
g1

..

.

g7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (18)

Due to (17) the equation system (18) can be simplified since always
only the third entry JTm,z,i of the transposed Jacobian in (16) of link i is
multiplied by a value not equal to 0. Therefore (18) can be written as

τ1
..
.

τ7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
JTm,z,1 / JTm,z,7

..

.
1 ..

.

0 0 JTm,z,7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−m1g0

..

.

−m7g0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (19)

In order to calculate the gravity torques of a robot according to
(19) the masses mi as well as the centers of gravity rcom,i of the
links, which are used to calculate JTm,z,i according to (16), must be
known. Since this is not the case without doing an identification
of the robot, we replace the distance rcom,i to the center of mass of
the link i in (16) by the distance pi+1 to the following joint frames.
This distance can be calculated from the geometric robot
parameters for any joint configuration. This results in

~J
T

m,i � zj × pi+1[ ]T

�
~J
T

m,x,i

~J
T

m,y,i

~J
T

m,z,i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

(20)

Moreover we replace the unknown link masses mi in (19) by
variables wi. These variables wi can be understood as imaginary
point masses, which are directly located in the origin of the
following joint frame. For example w1 would be the imaginary
mass of link 1, located in the origin of joint 2. Replacing mi by wi

as well as replacing JTm,z,i by ~J
T
m,z,i in (19) results in
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~τ1
..
.

~τ7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
~J
T

m,z,1 / ~J
T

m,z,7

..

.
1 ..

.

0 0 ~J
T

m,z,7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−w1g

..

.

−w7g

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (21)

This relationship describes the influence of the gravity force of the
imaginary masses on the joint torques of the robot. Our goal is to
determine fitting imaginary masses wi, located in the origin of the
following joints, which have the same influence on the joint
torques as the original masses mi located in the center of mass
rcom,i of the link. Then approximated gravity joint torques τ̃i can
be calculated according to (21) for any joint configuration.

To determine wi, the equation system in (21) must be solved.
This can be done in the least-square sense usingNmeasurements,
where N ≫ 7. We selected N = 500 for calculating the optimal
linear regression solution x � [w1, . . . , w7]T.

2.5 Neural Network Model for Wrench
Prediction
External forces applied to a certain point of an attached tool lead to
corresponding contact wrenches at the end-effector. Our aim was the
estimation of these wrenches wecs based on themeasured joint torques
τΔ, the current robot pose and the distance to the force application
point, given in the input vector I. This estimation was performed by
training a regressionmodel on simulated data for a static case (Section
2.3.1) and retraining it with real training data (Section 2.3.2). We
used a dense feed-forward neural network with fully connected layers.
The optimal network architecture for our problem has been found by
doing a hyperparameter optimization varying the number of layers,
the regularizer, the loss function aswell as the number of neurons. The
neurons were modeled with rectified linear unit (ReLU) activation
functions (Nair and Hinton, 2010). The last layer consists of six
neurons to predict the wrench vector fecs with linear activation. The
activation functions gReLU and glinear are defined as

gReLU x( ) � max 0, x( ) (22)
and

glinear x( ) � x. (23)
The wrench vector is predicted by propagating the input through the
layers of the network (Rumelhart et al. (1986)). The relationship
between wecs and the measured joint torques τΔ is highly dependent
on the robot’s current joint configuration as well as the distance to
the point of force application r ecs

com in the end-effector coordinate
system. One challenge was the identification of a suitable, unique
representation of the robot’s pose. We observed that the joint angles
qi, i ∈ {1 . . . 7} alone were not sufficient. Even by adding the end-
effector rotation and position as inputs, the model was not able to
learn the problem and did not converge. The high redundancy of the
robotic arm, especially the additional seventh DoF, greatly increases
the complexity of the function to be learned. Therefore, we
additionally fed the translational and rotational part of the
homogenous pose matrices ecsMi, i ∈ {1 . . . 7}, of the single joints
regarding the end-effector frame to the network model. This results
in 12 additional parameters per joint, i.e., the nine rotational
parameters r1i , . . . , r

9
i and three translational parameters t1i , . . . , t

3
i

for the ith joint. We define the vector 0M′
i as the element-wise

representation of the pose matrix 0Mi:

0M′
i � r1i , . . . , r

9
i , t

1
i , . . . , t

3
i[ ] ∈ R12, i ∈ 1 . . . 7{ }. (24)

Hence, the input I and the output O of the neural network can be
written as

I � q1, . . . , q7, τ
Δ
1 , . . . , τ

Δ
7 ,

ecsM1′, . . . ,ecsM7′,[
r ecs
com,x, r

ecs
com,y, r

ecs
com,z] ∈ R101. (25)

O � f ecs
x , f ecs

y , f ecs
z ,m ecs

x ,m ecs
y ,m ecs

z[ ] ∈ R6 (26)
The input I was normalized to have zero mean and a unified
variance of 1 (zero centering). The model was implemented in
Python using Keras (Chollet, 2015) with the Theano-Backend
(Theano Development Team, 2016).

