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In the last decades, the increasing complexity of the fusion of proprioceptive

and exteroceptive sensors with Global Navigation Satellite System (GNSS) has

motivated the exploration of Artificial Intelligence related strategies for the

implementation of the navigation filters. In order tomeet the strict requirements

of accuracy and precision for Intelligent Transportation Systems (ITS) and

Robotics, Bayesian inference algorithms are at the basis of current

Positioning, Navigation, and Timing (PNT). Some scientific and technical

contributions resort to Sequential Importance Resampling (SIR) Particle

Filters (PF) to overcome the theoretical weaknesses of the more popular and

efficient Kalman Filters (KFs) when the application relies on non-linear

measurements models and non-Gaussian measurements errors. However,

due to its higher computational burden, SIR PF is generally discarded. This

paper presents a methodology named Multiple Weighting (MW) that reduces

the computational burden of PF by considering the mutual information

provided by the input measurements about the unknown state. An

assessment of the proposed scheme is shown through an application to

standalone GNSS estimation as a baseline of more complex multi-sensors,

integrated solutions. By relying on the a-priori knowledge of the relationship

between states and measurements, a change in the conventional PF routine

allows performing a more efficient sampling of the posterior distribution.

Results show that the proposed strategy can achieve any desired accuracy

with a considerable reduction in the number of particles. Given a fixed and

reasonable available computational effort, the proposed scheme allows for an

accuracy improvement of the state estimate in the range of 20–40%.
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1 Introduction

From a general perspective, many problems in Artificial Intelligence (AI) and robotics

applications may depend on positioning and navigation data (e.g., path planning,

autonomous obstacle perception, collision avoidance). A growing number of AI

services indeed infer traffic conditions and support situational awareness and decision

making by leveraging such information. In these context, multiple agents aim at solving
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state estimation problems by processing proprioceptive and

exteroceptive input measurements affected by noise.

Nowadays, AI gathers a number of methods to deal with

similar applications. Such methods were historically part of

different disciplines like information, estimation and control

theory. Besides, many tools developed to solve for localization

and tracking belong to probability theory such as Bayesian

inference and associated algorithms (Luger, 2005; Russell and

Norvig, 2010). Bayesian algorithms relying on Hidden Markov

Models (HMM) are extensively exploited in predictive filtering

problems applied to state estimation (Poole and Mackworth,

2017). By supporting service robotics, autonomous vehicles and

Intelligent Transportation Systems (ITS) at a larger extent,

navigation systems handle discrete-time HMM for object

tracking and state estimation that rely on a set of observable

measurements, e.g., range, bearing or heading (Ristic et al., 2004;

Gustafsson et al., 2002).

To this aim, a variety of algorithms belonging to the classes of

Kalman Filter (KF) and Sequential Monte Carlo (SMC) like the

Particle Filter (PF) are exploited in modern Global Navigation

Satellite System (GNSS) receivers to infer its Position Time

Velocity (PVT). KF estimation is widely used due to its lower

computational load w.r.t. the other approaches. However, in

many complex scenarios, KF solutions are sub-optimal when

the errors on the measurements cannot be modeled through

normal distributions. Furthermore, when dealing with highly

non-linear system models, the performance of Extended Kalman

Filter (EKF) is limited by the approximations caused by the

linearization of the problem. Unlike KF-based solutions, PF can

deal with any given error density as well as with non-linear

systemmodels. This feature eases the implementation of a variety

of hybridization schemes that combine heterogeneous

measurements for enhancing GNSS such as sensor fusion and

collaborative localization (Georgy et al., 2010; Minetto et al.,

2020; Shen et al., 2019; Xia et al., 2020). In these applications, it

has been shown that PF is able to provide improved performance,

but at the cost of a non-negligible computational complexity,

especially for high cardinality of the state space (Minetto et al.,

2019). Indeed, the number of particles needed to accurately

represent the a-posteriori densities exponentially increases

with the cardinality of the state space (Poterjoy, 2016). In

applications with loose constraints on computational or

power-consumption, PFs may mitigate sub-optimalities of

other approaches, as in (Zocca et al., 2021) where the filter is

adapted to a non stationary statistics of the input measurements.

Furthermore, SMC methods and in particular PF has been

historically recognized as a tool for AI (Thrun, 2002; Russell and

Norvig, 2010; Poole and Mackworth, 2017; Sutton and Barto,

2018), as also shown in (Carrera Villacrés et al., 2019), where a PF

is used as a global searchmethod in reinforcement learning; while

(Ma et al., 2020) uses instead a set of particles to maintain an

approximate latent state distribution in recurrent neural

networks. In fact, among its many applications, a possible

view of PF is that of a search mechanism that machine

learning algorithms can leverage, similarly to a gradient

descend algorithm.

