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The mechanical properties of a sensor strongly affect its tactile sensing capabilities. By
exploiting tactile filters, mechanical structures between the sensing unit and the
environment, it is possible to tune the interaction dynamics with the surrounding
environment. But how can we design a good tactile filter? Previously, the role of filters’
geometry and stiffness on the quality of the tactile data has been the subject of several
studies, both implementing static filters and adaptable filters. State-of-the-art works on
online adaptive stiffness highlight a crucial role of the filters’ mechanical behavior in the
structure of the recorded tactile data. However, the relationship between the filter’s and the
environment’s characteristics is still largely unknown. We want to show the effect of the
environment’s mechanical properties on the structure of the acquired tactile data and the
performance of a classification task while testing a wide range of static tactile filters.
Moreover, we fabricated the filters using four materials commonly exploited in soft
robotics, to merge the gap between tactile sensing and robotic applications. We
collected data from the interaction with a standard set of twelve objects of different
materials, shapes, and textures, and we analyzed the effect of the filter’s material on the
structure of such data and the performance of nine common machine learning classifiers,
both considering the overall test set and the three individual subsets made by all objects of
the samematerial. We showed that depending on the material of the test objects, there is a
drastic change in the performance of the four tested filters, and that the filter that matches
the mechanical properties of the environment always outperforms the others.

Keywords: tactile filters, tactile sensing, soft sensing, environment interaction, embodied intelligence,
morphological computation, soft robotics

1 INTRODUCTION

The mechanical characteristics of any given structure greatly affect and alter the capability to sense
and process tactile information (Scimeca et al., 2018; Hughes and Iida, 2017) and, therefore, affect the
performance of tactile-driven tasks (Costi et al., 2021a). Biological systems show us that the
mechanical characteristics of a sensor should be appropriate to the task or environment in
which the sensor operates. Nature has developed task-specific sensors and sensing networks for
millions of years (Rawlings et al., 2012), developing systems composed of different sensing units,
called receptors, embodied in a great variety of passive mechanical structures, called filters. A filter is
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any mechanical structure that is placed between the sensing unit
and the environment and can have a varying morphology, spatial
distribution, and density, perfectly tuned based on the main task
they have to perform to obtain the best possible performance
(Vallbo and Johansson, 1984; Maeno et al., 1998). The most
common tactile filter observable in nature is the skin (Lewin and
Moshourab, 2004), which clearly shows how the mechanical
characteristics of such soft tissue change depending on the
main task of a given body part (Barlow, 1987). However, the
scale and complexity used by nature are still out of technology’s
reach, preventing us from having skin-like performance when it
comes to tactile data acquisition and classification (Iida and
Nurzaman, 2016).

Previous studies in the field of filter-based tactile sensing have
focused on the effect of the filter’s morphology on the structure
and quality of the recorded data, investigating the information
gain’s maximization (Thuruthel et al., 2020), the amplification of
the sensor’s sensitivity (Fend et al., 2004), task-specific
optimization (Qi and Hirai, 2019), and the relationship
between redundancy and localization error (Costi et al.,
2021b). Moreover, researchers have deeply studied the
relationship between the morphology of the sensor and the
action for perception (Huang et al., 2019; Scimeca et al.,
2020b, 2021). From their results, it emerges how in
action–based perception is strongly affected by the
morphology of the tactile filter (Bernth et al., 2018) and the
inevitable trade-off when selecting the material of the filter.
Considering the filter’s hardness as an example, softer
interfaces are more compliant (Brown et al., 2010; Margheri
et al., 2012; Pfeifer et al., 2014; Hinitt et al., 2015) and can
provide better adhesion to the object of interest (Trinh and
Shibuya, 2019; Qi et al., 2020), therefore, increasing the quality
of tactile information thanks to a larger contact area. On the other
hand, a soft filter behaves as a ‘mechanical low-pass filter’,
perturbating the data and filtering out high-frequency
components (Shimojo, 1997). However, the role of the
environment in dictating what the best filter’s properties are
has often been overlooked.We believe that the environment plays
a major role in determining the quality of the tactile data and has
a strong influence on the optimal characteristics of the tactile
filter.