2.5.1 Optimal Network Architecture
Firstly, a deep feed forward neural network was trained with the
idealized simulated datasettrain,sim. To find an optimal network
architecture for our problem of predicting end-effector wrenches,
an autonomous hyperparameter optimization was done using the
optuna toolbox (Akiba et al., 2019) and the LAMB optimizer (You
et al., 2019). InTable 3 the static as well as the varied neural network
parameters and their ranges are listed. The loss function for training
a particular neural network is an optimization parameter and can
vary between mean squared error and mean absolute error (see
Table 3). In order to compare the different tested network
architectures with an equal metric to find the neural network
with the highest prediction accuracy, we calculated a separate
evaluation error using the root mean squared error. Training was
done on four GPUs of a DGX-2. In total 700 different architectures
were tried, which needed a computing time of approximately around
19 days. The resulting optimal neural network model with the
highest prediction accuracy is named NNsim. The trained model
was used on a regular desktop PC, with an Intel core i7 CPU and a
nVidia GeForce GTX 1060. One evaluation step takes 21.5 ms.

2.5.2 Retraining With Real Training Data
The optimized neural networkmodelNNsim resulted from a training
process only done with simulated data representing an idealized
static case. In a real scenario different inaccuracies like dissipative
effects and measurement inaccuracies occur. In addition we do not
know the exact isolated torques taudeltaj generated by the specific
calibration weights. Thus we first have to estimate the torques
without mounted calibration weight τ0 using our proposed

TABLE 2 | Base orientations of directional generalization datasetgen,dir.

Data points Ψ [°] Θ [°] Φ [°] Load [kg]

1,500 0.0 0.2 0.1 1.0
500 0.0 0.0 31.1 1.0
1,500 0.5 29.1 0.2 1.0
1,500 0.0 27.8 −14.6 1.0
1,500 0.0 −43.3 0.7 1.0
1,500 0.0 −31.7 39.4 1.0
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gravity compensation model from Section 2.4. Afterwards we can
calculate taudeltaj according to (14).

To take into account the described inaccuracies, the model
based on simulated data NNsim was retrained with the real
training dataset datasettrain, real. This was done on a regular
desktop PC, with an Intel core i7 CPU and a nVidia GeForce
GTX 1060. The resulting model is named NNretrain.

3 RESULTS AND DISCUSSION

The goal is to precisely estimate gravity joint torques as well as contact
wrenches at the end-effector from given joint positions and torque
data. A data-driven method based on linear regression is used to
approximate the static gravity torques without any knowledge of the
linkmasses nor the centers of gravity of the links. To estimate the end-
effector contact wrench an extensive database, consisting of both
simulated and real data, was acquired to develop and evaluate artificial
neural network models. For generating real ground truth contact
wrenches, ten specially manufactured weights in the range of 0–2 kg
(0–20N) were mounted to the end-effector. By using the constant
gravity force and different robot base orientations, a homogeneous
representation of contact forces in all directions was realized. Due to
various combinations of base orientations, calibration weights and
robot poses, the database consists of 330,000 randomized data points.
See Section 2.3.2 formore details. For evaluation purposes, the testing
datasets (see Section 2.3.3 and Section 2.3.4) were used, which were
not included in the training of the neural networks.

Firstly the performance of our proposed gravity compensation
model is evaluated in Section 3.1. Afterwards the capabilities of
the neural network models to precisely estimate contact wrenches
at the end-effector are illustrated (Section 3.2)–even if another
robot is used (Section 3.4).