Many variants of the PF have been proposed in the literature

to deal with its computational burden and main theoretical

limitations (Ristic et al., 2004). For instance, if the state model

contains a linear sub-structure subject to Gaussian noise, Rao-

Blackwellized PF (also denoted in the literature as Marginalized

PF) allows to solve any linear sub-structure through KF, thus

reducing the number of dimensions sampled by the PF (Schon

et al., 2005; Zhou et al., 2019). PF exploiting an adaptive number

of particles was also proposed to overcome the complexity issue

(Closas and Fernández-Prades, 2011). Several works aimed at

mitigating particles degeneracy using hybrid filtering schemes

such as Unscented Particle Filter (UPF) and Auxiliary Particle

Filter (APF) (Yu et al., 2020; Song et al., 2021).

Contrary to the remarkable availability of PF algorithms and

variants, application-specific optimizations appear lacking in the

literature and few works address optimizations in the weighting of

the particles. Despite the advantage of the PF lies in its ability to

deal with heterogeneous statistics of measurements and non-linear

systems, the presented optimization strategy can be employed

regardless of the scenario and is derived from the mathematical

relationship between the quantities involved in the problem. For

this reason, it is important to stress that the technique presented

here is valid not only for any kind of hybrid scheme integrating

additional measurements to GNSS, but to other estimation

problems as well. In order to simplify the discussion and focus

solely on the proposed technique, we address a baseline scenario,

where the PF is dealing with GNSS only. In any case, the weighting

strategy we propose can be extended to more complex receiver

architecture, where the PF would be more suited and

advantageous, without any loss of validity. In light of this, this

paper presents a solution based on Sequential Importance

Resampling (SIR) PF, through the following contributions:

• A strategy to optimize the use of particles which leverages

the information carried by different subsets of input

measurements;

• A statistical derivation of the advantage brought by the

proposed technique, along with a numerical example for a

more direct and visual understanding of the proposed

approach;

• An experimental assessment using real GNSS

measurements to demonstrate the accuracy

improvement provided by the proposed approach in

real applications.

1.1 Theoretical background

This section recalls some theoretical background on state

estimation via SIR PF that is needed before introducing the main
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contributions of our work. A more in-depth discussion of SMC

methods can be found in (Cappé et al., 2007; Elfring et al., 2021)

Despite our work focusing on the implementation of PF for

GNSS positioning, we present in this section a general

terminology and notation that is valid for state estimation

problems to a larger extent.

1.1.1 Recursive bayesian state estimation
In general, the problem of estimating hidden states can be

modeled using a discrete-time HMM. Following the Markov

assumption, the sequence of states is modeled by aMarkov chain.

Therefore, the probability of the current state θk is only based on

the previous one θk−1 and conditionally independent of all other

earlier states. In other words, the current state only depends on

the previous one, because the latter summarizes the entire

history. Likewise, the current measurements zk only depends

on the current state θk. Thanks to these properties, the system can

be described simply with the following items:

• θk, is a stochastic state space vector of the hidden states

(those to be estimated);

• θk = f(θk−1, wk−1), is a function describing the discrete-time

state space transition, which also accounts for process

noise wk−1;

• zk = [ z1,k . . . zM,k ], is a vector of M synchronous and

independent input measurements, also referred to as

observables;

• zk = h(θk, vk), which is called the observables-states function

and models the relationship between observations and

hidden state space, also accounting for observation

noise vk.

Bayesian filters are able to exploit the a-priori knowledge of

the state space transition function f(θk−1, wk−1) to estimate the

state space vector θ̂ which maximizes the a-posteriori probability

of the observations zk (Brown and Hwang, 2012). The inference

of state variables is iteratively performed through a cyclic

prediction-update approach, which allows to successfully

mitigate the effect of noisy measurements. A fundamental

characteristic of the PF is that, differently from other classes

of Bayesian estimators, it does not impose strict constraints on

the items of the Bayesian estimation problem (Arulampalam

et al., 2002).