In order to avoid the trade-off presented by static design for tactile
filters, some researchers have developed dynamic filters, able to
change properties online as they gather information from the
environment. Noticeable examples include the usage of hot melt
adhesive to reshape the sensor morphology (Nurzaman et al., 2013)
and of liquid sensors able to tune dynamic range and sensitivity (Liao
et al., 2015). Some studies focused precisely on online stiffness
adaptation (Hughes et al., 2021; Costi et al., 2022b), highlighting
how strongly the mechanical properties of the filter’s material can
influence the embodied intelligence of the filter itself and, in turn, the
task of tactile sensing. However, once again, little to no attention was
given to the role of the environment. All in all, researchers have tried
to come up with an optimal solution for tactile filtering, exploiting
both static and dynamic designs, without considering what role the
environment and the surrounding objects play in the task of tactile
classification.

Soft robots and soft sensors are manufactured in a very wide
range of materials and elastomers (Lee et al., 2017), making it
challenging to generalize the possible advantages and
disadvantages obtained by the material’s choice in relation to
tactile sensing. However, a recent attempt at creating a more solid
framework for the field (Marechal et al., 2021) highlighted that
the vast majority of soft robots nowadays are manufactured using
two main silicone rubber series: Ecoflex (Smooth-On), mainly
used for extreme deformations and induced mechanical
instabilities such as ballooning (Herzig et al., 2021; Costi et al.,
2022a), and Dragon Skin (Smooth-On), used to create more solid
structures and slower controlled deformations (Gao et al., 2021).

The aim of this work was to analyze the effect of the
environment on tactile information-based object
classification. We wanted to show how the ideal filter’s
mechanical properties are related to the environment’s ones.
Moreover, in order to generalize our findings and focus this
study on soft robotics applications, we used, as the filter’s
materials, the four most used elastomers in soft robotics, from
most to least compliant: Ecoflex 00–10, Ecoflex 00–30, Dragon
Skin 10, and Dragon Skin 30. To do so, we manufactured four
filters of the same geometry and different material, and we
used a sensorized UR5 robotic arm (Universal Robots)
mounting the different filters to perform active touching on
a set of 12 standardized objects of varying materials, shapes,
and textures. We showed how the different materials affect the
structure of the collected data and how such data perform
when used in a tactile classification task. First, data were
characterized in terms of variance retention and clustering
behaviors. Then, they were used as input for nine standard
machine learning classification algorithms. The same analysis
was carried out separating the test set into three subsets based
on the objects’ material. Finally, we proved that matching the
environment’s mechanical properties is the best strategy to
optimize data quality and tactile classification accuracy while
operating with static filters.

In the remainder of the article, we describe the manufacturing
of the filters and the implementation of the overall sensing system
and testing bench in Section 2, followed by the results in Section
3 and the discussion and final remarks in Section 4.

FIGURE 1 | On the left, implementation of the active touching system
composed of UR5 robotic arm, tactile sensor, and tactile filter. On the right,
schematics of the system.
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2 MATERIALS AND METHODS

2.1 System Overview and Manufacturing
A UR5 robotic arm was used to perform active touch on a set of
known standard objects (see Figure 1). The arm carried both the
sensing unit and the tactile filter on the end-effector.

The tactile sensor was a capacitive sensor disk composed of
50 “taxels”, providing high sensitivity and spatial distribution
over the surface of the sensor. The sensor had a diameter of
80mm, and the taxels were uniformly distributed on its surface.
They had a resolution of 16 bits corresponding to a variation of
capacitance, which was proportional to the pressure acting on top
of it. Therefore, they were able to detect normal load only. Details
of the specific sensor and its fabrication have been previously
reported (Maiolino et al., 2013). The tactile filters were
manufactured using a silicone casting technique in PLA
(Polymaker) moulds, 3D printed with a Pro 2 printer
(Raise3D) for each filter, and the 2 phases were manually
mixed in a 1:1 ratio for 5 min and then placed in the vacuum
pump for 20 min. Finally, the silicone was cast into themolds, and
excess material was removed through tape casting using a doctor
blade (see Figure 2A). The four selected materials span a wide
range of shore hardness, with the two Dragon Skin materials
showcasing 30 and 10A and the Ecoflex ones 00– 30 and 00– 10 in
the ASTM D-2240 hardness scale, effectively covering the entire
spectrum of mechanical properties of the elastomers used in soft
robotics. In real-world applications, the material of the filter is
normally within a range of materials dictated by the given task. In

the attempt of producing results that can be generalized and
applied widely in soft robotics, we selected such materials due to
their presence in most soft robotics systems. The filters were
attached to the sensing unit using Sil-poxy (Smooth-On): the
silicone glue was applied only on the sides of the sensor to avoid
any additional filtering that would have resulted from placing it
on top of the taxels (see Figure 2B). In doing so, we ensured that
the interface between sensor and filter was affected by just two
factors: the mechanical properties of the filter and the ones of the
sensor, which was the same for all four tested filters. During the
experimental trials, the end-effector was placed above the selected
object, and then the acquisition of tactile data was performed in
two steps: the approaching phase and the touch phase. First, the
filter was moved down until contact with the environment, and
then a planar “rubbing motion” was performed (see Section 2.2).
This process is also known as active touch because the system
actively reaches and touches the environment, which is passive.