3.1 Accuracy of Gravity Compensation
Model
To determine the imaginarymasseswi by solving the overdetermined
equation system in (21) 500 data points out of the datasettrain, real
without mounted calibration weights are used. Increasing the
number of data points had not shown any significant change of
the results. The datapoints are taken in equal parts from the 6
different base orientations. The optimal solution is (values in N):

x � −g0 w1 w2 w3 w4 w5 w6 w7[ ]T
� 0 0 74.56 0 47.1 0 7.85.[ ]T (27)

By dividing through the negative gravity constant g0, we get

~x � 0 0 7.6 0 4.8 0 0.8[ ]T (28)
for the imaginarymasseswi (values in kg). The result shows, that only
the parametersw3,w5 andw7 have values not equal to zero. So in our
model the gravity forces acting on the joint torques of the robot are
generated only by three imaginarymasses. These are located in joint 4
(robot elbow), joint 6 (robot hand) and in the end-effector.

The determined imaginary masses wi are now used to estimate
the static gravity torques according to (21). The intra-
directionality generalization dataset datasetgen,dir. without
mounted calibration weights is used for evaluation. Figure 4
shows the absolute errors for the estimated static gravity torques
of the joints using our model. The absolute errors of the
estimation of the robots integrated PFEM model are also
shown in Figure 4. The robot firmware does not directly
output the estimated gravity torques, but the measured joint
torques as well as the calculated external joint torques. So for a
comparision with our model, the external joint torques are used
to calculate the absolute error. For a robot without any weight
attached to the endeffector, the external joint torques are lower
the better the integrated model of the gravity compensation is.
Figure 4 shows that our model fits the zero torques in a static
experiment slightly better than the integrated model of the robot
manufacturer. Especially the median error of the zero torques for
the second joint can be reduced from 1.0 to 0.54 N (46%).
Moreover the variability could be reduced, except for joint 5.
For joint 5 also the median of the prediction error is 34% higher
using our model. Our model seems to have difficulties in
estimating the torque in joint 5 induced by the masses of the
following links 5, 6 and 7. Theoretically there would be two
imaginary masses m5 and m7 unequal to zero, which are located
in joint 6 and the end-effector and thus are taken into account for
the computation of the joint torque 5. But considering the
equation to approximate τ̃5 in system (21) the corresponding
entry ~J

T
m,z,5, which is multiplied bym5, equals zero. So onlyw7 has

an influence for approximating the gravity torque ˜taudelta5 , which
explains the prediction inaccuracy.

The obtained results show the applicability of the presented
approach to determine static gravity torques of a robot without
knowing the inertial parameters of the links. It represents a simple
to implement and time-saving option, since only joint torque data
of a few randomly generated poses need to be acquired.

3.2 Accuracy of Contact Wrench Estimation
For evaluation purposes, the contact forces and moments acting
at the end-effector are considered separately. The prediction
accuracies of the NNsim, which was only trained with the
simulated data for an ideal static case and the NNretrain, which
was retrained with the real dataset datasettrain, real are compared
with the PFEM model.

3.2.1 Optimal Neural Network Architecture
To find the optimal network architecture for the estimation of
contact wrenches, an autonomous hyperparameter optimization
was done using the optuna toolbox (Akiba et al., 2019) and the

TABLE 3 | Hyperparameter optimization - static and dynamic parameters.

Parameter Type Value/Value range

Layers Dynamic 1–20
Neurons Dynamic 1–1,000
L2 regularization Dynamic 1e−20 − 1e−3

Loss Dynamic Mean squared error, mean absolute error
Epochs Static 500
Batch size Static 6,000
Early stopping patience Static 1,000
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LAMB optimizer (You et al., 2019). 700 different architectures
were tested. The simulated training dataset was divided into
training (95%) and validation data (5%). After 514 iterations the
lowest validation error was found for a network architecture,
consisting of 14 hidden layers with 681 neurons and a L2
regularization of 1.23e-06. The mean absolute error was used
as loss function. The created network is referred to as NNsim. On
a regular desktop PC, with an Intel core i7 CPU and a nVidia
GeForce GTX 1060, one evaluation step takes 21.5 ms. The
evaluation time is thus quite high, which can be explained by the
large size of the neural network. Depending on the application,
this might have to be taken into account when choosing a
network architecture. In our current setup assuming a static
scenario, where is no or almost no movement of the robot when
the force is estimated, the long evaluation time can be handled.
Since we expect slow movements, the reaction time is not
extremely critical in this context.