1.1.2 State estimation using SIR PF
The main idea of PF is to use sets of random samples (called

particles) to represent a Probability Density Function (PDF). In

short, PF uses Bayes’ theorem to obtain a discrete approximation

of the probability density function of the state space (Posterior)

by combining statistical knowledge of earlier states (Prior) and

current measurements (Likelihood). Following the state space

transition model, the posterior becomes the prior at the new

iteration, and so on.The main stages of a SIR PF routine are

shown in the scheme of Figure 1. On the first epoch, the filter is

initialized by sampling a set of N particles from an initial

distribution and assigning initial importance weights (Cappé

et al., 2007). Each ith particle θik is a possible realization of

the state space vector θk. Subsequently in the prediction stage,

each of the N particles is propagated forward according to the

state space transition model θik � f(θik−1,wk−1) (Arulampalam

et al., 2002). This step is closely related to the prediction of non-

SMC estimators, i.e. KFs, which instead operate on a single

prediction of the state space.Afterwards, the vector of nominal

measurements zi is computed for each particle. This steps

consists in computing, using the state-observables function h,

what would be the nominal measurements obtained by each

particle, given their states. Then, weights are computed by relying

on probability density models, p(zm,k|θik), w.r.t. the input

measurements. We first define

�zim,k � zm,k − zim,k (1)

which accounts for the misclosure between the observables zm,k

and the corresponding nominal quantity for the ith particle, zim,k.

In words, �zim,k represents the difference between what one of the

current input measurements and what each particles would

measure without accounting for observation noise. Since the

state space transition function is used as proposal density, the

unnormalized weights for statistically independent

measurements can be computed as

~wi
k � wi

k−1L zk|θik( ) � wi
k−1 ∏M

m�1
p �zim,k( ) (2)

This means that p(�zim,k) represents the probability that the ith

particle would have measured the corresponding input

observable. Therefore, the likelihood for each particle L
represents the probability that it has observed the entire set of

input measurements.Since the aim of PF is obtain a discrete

representation of a continuous PDF, weights are then normalized

according to

wi
k �

~wi
k∑N

i�1 ~w
i
k

(3)

so that they sum up to one.

A common problem is that, after a few iterations, there is an

increase in variance of particles due to the presence of process

noise (as time is propagated forward in the prediction step, the

uncertainty on the system increases). From a practical

perspective, this means that many particles have weights close

to zero, and therefore they do not contribute in representing the

posterior. This phenomenon is known as the degeneracy problem

(Arulampalam et al., 2002).

To solve this problem, the concept of resampling has been

introduced (Rubin, 1988). The purpose of this step is to draw a

new set ofN particles based on the starting set. In particular, each

particles has a probability of being chosen that is proportional to
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its weight. As a consequence, the particles with small weight are

very likely to not be chosen and not appear in the new set, while

particles with large weight are very likely to be chosen and can

appear multiple times. While resampling effectively solves the

problem of degeneracy by getting rid of many particles with low

weights, it introduces a new problem known as sampling

impoverishment. Since some particles disappear from the

resampled set, the target PDF is sampled in fewer points,

meaning the knowledge of the value of the PDF in such

points is lost. However, this step is crucial as it essentially

balances the growth of variance in particles.

The most basic resampling strategy, which we will consider

for the remainder of this discussion for the sake of simplicity, is to

perform resampling at each iteration. A more efficient alternative

strategy to limit the computational load of this stage would be to

first compute the effective number of particles as

Ne � 1∑N
i�1 wi( )2 (4)

and choose to perform resampling when this value drops below a

certain threshold. Since the probability of resampling is proportional

to the weight of each particle, the weights of the newly drawn

particles are all set to wi � 1
N. Therefore, given our strategy to

resample at every iteration, (2) can be simplified by neglecting the

weight wi
k−1 from the previous iteration. Because of its effect on the

computational load, many efficient resampling strategies have been

proposed and analysed in the literature (Bolić et al., 2004; Li et al.,

2015), but a more detailed discussion of the resampling stage is out

of the scope of this work. After the prediction and correction steps

have been performed, the cloud of particles now represents a discrete

estimate of the posterior distribution which we are interested in. The

output estimate can be obtained as a weighted sum of the particles

θ̂k � ∑N
i�1

wi
kθ

i
k (5)

which replaces the integral operation on continuous probability

functions.

2 Materials and methods

2.1 Multiple weighting (MW) approach

When applying legacy PF to estimation problem, the entire set

of inputmeasurements to compute a single weight for each particle

as in (2). However, in some cases, not all input measurements are

related to all observables through the measurement model. In

particular, it can be that different classes of measurements are

related to only non-overlapping subsets of the state space. Standard

PFs mix all the available information into a single weight, which

gives an overall likelihood across the whole state space, but a more

intelligent use of resources is possible by leveraging the knowledge

of the state-observables relationship.