2.2 Experimental Protocol
In order to test the effect of the different materials on tactile
classification tasks, we collected tactile data on a standardized set
of 12 objects made of 3 different materials, showcasing different
shapes and textures for each tested material.

Once the object to be touched was sampled, the tactile sensing
process was performed in two phases: the approaching phase and
the touch phase. In the approaching phase, the end-effector was
lowered in order to achieve contact with the object of interest.
During this phase, the end-effector was moved normally

FIGURE 2 | Fabricated elastomeric filters in different materials (A) and implementation of the filter on the end-effector of the robotic arm (B).
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downward until the capacitive tactile sensor at its extremity
detected a touch event. A touch event is defined as a rise by
more than 5% of their reading range in any of the 50 taxels. Note
that the aforementioned rise in pressure value has to be detected
by the sensing unit; therefore, it is the signal after the effect of the
tactile filter: different filter’s materials can behave mechanically
differently and, in turn, achieve different levels of interaction with
the environment. The touch phase consisted of a 5 s interaction in
which the robot performed a ‘rubbing motion’ by moving 2mm
along x and 2mm along y on the plane in which contact was
detected. During this phase, the sensor was sampled at 50Hz,
retrieving a total of 250 tactile maps for each trial, composed of a
value for each one of the 50 different taxels. As a result, each
collected data point corresponding to a single trial, had 12,500
dimensions.

Concerning the set of test objects, we decided to use 12 objects
with different mechanical characteristics: three different
materials, two different shapes, and two different textures (see
Figure 3). The three materials were PLA, Dragon Skin 20, and
Ecoflex 00–10: PLA objects were directly 3D printed, whereas
elastomeric ones were the result of silicone casting in 3D printed
PLA molds. The fabrication process was the same, as previously
described in Section 2.1, both for PLA 3D printing and silicone
casting. The two different shapes were designed as follows: the
squares were 20mm edge cubes, and the rounds were 20mm
diameter and 10mm height cylinders with 20mm diameter half-
spheres on top. Finally, the rough objects were ridged by adding
1mm deep and 1mm wide grooves at a distance of 1mm. The
objects’ material choice allowed us to investigate the filters’
behavior when interacting with an environment of the same
material, of a different material of the same series, and of a
different silicone series, as well as when interacting with a generic
rigid environment (PLA). Overall, the selected test objects were a
simple enough environment for us to infer and thoroughly
characterize the interaction with the filter within the limits of
our computational power while being representative of a real case
scenario.

Every object was subject to 50 trials for each of the four tested
materials, for a total of 200 trials per object and 2,400 overall

trials. Figure 4 illustrates the workflow implemented to collect
data with our system once the filter was put in position. The same
process was repeated for each tested material, leading to four
different data-sets of the same 12 test objects that were analyzed
and are compared in Section 3.

2.3 Data Processing
Before using the data for classification tasks, we decided to
evaluate the quality of the tactile data by reducing their
dimensionality and trying to observe spontaneous clustering
behaviors. All the steps listed in this section were performed
on the entire data-set and on the three subsets consisting of all the
test objects of the same material.

First, we applied principal component analysis (PCA). This
was used to strongly reduce the number of dimensions, from the
initial 12,500 to a pre-selected set of retained principal
components, where pi is the ith principal component (Abdi
and Williams, 2010). Then, we evaluated the information loss
by analyzing what fraction of the original data variance was
retained as a function of the number of considered principal
components. Several other dimensionality reduction techniques
could have been implemented for this purpose, such as t-SNE
(Maaten and Hinton, 2008), but we decided to implement PCA
because it is widely used in filter-based tactile sensing (Hughes
et al., 2021).