3.2.2 Contact Forces
Figure 5A shows the overall accuracy of our proposed
calibration compared to the PFEM based on all
measurements of the datasetgen,rob in a linear scale. The
absolute error was calculated for the contact forces fecs for
each axis separately. The calculation was based on the
absolute difference between the ground truth (see Section
2.3.2) and the output of the trained neural network f ecsann, as
well as the measured contact forces given by the PFEM f ecs

fw . By
using the neural network model NNsim the median absolute
error could be reduced by 0.53 N (26.0%) for f ecs

x , 0.56 N
(27.5%) for f ecs

y and 0.56 N (30.8%) for f ecs
z . The retrained

model NNretrain shows even better results. Here the median
absolute error could be reduced by 1.32 N (65.0%) for f ecsx ,
1.32 N (64.8%) for f ecs

y and 0.75 N (41.5%) for f ecs
z .

3.2.3 Contact Moments
Figure 5B shows the accuracy of our NNmodels compared to the
PFEM. Again the absolute error was calculated for the three axis
separately. By using the neural network model NNsim the median
absolute error could be slightly reduced by 0.06 Nm (15.1%) for
m ecs

x , 0.05 Nm (12.7%) for m ecs
y and 0.01 Nm (9.7%) for m ecs

z . In
contrast, the retrained model NNretrain leads to a significant
reduction of the end-effector moment prediction errors. A
reduction of 0.37 Nm (93.4%) for m ecs

x , 0.37 Nm (93.3%) for
m ecs

y , and 0.10 Nm (96.4%) for m ecs
z was achieved. The great

difference to the predictions of the NNsim as well as the PFEM
could result from our scenario, where the moments acting at the
end-effector in the datasetreal are solely generated by the contact-
forces and the distance to the force application point. This is due
to our experimental setup, where contact wrenches were induced
by masses, which were pulled towards the ground by the gravity.
Thus no additional external end-effector moments were applied.
As the neural network NNretrain was retrained with these
experimental data, it shows a better prediction accuracy for
the end-effector moment as long as no additional external
moments are applied.

It must also be noted, that our ground truth for the contact
moments is based on the center of mass of the metallic rod with
the mounted calibration weights. These were determined from an
appropriate created CAD model, so small uncertainties can
possibly result. Nevertheless it could be shown, that the
relationship between end-effector forces, the distance to the
force application point and corresponding end-effector
moments can be learned and precisely predicted by the neural
network. Due to the problematic issues pointed out regarding the
contact moment, in the following chapters the accuracy of contact
forces acting at the end-effector is investigated in more detail.
These are also of higher relevance for our application of precisely
estimating the force acting on an ultrasound probe attached to the
robot end-effector.

3.3 Outlier Reduction
As shown in Figure 6A we observed a high number of large
outliers in the PFEM data with maximum errors in the range of
104 N. We suspect that these high errors are caused by
numerical instabilities of the computational model used by
the PFEM near singular configurations. In contrast, our
proposed solution provides much more stable results than
the integrated model.

In order to analyze the problems of incalculable contact
forces at singular positions and numerical instabilities close
to these positions in more detail, we looked at the contact force
errors as a function of the arm position. To acquire this, the
manipulators’ reach was used as a relevant parameter. The reach
indicates how far the end-effector is displaced from the
shoulder. At maximum reach, the arm is therefore fully
extended and in a singular configuration. Figure 6B shows
the contact force RMSE as a function of increasing reach. With
an increasing reach over 700 mm, the error grows dramatically.
In addition, the number and magnitude of outliers also rises
massively. In contrast, the ANN data shows much more stable
results. The outcome indicates that different arm positions have

FIGURE 4 | Absolute error of the proposed gravity compensation model
compared to the model of the robot manufacturer, evaluated on the
datasetgen,dir.
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less impact on the model accuracy and, furthermore, that the
model is capable of robustly handling singularities. Clearly, this
is counterintuitive: Fundamental mathematical laws render
contact forces incalculable at singularities since the matrix J
from (4) becomes singular. Nevertheless, this does not mean
that contact forces in singularities cannot be detected at all, it
only means that specific contact forces may not generate torques
in all joints, which, in turn, will result in large errors when trying
to compute the contact forces. Given that the training data we
have collected was generated randomly, it is exceedingly
unlikely that the robot was ever moved to an exactly singular

position, but rather that it often came close to one. This means
that our model has learned to deal with close-to-singular
matrices J and, obviously, is capable of adequate
compensating. Nevertheless, this does not mean that our
model can overcome mathematical impossibilities, it rather
means that it is less susceptible to numerical instabilities
occurring close to singular positions.