In such cases, similar measurements can be grouped into J

subsets of the observables z(j), from which multiple weights w(j)

are derived to estimate the corresponding sub-spaces of the state

vector θ(j). Subset indexes are noted using round brackets, while

time indexes have been dropped from the remainder of the

discussion for the sake of readability. In order to characterize

the information diversity from dissimilar measurements, multiple

observables-state functions can be defined

z j( ) � h j( ) θ j( ), v j( )( )where z j( ) ⊂ z. (6)

By leveraging the aforementioned simplification thanks to the

resampling strategy considered, (2) can be rewritten for the jth

independent weight is computed as

~wi
j( ) � L z j( )|θi( ) � ∏M j( )

m�1
p �zim( ) (7)

FIGURE 1
Simple scheme of the routine of a SIR PF architecture implementing Bayesian state space estimation. In each stage, particles (depicted with
circles) are represented with a different color. The corresponding name of the stage is on the left side, while the right side is devoted to present some
important equations governing the system and highlighting the main issues that PF face. The radius of particles is proportional to their weight.
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where M(j) is the number of measurements in vector z(j). A

different resampling strategy would not allow for the

simplification shown in (7), as the weight from the previous

epoch would still appear in (7), but the proposed strategy would

still be valid, as this is simply introduced to simplify notation in

our discussion. Equivalently, the state estimate from (5) is also

modified as

θ̂ j( ) � ∑N
i�1

wi
j( )θi j( ) (8)

so that the different subsets are estimated independently using

their corresponding weights. In this architecture, the

resampling stage can be performed fully independently on

the different subsets using the corresponding weights to

draw the resampled subsets. Eventually, the estimated

subsets are obtained according to (8) and then merged

together, as well as the subsets of each particle with the

same index i. Since we are interested in approximating a

discrete probability density, the indexing of the particles

does not influence the output estimate. The outcome of (8)

only depends on values and weights of particles. It is important

to highlight that while the sampling of the two subsets is

performed independently, position and velocity are still tied

in the dynamic model and used jointly in the prediction step, as

one is the derivative of the other, and hence the two quantities

cannot be fully decoupled. The proposed technique performs

the split only during the sampling and resampling stages to

leverage the information diversity to reduce the dimensionality

of the problem.

An alternative solution could be to distribute the estimation

over multiple filters instead, with each one devoted to the

estimation of a subset of states, as developed in (Djuric et al.,

2007) and (Djurić and Bugallo, 2013). This solution would still

require the filters to share information as different subsets of

states can still be related in the system model (e.g. prediction of

position at next epoch depends on the velocity), and hence comes

at the cost of a more complex architecture w.r.t. the solution

presented here. The state propagation cannot be performed

independently for the defined subsets, differently the

advantage of model-based Maximum-A-Posteriori (MAP)

estimation is unexploited, turning into a different estimation

paradigm, i.e., Maximum Likelihood (ML).

A related problem was discussed in (Davey et al., 2011), when

integrating asynchronous measurements from dissimilar sensors,

and was solved by proper modifications of the resampling stage.

In our case, measurements are dissimilar but collected

synchronously. When measurement information is merged

into a single weight, the likelihood of each subset of states is

lost and only an overall likelihood of each particle is retained in

the standard PF approach. For this reason, the problem has to be

addressed before the resampling stage and the mentioned

approach cannot be applied to this scenario.

Local PFs (Rebeschini and Van Handel, 2015) have also been

addressed in distributed, multi-sensor tracking techniques

(Closas and Bugallo, 2012; Maskell et al., 2006) in order to

maintain a dimension-free approximation error. This

approach is possible in state space models where block of

observations are conditionally independent given the hidden

state and only depend on separate components of the hidden

state.

Furthermore, the proposed solution differs from classic Rao-

Blackwellized PF (Schon et al., 2005), as all subsets of the state

space are estimated through PF, thus preserving the fundamental

properties of SMC methods.

2.2 Theoretical proof

In the state estimation problem, the original posterior

distribution of the states is a continuous form PDF fθ. SMC

methods leverages a large number of particles to form a discrete

distribution which approximates the original continuous

distribution. The normalization step is then taken to ensure

the summation of the Probability Mass Function (PMF) is

always equal to 1 as from (3). Therefore, if we use different

numbers of particles to represent the same continuous

distribution, the PMFs will be different, as can be seen in

Figure 2.Let’s assume that we have a state space vector

containing two independent states θ = [ θ1 θ2 ]; we want to

estimate them using both PF and Multi Weight Particle Filter

(MW-PF) and compare the solutions. Let’s consider as an

example the estimation of the first state θ1. Given a fixed

FIGURE 2
One dimensional example of using a sampling strategy to
generate PMFs to approximately represent a PDF. Each PMF with a
different number of particles N is shown with a different color. For
the example, subscripts refer to the value at which sampling is
performed.
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number of particles, we want to determine which discrete

marginal distribution of θ1 is more accurate between those

obtained with PF or MW-PF. For this discussion, we will

consider a set of N particles (indexed using superscript) and

focus more specifically on two particles with given values θ1 = [ a

c ] and θ2 = [ b d ].First, we consider what happens when

employing MW-PF. We define the subsets as θ(1) = [ θ1 ] and

θ(2) = [ θ2 ]. Since in this case the subsets only contain one state,

vector notation is not used. The corresponding independent

weights are computed using (7). For the two particles with

values θ1(1) � a and θ2(1) � b, we want

w1
1( )

w2
1( )
� fθ 1( ) a( )
fθ 1( ) b( ) (9)

where fθ(1)(a) is the marginal distribution evaluated in a. If this

condition is met, then the continuous posterior distribution can

be represented correctly using a discrete distribution (Bertsekas

and Tsitsiklis, 2008). This is possible in any PMF because w1
(1)

and w2
(1) are always normalized by the same denominator as in

(3), so their ratio is constant.