Next, we analyzed the structure of the collected data, looking
for class-dependent clusters. In the case of the full data-set, each
one of the 12 objects corresponded to a different class, for a total
of 12 classes. For the subsets, they only had four objects each, and
thus, four different classes. Ideally, a good data structure has a low
intra-class distance and a high inter-class distance. Hence, we
used the silhouette score (Rousseeuw, 1987) to quantify the
quality of the structure. The silhouette score is a good and
compact approximation of the quality of the data structure,
when dealing with a labeled data-set, that can provide a clear
insight into how well classes are separated from each other.
Moreover, such a metric has already been used in tactile
information-based classification tasks (Scimeca et al., 2020a)
and can be computed as follows:

FIGURE 3 | Side view (A) and top view (B) of different objects used for the data acquisition. From left to right: Ecoflex 00–10, Dragon Skin 20, and PLA. From top to
bottom: Smooth Square, Rough Square, Smooth Round, and Rough Round.
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s i( ) � b i( ) − a i( )
max a i( ), b i( )( ) (1)

where a(i) and b(i) are the mean intra-class distance and the
mean nearest-class distance for the object i, respectively. To
effectively summarize the results, we computed the silhouette
score s as the mean of the scores among all classes. Thus, the score
s can assume values between -1 and 1 included, where higher
values represent a better-defined data structure, which may
potentially lead to a more accurate classification.

2.4 Classification
In order to understand how the difference in data structure affects
the classification performance, we compared the performance of
several machine learning algorithms (MLAs) while working on
the four data-sets. Similar to Section 2.3, this process was
performed both on the full data-set and on the three single-
material subsets. We decided to implement nine standard MLAs:
Nearest Neighbors (Goldberger et al., 2004), Linear SVM
(Mayoraz and Alpaydin, 1999), RBF SVM (Yan et al., 2006),
Gaussian process (KI Williams, 2006), Decision Tree (Steinberg
and Colla, 2009), Random Forest (Cutler et al., 2012), Feed
Forward Neural Network (Rumelhart et al., 1986), Naive Bayes
(Manning et al., 2008), and QDA (Pedregosa et al., 2011). All the
classifiers were implemented using the Scikit-learn library
(version 0.32.1) in Python 3.8 (Pedregosa et al., 2011). In
particular, the built-in functions were used with the default
library parameters onto each data-set individually (Dragon
Skin 30, Dragon Skin 20, Ecoflex 00–30, and Ecoflex 00–10).
For the purpose of reproducibility, the following details about the
MLAs are provided: the kernel used in the Gaussian process was
“1.0*RBF(1.0)”, Decision Tree used the “gini” criterion, Random
Forest used the ‘gini’ criterion and 10 estimators, Naive Bayes was
implemented as a GaussianNB classifier, Nearest Neighbors used
three nearest neighbors, Linear SVM and RBF SVM had a
regularization parameter of 1, QDA used a tolerance of 10–4,
and Neural Net was implemented as an MLP with one hidden
layer of 100 neurons, activation “relu”, solver “adam”, and a
maximum number of iteration of 1,000 or until convergence. The
reason behind such a high number of different algorithms was

that we did not want our conclusion to be biased by the classifier.
Thus, by considering nine different ones, we were able to
generalize our results and highlight the difference made by the
structure and quality of the provided data rather than the intrinsic
difference among the classifiers themselves. Parameters tuning
has not been performed in order to maintain visible relative
differences among the different data-sets and allow us to infer the
effect of the data structure on the performance, rather than the
MLAs’ architecture. Concerning the expected performance, we
assume that higher quality in the tactile data would lead to a better
classification in the majority of the cases. Because all classes are
perfectly balanced with 50 samples per class, we use accuracy, as
main metric to assess the performance of the classifier.

3 RESULTS

This section showcases and analyzes the data structure and the
classification performance of the four data-sets collected as
described in Section 2.2. Firstly, we showcased the
performance of commonly used silicones in tactile sensing and
highlighted the differences that arise from the distinct mechanical
properties of the tested materials. Secondly, we divided the test set
based on the material of the test objects so as to showcase how the
characteristic of the environment can affect the structure and
performance obtained by the different filter’s materials. Finally,
we show the structural damage experienced by the filters as a
result of the mechanical interaction with the environment.

3.1 Filter-Mediated Response
First, we show how the different filter’s materials affect the raw
data picked up by the sensing unit: Figure 5 showcases the sensor
recordings as a function of the filter’s material and the test object’s
material, shape, and texture. Given the high number of
dimensions, the raw data are not suitable for further analysis
as they are, but they already show the general effect of filters with
different values of shore hardness.