3.4 Transfer to Another Robot
To examine the transferability of our approach to another
robot, the accuracy of contact force estimation of the

FIGURE 5 | (A) Absolute end-effector force error of the ANN approach compared to the PFEM given for each axis in linear scale evaluated on the datasetgen,dir. The
median error could be largely reduced by the ANN, which was retrained with real robot data. (B) Absolute end-effector moment error of the ANN approach compared to
the PFEM given for each axis in linear scale evaluated on the datasetgen,dir.

FIGURE 6 | (A) Absolute end-effector force error of the ANN approach compared to the PFEM given for each axis in logarithmic scale, evaluated on the
datasetgen,dir. The outliers could be largely reduced by the ANN approaches. (B) Contact force RMSE as a function of increasing manipulator reach in linear scale. A
strongly rising error can be observed in the PFEM data from a reach above 700 mm.
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additional testing dataset, which has been acquired with the
KUKA iiwa 14 R820, is shown in Figure 7A. By using the
neural network model NNsim, which was solely trained on
simulated data for the robot geometry of the KUKA iiwa 7
R800, the median absolute error could be slightly reduced by
0.23 N (12.3%) for f ecs

x , 0.21 N (10.9%) for f ecs
y and 0.16 N

(9.5%) for f ecs
z . By using the network NNretrain, which was

retrained with the real data of the KUKA iiwa 7 R800, the
force errors could be reduced by 0.92 N (49.2%) for f ecs

x ,
0.95 N (49.4%) for f ecs

y and 0.79 N (47.3%) for f ecs
z .

Furthermore the accuracy of the estimation of the contact
moments can also be improved (Figure 7B). The retrained
model NNretrain leads to a reduction of the end-effector
moment prediction errors. It must be noted, that for the
prediction of the contact moments, the same drawbacks as
described in Section 3.2.3 arise due to our experimental
setup, which require further investigations.

However, it is shown, that the estimation of the contact forces
could be improved by our neural network models - even if
another robot type is used. Especially the NNretrain can greatly
reduce the force prediction errors. Once again it should be
emphasized that no additional training data, neither simulated
nor real, of the KUKA iiwa 14 R820 were used. Retraining on a
small real calibration dataset acquired on this different robot
would probably reduce the errors even more so that an accuracy
similar to the experiments with the KUKA iiwa 7 R800 in
Section 3.2 could be achieved. In this context, it must be
noted that our experiments were done on a robot with the
same degree of freedom and thus the same size of input data. For
a transfer to a robot with a different degree of freedom, the
changed size of input data must be taken into account. It might
be an option to just replace the input layer of the network for
retraining.

4 CONCLUSION

The aim of this work was to precisely determine corresponding
contact wrenches at the end-effector from given joint position and
torque data of a redundant serial lightweight manipulator (KUKA
LBR iiwa 7 R800). The results of this work show advantages of our
proposed neural learning approach compared to the PFEM. Firstly,
the new calibration method can increase the accuracy of end-effector
contact forces by 57.2% and the accuracy of end-effector contact
moments by 90% compared to the manufacturer’s proprietary force
estimationmodel. Secondly, we show that the calibration stability can
be significantly increased with the proposed approach. In contrast to
the PFEM, which shows high outliers near singularities, the ANN
approach shows robust results. The evaluation indicates that different
arm positions do not affect the accuracy and, furthermore, the
proposed model can robustly handle singularities.

After the promising results of this work, minor limitations
remain. The calibration was performed in a limited force range
of 0–20 N, which is significantly below the maximum loads of the
manipulator. However, compliant robots are often used in
specialized practical applications within limited load ranges.
Moreover, our results show good generalization performance,
even for estimation of the neural network, which was soley
trained with simulated data. Thus using a huge simulation
dataset with an increased force range and a small real calibration
dataset with larger distances between the calibration weights could
be used. In addition we plan to further investigate the transferability
of our method model to robots from other manufacturers, which
have a more different geometry. In this context, a transfer to a robot
with a different degree of freedom and thus an input of a different
sizemust also be considered. A robot specific simulated dataset could
be generated easily for any robot whose geometric data are known.
Afterwards a small number of robot specific new recorded data

FIGURE 7 | Absolute end-effector force error (A) andmoment error (B) of the ANN approach compared to the PFEMgiven for each axis in linear scale, evaluated on
the transfer data of the KUKA iiwa 14 R820 datasettransf.
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points could be acquired and used for retraining and thus the
prediction performance could be improved.
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