In subset θ(1), the weights are determined by Eq. 7, so they all

directly follow

wi
1( ) ~ fθ 1( ) ∀i ∈ 1, N( ) (10)

regardless of how many particles are used in the filter. It follows

from (10) that a single particle with value θ(1) = a is sufficient to

sample directly the value of the marginal posterior distribution

fθ(1)(a). Therefore, (9) holds and we guarantee that the marginal

is represented correctly.

Instead, in the PF case, the weights of particles represent a

joint distribution fθ � fθ(1) ,θ(2) of the entire set of states. Due to

their independence, the joint distribution can be represented as

the product of every marginal distribution fθ(1) and fθ(2)
(Bertsekas and Tsitsiklis, 2008), and we obtain that

w � w 1( )w 2( ) ~ fθ 1( )fθ 2( ) � fθ 1( ) ,θ 2( ). (11)

For this reason, if we want to derive an estimation of the marginal

distribution of θ(1) from the joint distribution, the influence from

θ(2) needs to be eliminated. In order to do that, we start by defining

a set of particles ia = 1, . . . ,M1 that respect the condition of θ(1) = a.

We want to obtain the marginal weight, denoted by the hat, by

sampling at that value ŵθ(1)�a
(1) for the first subset θ(1) from the total

space set θ. This means that we need to average the weight of all

particles which belong to the set ia. This can be written as

ŵθ 1( )�a � 1
M1

∑M1

i�1
wia . (12)

Because of the left side of (11), we can rewrite it as

ŵθ 1( )�a � 1
M1

∑M1

i�1
wia

1( )w
ia
2( ). (13)

Since all particles follow θi(1) � a, then the first weight is the same

for all and it can be taken out of the summation as

ŵθ 1( )�a � w
θ 1( )�a
1( )

1
M1

∑M1

i�1
wia

2( ). (14)

We know from (10) that w
θ(1)�a
(1) is a sampling directly from

fθ(1)(a). Hence in (14), the approximation ŵθ(1)�a equals to the

true valuewθ(1)�a
(1) times a scaling factor. The latter is influenced by

the particular values of wia
(2), which in turn depends on the values

of θ(2) of the particles in the set ia. Notice that this scaling value

does not necessarily have to be equal to 1, as all weights are then

normalized by a common factor. Instead, we want the average of

wia
(2), to be equal to the average of the entire set wi

(2). Otherwise,
approximations at different values of the marginal distribution of

θ(1) are multiplied by different scaling factors, leading to

distortion. This effect is mitigated as N increases.

Using the same inference for the other particle θ2, we define

the set ib = 1, . . . , M2 which satisfies θ1) = b. Then, the marginal

weight for θ1) = b can be obtained as

ŵθ 1( )�b � w
θ 1( )�b
1( )

1
M2

∑M2

i�1
wib

2( ). (15)

Therefore,

ŵθ 1( )�a

ŵθ 1( )�b �
wi�a

1( )
wi�b

1( )

1
M1

∑M1
i�1w

ia
2( )

1
M2

∑M2
i�1w

ib
2( )
. (16)

Because the states θ1 and θ2 are independent, for any given i, the

particle weights wi
(2) follow the same distribution with mean μ

and variance σ2. Applying the central limit theorem, the

distribution containing 1
M2
∑M2

i wib
(2) approaches a normal

distribution with mean μ and variance σ2/M2 with the

increasing of M2 (Bertsekas and Tsitsiklis, 2008). Therefore,

only with a large number of total particles N, which also

implies large M1 and M2, both 1
M1
∑M1

i wia
(2) and 1

M2
∑M2

i wib
(2)

will converge to μ. Then, it follows that
ŵ
θ(1)�a
(3)

ŵ
θ(1)�b
(3)

will converge to
fθ1(a)
fθ1(b) and the PDF can be represented without distortion.

In summary, given that θ1 and θ2 are independent, if we want

to represent the marginal distribution of θ1 using a set of particles

without distortion, the conventional PF needs more particles

than the proposed MW-PF because it needs to eliminate the

impact from θ2.