By analyzing images belonging to the same object, it is clear
that the change in the filter’s material does not drastically change
the overall response of the sensor, maintaining very similar spatial

FIGURE 4 |Work-flow of a single trial during data collection. First, the object of interest is selected among the twelve possible options: four combinations of shape
and roughness for each of the three levels of stiffness. Next, the approaching and touch phases are performed on the object of interest.
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patterns and taxels’ ranges. Nevertheless, we easily noticed that
more compliant materials, such as the Ecoflex series, promoted
localized peaks of pressure, whereas stiffer materials tended to
distribute the pressure over a larger area. This phenomenon is due
to the mechanical properties of the materials that allow harder
materials to propagate the load over a larger area, whereas softer
materials tend to adapt to the shape of the object touched,
showcasing more localized loads. Because the object is always
touched using the same trajectory and all the filters have the same
morphology, we assumed that the mechanical characteristics of
the filter’s material were the determining factor in changing the
morphological computation done by the filter itself, that, in turn,
affected the processed signal recorded by the sensor.

3.2 Overall Results
In order to define the starting point of our study and report the
overall performance, we start by analyzing the full set containing
all 12 test objects. The first step was reducing the number of
dimensions of each data-point from the initial 12,500 to a small
arbitrary pre-selected number thanks to a PCA. In order to check

how much our choice of dimensionality reduction affects the
tactile data, Figure 6A showcases the variance retention of the
different materials as a function of the number of considered
principal components.

The results showcase how the level of compliance of the filter’s
material is proportional to the retained fraction of the initial data
variance. This is especially noticeable in the first principal
component p1 and the number of needed components to
reach 80% of the initial variance: not only did Dragon Skin 30
need five principal components instead of four, but even the other
three materials, whilst needing the same number of components,
showed a compliance dependent cumulative value, with Ecoflex
00–10 reaching a high of 86.85%, followed by 86.15 % and 82.38%
for Ecoflex 00–30 and Dragon skin 20, respectively.

Next, we studied the data structure. Because we considered the
task of tactile classification, we opted to use the silhouette
coefficient as a quality metric for the data structure itself,
according to Section 2.3. Figure 6B illustrates the silhouette
score as a function of the principal components and the filter’s
material. Remarkably, we observed that the silhouette score was

FIGURE 5 | Raw tactile data as a function of filter’s material, and test object’s material, shape, and texture. Tactile images are taken after 2.5 s of the touch phase,
performed as described in Section 2.2. For displaying purposes, Dragon Skin is abbreviated DS and Ecoflex as EF.
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proportional to the stiffness of the material: more compliant
materials consistently exhibited a worse silhouette score than
stiffer ones, with Ecoflex 00–10 scoring significantly less than the
other three materials, which appeared to be more clustered
together. We can then assume that the ability to retain a
higher fraction of the initial data variance does not imply a
higher class separation, thus, a better structure of the data. The
results clearly show that the best data structure is obtained when
losing more of the initial variance: the embodied intelligence of
the Dragon Skin 30 filter, combined with the PCA, can filter out
unnecessary data variance, thus, highlighting signal features that
can achieve a better class separation.

In order to have a deeper insight into the class separation, we
decided to plot the data-sets according to the first two principal
components (see Figure 7).The plots clearly show how Ecoflex
00–10 is unable to obtain good separation of the classes, resulting

in high overlapping of widely spread clusters. It is also noticeable
that, even if the other three materials have similar silhouette
scores, as previously discussed, the 2D PCA plots showcase very
different behaviors: Ecoflex 00–30 has a homogeneous mild
overlap of several classes, whereas the Dragon Skin series
tends to have a good clustering of the majority of the classes,
but completely fails to cluster few specific classes, such as “Square
Rough PLA”.

Finally, we focused on the tactile discrimination performance:
we wanted to show how the differences in data structure affect the
overall performance while performing tactile classification. As
discussed in Section 2.4, we implemented nine different MLAs in
order to avoid any classifier-specific bias and focus on the effect of
the data on the classification performance. Figure 8 shows the
performance of the MLAs as a function of the principal
components for each of the tested filter’s material. Accuracy

FIGURE 6 | The variance retention of the principal components (A) and the silhouette score for increasing number of dimensions (B) for each filter’s material.

FIGURE 7 | PCA projections of the first two principal components. The ellipses are drawn at one standard deviation and three standard deviations. “Ef” and “Ds”
indicate Ecoflex and Dragon Skin, respectively.
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was selected as a valid metric for the performance because of the
perfect balance of the classes, having 50 data-points for each class
in each data-set. Specifically, we were interested in two features of
the resulting accuracy: the value of the reached plateau as the
number of retained principal components increases and the
transient that leads up to such plateau.