2.3 A numerical example

A numerical example is provided in order to show the

appearance of a bias in the estimation given by the inaccurate

approximation of the marginal posterior distribution when the

number of particles is low and an inefficient weighting strategy is

used.In order to show how an inaccurate approximation of the

posterior distribution can produce errors on the estimate, a small

numerical example is set up. We consider a single epoch
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simulation in which the state space vector is θ = [ θ1 θ2 ] with true

values θT = [ 4 4 ]. The input to the estimation problem is a set of

two measurements z = [ z1 z2 ]. The observable-states function h

that describes the relationship between measurements and states

is in this case

zj � θTj + vj ∀j ∈ 1, 2{ } (17)

such that each measurement is a direct noisy observation of

the corresponding state. The noise terms vj, in this example is

assumed to be statistically distributed as zero mean Gaussian

distributions with standard deviation σ = 2. This corresponds

to the probability densities p ~ N (0, 2) used to compute the

weights, as in (2). However, in order to focus on the error due

to inaccurate sampling of the posterior probability, it is

assumed that the realization on noise available at the

targeted epoch are equal to zero, so that vj = 0 ∀j ∈ {1, 2}.

We assume to have N = 3 particles with given values θ1 = [

4 6 ], θ2 = [ 7 4 ], θ3 = [ 1 2 ]. Moreover, all weights are

initialized to 1
N � 1

3.

First, the state estimate is computed through a conventional

PF. We start by computing, for each input measurement, the

difference the input value and the nominal one for each particle

as in (1), which yields �z1 � [ 0 − 2 ], �z2 � [ −3 0 ] and
�z3 � [ 3 2 ]. These vectors are fed into 2) to obtain the

weights, which are then normalized according to (3). A

summary of the weights is reported in the third column of

Table 1. The final estimate is obtained using (5) as

θ̂ � ∑3
i�1

wiθi � 0.538 · 4 6[ ]( ) + 0.288 · 7 4[ ]( ) + 0.175 · 1 2[ ]( )
� 4.340 4.726[ ].

(18)
As it can be seen, the final estimation is biased w.r.t. the true value

assumed for θT1 , θ
T
2 , as also graphically depicted in Figure 3A.

When performing the estimation according to the proposed

MW-PF, the subsets θ1) = [ θ1 ] and θ2) = [ θ2 ] have to be

considered. In this case, only the first measurement contributes

to �z11, which is used to obtain the first weight wi
(1) through 7)

(with M(1) = 1). The same procedure can be followed to obtain

the weights wi
(2) from �z12. After normalisation, the weights take

the values reported in the last two columns of Table 1. The final

estimate is obtained using (8) as

θ̂ 1( ) � ∑3
i�1

wi
1( )θ

i
1( ) � 0.606 · 4( ) + 0.197 · 7( ) + 0.197 · 1( ) � 4

θ̂ 2( ) � ∑3
i�1

wi
2( )θ

i
2( ) � 0.274 · 6( ) + 0.452 · 4( ) + 0.274 · 2( ) � 4

(19)
and so there is no error on the estimate, as depicted in Figure 3B.

Because of the independence, the marginal posterior density

of the first state is described by a Gaussian distribution

fθ(1) ~ N (μ, σ) which is symmetric around the mean μ = 4.

Therefore,

fθ 1( ) μ + ϵ( )
fθ 1( ) μ − ϵ( ) � 1 (20)

is always true for any given value ϵ. Duo to our assumptions, we

notice that particle states θ21 � 7 and θ31 � 1 are indeed symmetric

around μ = 4. So we compute the ratio of their weights for MW-

PF and PF cases as

w2
1( )

w3
1( )
� 0.197
0.197

� 1

w2

w3 �
0.288
0.175

� 1.648

(21)

and notice that it is not equal to one for the latter. Since in this

example N is not large, the influence of the second state θ2 is not

averaged out, and the PF is not able to accurately represent the

marginal posterior density, leading to an error on the estimation.

2.4 Application to GNSS positioning

This section is dedicated to the implementation of the

proposed MW-PF to precise state estimation in GNSS

receivers. In Section 1, it was mentioned how the main

advantage of PF is the ability to handle non-linear models

and non-Gaussian probability densities without loss of

performance. While these conditions are mainly encountered

in scenarios when GNSS is integrated with external

measurement, our proposed method can be applied regardless

of the scenario and there is no need to focus on a specific one.

Therefore, for the sake of the brevity of our discussion and

simplicity of the notation, we present here an implementation

based on stand-alone GNSS.

In this scenario, there are two types of measurements that

GNSS receivers can obtain by receiving and processing the

navigation signals broadcasted by satellites. Namely,

pseudoranges and range rates (which are related to

Doppler shift). In this study, we employ zero-mean

Gaussian distribution as probability densities of

measurement errors. Even tough this choice could be sub-

TABLE 1 Summary of values and weights of particles.

States PF weights MW-PF
weights

θ1 θ2 W w(1) w(2)

θ1 4 6 0.538 0.606 0.274

θ2 7 4 0.288 0.197 0.452

θ3 1 2 0.175 0.197 0.274
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optimal in some scenarios, we expect both filter architectures

would be equally penalized by this choice so that any

comparison remains fair.

2.4.1 GNSS measurements model and state
estimation

A generic GNSS receiver is tasked with the estimation of the

following state space vector

θ � x y z b︸�����︷︷�����︸
θ 1( )

_x _y _z _b︸�����︷︷�����︸
θ 2( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (22)

where the variables [ x y z ] refers to the spatial coordinates in a

given Cartesian reference system, and [ _x _y _z ] to the axial

velocity components, while b and _b are respectively the bias and

drift of the local clock. In the MW approach, the two subsets of

the state space vector are denoted with θ(1) and θ(2).

The first class of observables, namely pseudoranges, is

defined as

ρs �
��������������������������
xs − x( )2 + ys − y( )2 + zs − z( )2

√
+ b. (23)

where subscript s denotes a generic satellite. The pseudorange

equation consists of the Euclidean distance between satellite s and

the receiver, plus the clock bias.

In order to introduce the second class of measurements,

range rates, we first define the differential vector quantities of

position and velocity

Δp � xs − x( ) ys − y( ) zs − z( )[ ]
Δv � _xs − _x( ) _ys − _y( ) _zs − _z( )[ ] (24)

so that range rates can then be expressed as

Δρs � Δv · Δp
T

‖Δp‖( ) + _b. (25)

In the investigated application, pseudorange measurements do

not provide any knowledge about the receiver velocity, but only

about its position and clock bias, as can be seen from (23). As a

consequence, using range information to compute a weight that

also contributes to the estimation of the velocity leads to a sub-

optimal use of particles.

On the other hand, it is worth noting that from (25) the range

rate measurement has a limited dependency on the particle position.

A key assumption introduced here is that the difference in position

between the particles has a negligible contribution to the

computation of the nominal range rate. In other words, we

assume that if particles all had the same velocity, they would

measure the same range rate. Since the distance between satellites

and particle is much greater than the distance between any two

particles, all the vectorsΔp pointing from the particles to the satellite

can be considered parallel to each other. Eq. 25 computes the

normalized projection of the relative velocity Δv on vector Δp.
Since the latter contribution is approximated to be the same for all

particles, then the range rate measurement depends only on the

velocity and clock drift of the particle.

This key assumption allows to perform a split of the input

measurements as

z � ρ1 . . . ρM 1( )︸������︷︷������︸
z 1( )

Δρ1 . . . ΔρM 2( )︸��������︷︷��������︸
z 2( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (26)

where subscripts M(1) and M(2) are the number of available

pseudoranges and range rates measurements respectively.

Since in general, for each visible satellite, it is possible to

FIGURE 3
Comparison of a state-estimation using conventional (A) and the proposed MW (B) approaches applied to a simplistic two-dimensional
scenario solved bymeans of a SIR PFwithN =3 particles. Weightswi, shown in (A), are split in independent weightswi

1,2 and normalized for each sub-
state in (B).
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obtain one measurement for each of the two classes, we consider

that M(1) = M(2).

Figure 4 provides a block scheme of the computation of the

two weights in the MW-PF architecture, similarly to how it is

described in Section 1.1.2. In particular, we denote with �wi
m the

output of the probability densities which are being multiplied in

(7). It is clear from the scheme how pseudoranges only contribute

to the computation of the first weight, and vice versa range rates

only to compute the second weight.

3 Results

The experiment data was collected using the Navigation

Constellation Simulator (NCS) simulator, a GNSS signal

simulation and generation system. The ephemeris and

observation data, including pseudoranges and Doppler shifts

was stored in RINEX format. All the observations are of the

Global Positioning System (GPS) constellation with the L1 C/A

signal. To simulate noise, we add noise via ionosphere noise

model with the standard deviation of 2 and 1 m for

pseudoranges in the static and dynamic scenarios,

respectively, and 1 Hz for Doppler shifts in both scenarios.

Input measurements are collected at a rate of 10 Hz. To validate

our proposed algorithm, both static and dynamic scenarios

were built.