The first obvious result was that Ecoflex 00–10 performed, on
average, worse than the other materials, having both a lower
plateau and a slower transient. We assumed that the worse data
structure observed in Figure 6B and Figure 7 is the reason behind
the worse performance in terms of classification accuracy. The
other three materials, which also showcased a very similar
silhouette score, had very similar performance, with some
exceptions: Dragon Skin 30 showcased a poor performance
both in Decision Tree and Naive Bayes, whereas Ecoflex 00–30
fell short in RBF SVM. All in all, Dragon Skin 20 seemed to have
the best performance, only showcasing a slower transient in three
out of nine classifiers but always reaching the highest plateau by
the 10th principal component. In summary, Dragon Skin 20 was
the only filter that maintained the highest accuracy in all nine

MLAs, whereas the others performed significantly worse in at
least one of them. In conclusion, despite its higher silhouette
score, the stiffer Dragon Skin 30 showcased a worse classification
accuracy, leading us to believe that the optimal stiffness for our
tactile filter is not as high as possible, but it lays somewhere in the
middle of the Dragon Skin series.

3.3 Material Based Results
Starting from the overview provided in Section 3.2, we divided
the data-sets into three different subsets depending on the
material of the test objects, and we analyzed the environment’s
effect on the filters’ relative performance. The aim of this section
is to understand how the mechanical properties of the
surrounding environment can affect the performance of each
individual filter, altering the relative performance among them.
Understanding the relationship between the filter’s and the
environment’s properties can lead to more insight regarding
the choice of filter’s material in order to achieve the best data
structure and classification accuracy as a function of the
environment.

FIGURE 8 | Classification accuracy using the nine different classifiers as a function of the PCA dimensions.
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First, we investigated how the variance retention and the
silhouette score would change when considering the three
different subsets individually. Figure 9 summarizes such results.

First, we noticed that, unlike Figure 6B, the silhouette scores
of both the Ecoflex 00–10 and the Dragon Skin 20 filters did not
asymptotically tend to their maximum, but rather decreased as
the number of retained principal components increased. We
believed that this was due to the amount of noise present in
each principal component: having fewer classes in the test set and
having good mechanical coupling between the filter and
environment, since they are both manufactured using silicone,
lead to a good separation of the classes with few components.
Then, if we kept adding principal components, we eventually
started adding the data variance that was produced by noise, thus,
the silhouette scores started decreasing. Concerning the Ecoflex

00–10 subset (see Figure 9A), it was clear that the data structure
indicated Ecoflex 00–10 as the best filter material, given its higher
silhouette score starting from 10 principal components onward.
The reason behind this could be that the coupling between filter
and environment of the samematerial produces less overall noise:
less noise in the recorded signal eventually results in a slower
decay of the silhouette score as the number of principal
components, and therefore signal variance, increases.
Especially when compared with the full set results in Figure 6,
we noticed a strong increase in the quality of the Ecoflex 00–10
data structure, making such material move from worst to best in
terms of silhouette score. Similarly, when considering the Dragon
Skin 20 subset, it was clear that the Dragon Skin 20 filter was able
to obtain a better data structure, consistently having a higher
silhouette score than the other ones. Concerning the PLA subset,

FIGURE 9 | PCA variance retention and silhouette score when testing the filter’s material on the three different subsets made by test objects of the same material:
Ecoflex 00–10 (A), Dragon Skin 20 (B), and PLA (C).
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we did not have a PLA filter, but we could see how the stiffest
material among the ones tested, Dragon Skin 30, was able to
produce a better data structure, denoted by a higher silhouette
score. Nevertheless, the compliance of Dragon Skin 30, and,
therefore, the compliance of all the tested silicones, was much
higher than PLA’s, resulting in much lower overall values of the
silhouette score. Regarding the PCA variance retention, we could
see how it was not proportional to the material’s compliance in
the case of smaller subsets consisting of objects made of one
material only. Ecoflex 00–10 showed low retention, relatively to
the other filter’s materials when tested on Ecoflex 00–10 objects,
and a relatively high one when tested on the PLA subset. On the
other hand, Dragon Skin 20 showcased its highest variance
retention when tested on the object of the same material.
Predictably, the tested materials have low retention when
touching a material such as PLA, which is much stiffer than
silicones. Overall, the results indicated that in order to achieve a

good data structure, the tactile filter should match the mechanical
characteristics of the environment as much as possible.

In order to have a better insight into what the data structure
obtained by the different filter’s materials looks like, we plotted
the 2D scatter plots, using the first two principal components of
the PCA. Figure 10 illustrates such plots for the three tested
subsets. Starting from the Ecoflex 00–10 subset, we could clearly
see that only the Ecoflex 00–10 filter was able to fully separate
‘Round Rough Ef 00-10’ and ‘Round Smooth Ef 00–10’, which
were clustered together while using any other filter’s material. In
the case of the Dragon Skin 20 subset, we noticed how the filter
made with the same material, Dragon Skin 20, was able to obtain
more compact clusters, especially considering the two square
classes. However, we could see that the two round classes
completely overlapped when considering only the first two
principal components: this overlapping could be probably
resolved by using the third principal component, as can be

FIGURE 10 | 2D variance retention plots when testing the filter’s material on the three different subsets made with test objects of the same material: Ecoflex
00–10 (A), Dragon Skin 20 (B), and PLA (C). ‘Ef’ and ‘Ds’ indicate Ecoflex and Dragon Skin, respectively.
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deduced by the increasing slope of the Dragon Skin 20 silhouette
score in Figure 9B. As predicted, the PLA subset showcased
greater levels of class overlapping and class spread. Nevertheless,
both overlapping and spread were strongly reduced while using
the Dragon Skin 30 filter, leading to a higher silhouette score (see
Figure 9C).

Last, we analyzed how the different data structures affected the
classification accuracy for each individual subset (see Figure 11).

When using the Ecoflex 00–10 subset, the Ecoflex 00–10 filter
showcased very sharp transients and overall high accuracy in
almost all classifiers, leaving out only RBF SVM.When compared
with its performance in Figure 8, we observed much steeper

FIGURE 11 | Classification accuracy results when testing the filter’s material on the three different subsets made by test objects of the same material: Ecoflex
00–10 (A), Dragon Skin 20 (B), and PLA (C).
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transients, indicating a good performance even with a small
number of retained principal components. Similarly, the
Dragon Skin 20 filter showed highly reduced transients and
good accuracy when tested on the Dragon Skin 20 test set for
all classifiers except Decision Tree. In the case of RBF SVM, we
could also see that it outperformed every single one of the other
materials. However, because of its high accuracy in the overall
data-set, it was not possible to detect any obvious increase in
accuracy. Concerning the PLA subset, we knew that the quality of
the data structure was low for all filter’s materials (see Figure 9C),
and we could not observe any noticeable difference in
classification performance among the data-sets belonging to
different filter’s materials. Even if Dragon Skin 30 was shown
to have the better data structure, it did not end up playing an
important role when performing tactile classification, except for
the case of Naive Bayes, in which we appreciated a very sharp
transient, especially if compared with the other materials.
Noticeably, Gaussian process seemed to have inconsistent
accuracy in all cases, especially when compared with Figure 8,
and we believed that this was due to the smaller size of the data-
sets, negatively affecting the choice of the kernel. Overall, the
results suggested once again that matching the environment’s
mechanical characteristics produces optimal results, even if
slightly, whereas filters of significantly higher or lower
compliance inevitably lead to worse performances. We believe
that these experimental findings were caused by particular

conditions of the trade-off between compliant contact and
mechanical filtering of the signal. As previously reported in
the literature (Shimojo, 1997), a compliant filter is able to
better adapt to the environment, achieving a larger contact
area, but also acts as a low-pass mechanical filter, losing the
high-frequency components of the acquired data. However, when
the filter has the same compliance as the environment or less, it
does not affect the recorded signal because its cut-off frequency is
higher than what the dynamics of the environment can produce.
Therefore, matching the visco-elastic properties of the
environment is the best design choice for tactile filters because
it maximizes the compliance of the filter, thus increasing the
contact area with the environment, without introducing
information losses.

3.4 Damage
Finally, we evaluated by visual inspection the condition of the
filters after the experiments. Figure 12A shows the state of all four
filters after the end of the 2,400 experimental trials. The outcome
clearly shows that stiffer filters are more prone to mechanical
damage, especially when coming into contact with even stiffer
objects like the PLA subset. In the Dragon Skin 30, a plastic
deformation caused by the groove on top of both the rough PLA
objects was clearly visible. The same pattern was also observable
in the Dragon Skin 20 filter, even if much less visible, whereas the
Ecoflex series did not show any sign of plastic deformation or

FIGURE 12 | Tactile filters after the end of the experimental trials (A). Any damage on the outer diameter is due to the removal of the filter from the end-effector and
not from the contact with the test set. Measured load applied on each filter while performing the experiment (B). Objects’ names are as follows: “SS” is Square Smooth,
“SR” is Square Rough, “RS” is Round Smooth, “RR” is Round Rough, “Ds” is Dragon Skin, and “Ef” is Ecoflex.
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mechanical damage under visual inspection. Any damage to the
outside diameter of the filter was due to the removal of the filter
itself from the robot and not from the interaction with the
environment. Probably, the damage was caused by the higher
load exerted on the filter while operating with harder materials:
the approaching phase is stopped when a given load was detected
by the sensing unit (see Section 2.2). As already discussed, harder
materials could lead to a bigger load on the filter itself to achieve
the same tactile signal. To verify such a hypothesis, we ran the
experimental protocol a second time, performing only one trial
per object, while recording the exerted load at the end of the
approaching phase using a scale (CBC bench counting scale, Adam
United Kingdom LTD.) placed below the testing set. Figure 12B
shows that when using filters made of Dragon Skin, especially
Dragon Skin 30, the contact was detected only at a greater load,
confirming that harder materials indeed behaved as mechanical
filters. In turn, a greater load led to greater damage. The damage
of the filter might not matter for short experiments, but it is an
important drawback for longer ones, leading to the conclusion
that softer materials should be preferable for long-term solutions,
provided that they provide similar or just slightly worse
classification performances. As a result, when sensing stiff
objects, we came across a trade-off between the data quality
and the life span of the system: matching the high stiffness would
increase the quality of the data structure and the classification
accuracy, but it would also shorten the life span of the tactile filter,
promoting damage and plastic deformation.

4 DISCUSSION

In this work, we tried to characterize the relationship between the
environment and filter-based tactile sensing. We believe that the
surrounding environment plays an important role in dictating the
requirements for tactile filters. We not only aimed to investigate
the relationship between those materials and the environment but
also wanted to allow soft robots to fully utilize the potential
offered by tactile sensing; therefore, we decided to use as tactile
filters the four silicones commonly used in soft robotics: Dragon
Skin 30, Dragon Skin 20, Ecoflex 00–30, and Ecoflex 00–10.

To create a starting point for our analysis and test the
performance of the different filter’s materials, we acquired data
from a set of 12 objects, showcasing different shapes, roughness,
and materials. For each object and each filter’s material, we
performed 50 trials, for a total of 2,400, using a UR5 robotic
arm to carry the load of the sensor unit and the tactile filter and to
perform active touch on the test objects. By analyzing the PCA
variance retention and the silhouette score, we discovered that
variance retention is proportional to the filter’s compliance, and a
more separable data structure is proportional to the filter’s
stiffness instead. Moreover, we showed how the best
classification accuracy was achieved by Dragon Skin 20,
outperforming the other materials in eight machine learning
classifiers out of nine.

Then, in order to break down the relationship between the
mechanical properties of the filter and the ones of the
environment, we divided the test set into three subsets based

on the material of the test object: one subset containing only
Ecoflex 00–10 object, one only Dragon Skin 20, and the last one
PLA. After performing the same data analysis on all subsets, we
discovered that matching the mechanical characteristics of the
environment leads to a better data structure and, in turn, to a
higher classification accuracy: both the Ecoflex 00–10 and the
Dragon Skin 20 filters outperformed the other filter’s materials
when tested with the single-material subset of the same material.
When tested using the PLA object, all materials scored a very low
silhouette score, but Dragon Skin 30 had the highest value: we
believe that this was due to Dragon Skin 30 being the stiffest
material out of the four tested materials; therefore, the closest to
the much stiffer PLA. However, no noticeable difference was
observed between different materials in classification accuracy.
We believe the observed behavior was due to a combination of
limited losses on the high frequency components of the signal and
a compliant as possible contacting surface. Finally, we showed
how stiffer materials are more prone to damage, making them
unsuitable for long-term applications.

Overall, we utilized four common silicones as tactile filters to
investigate the relationship between the filter’s and the
environment’s mechanical characteristics, paving the way for
environment-specific filter-based tactile sensing in soft
robotics. We proved that matching the compliance of the
surrounding environment is the best strategy to achieve better
data structure and higher accuracy. However, we acknowledge
that our work is limited to a finite set of filter’s and environment’s
materials. We believe that these findings can be extended to the
other products of the Ecoflex and Dragon Skin series and possibly
to silicones in general, effectively covering most soft robotics
applications, but cannot be generalized for all materials. Because
of such limitations, we endorse future work on a wider range of
materials and the possible development of a mathematical model
to analytically represent the relationship between tactile filters
and surrounding environments in terms of data structure and
classification accuracy.
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