3.1 Static scenario

Although Bayesian estimation is primarily exploited for

kinematic state estimation, accurate static state estimation is

still of interest as it can temporarily occur in any real

trajectory. Moreover, it can be an interesting baseline

assessment for the performance of any positioning

algorithm. Therefore, an experiment involving a static

position estimation is performed first. Figure 5 plots all

the positioning solutions obtained with the PF and MW-

PF for all epochs of the simulations. The plot represents the

East-North plane of a local East-North-Up (ENU) reference

system, with the ground truth in its center. To better visually

display the difference in performance between the two

implementations of the PF, we chose for this plot the

solutions when a low number of particles is used (N =

2000), and the improvement given by our proposed

method is more stark.

FIGURE 4
Weight computation stage of the proposed MW-PF
architecture, based on two subsets of observables according to (7).

FIGURE 5
Comparison of PF and MW-PF solutions (in east-north
reference frame) applied to position estimation of a static GNSS
receiver for N =2000. Mean value of the estimate and 3-σ
uncertainty in the form of error ellipses are also depicted for
the two distributions. The ground truth is located in (0,0).

FIGURE 6
(A) RSE on position (B) RSE on velocity (C)Clock bias error (D)
Clock drift error.
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The errors on all the state variables over time is instead

displayed in Figure 6 for N = 4000. As it can be seen, the MW-PF

is more accurate in the estimation of all the state variables.

Eventually, Figure 7 shows the CDF of the positioning error

for both algorithms, tested for some selected number of particles.

In reality, more values were tested but were in the end omitted for

the sake of clarity of the plot. In particular for the MW-PF, going

beyond N = 4000, the performance did not improve any further.

For the PF instead, as it can be inferred from the plot, for values

lower than N = 8000 the performance degraded very quickly.

Instead, values above N = 12000 were not tested as the

simulations became increasingly time consuming. More details

on the computational complexities will be given later, but for now

it is interesting to notice how the performance of PF for N =

12000 is very close to that of MW-PF for N = 2000. The

important take-away from this observation is that MW-PF

can reach the same target accuracy with a significant

reduction of the computational load. On the other hand, for a

fixed available (and reasonable, meaning N is not too large)

computational effort, the MW-PF can outperform the PF in

terms of accuracy of the positioning solution.

3.2 Dynamic scenario

For a second assessment, an artificial dynamic trace is used

with the shape of a Bernoulli lemniscate, as can be seen in

Figure 8, which also displays the positioning solutions for both

algorithms (N = 8000). The moving target performs roughly one

loop of the track during the simulations. By comparing the

positioning solutions of Figure 8 it can be seen how, especially

in some parts of the trajectory, the MW-PF solution is

consistently closer to the ground truth.

As done for the static case, the error on the state variables of

interest is shown in Figure 9. Once again, a deliberate choice of

plotting the errors of the two algorithms for a lower number of

particles was made in order to emphasize the difference in their

performance. In particular, it is interesting to notice from

subplots 1) and 3) how in this scenario the improvement in

accuracy given by MW-PF is larger for the estimation of position

and clock bias. This difference was not as stark when comparing

the same errors of the static scenario. This phenomenon can be

FIGURE 7
Comparison of the CDF of the positioning error of a static
receiver using PF and MW-PF solutions with different numbers of
particles.

FIGURE 8
Comparison of PF and MW-PF solutions (in east-north
reference frame) applied to position estimation of a dynamic GNSS
receiver.

FIGURE 9
(A) RSE on Horizontal position (B) RSE on Horizontal velocity
(C) Clock bias error (D) Clock drift error.
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quantified by looking at Tables 2, 3 which provide a summary of

the two tests. The improvement column refers to the percentage

decrease in Root Mean Squared Error (RMSE) when employing

MW-PF instead of PF. We remind that from (22), that position

and clock bias are the variables chosen to form the first sub-

vector, since pseudorange measurements provide information

about those state, as can be seen from (23). This results suggests

that, when the target is in a dynamic state, splitting the estimation

of position and clock bias with their respective derivatives, the

gain in estimation accuracy is larger for the former. The CDF of

the positioning solution of both algorithms is shown in Figure 10.

We selected the results for some specific number of particles in

order to not overcrowd the plot. The take-away from this results

is similar to what observed for the static scenario, which is that

MW-PF can reach the same accuracy of PF with a reduced

number of particles. Finally, 11 shows the error at the 90th

percentile of the CDF for both algorithms and different values of

particles. We wanted to investigate whether by further increasing

N for PF, its performance would eventually reach or even surpass

that of MW-PF. The last value we tested was N = 60000 since

simulations eventually became too long to continue. This last test

yielded a 90th percentile error of 0.650 against one of 0.607 for

MW-PF at N = 20000. The conclusion is that even when N is

extremely large, the performance of PF doe not fully converge to

that of MW-PF, suggesting that some small residual additional

errors remain due to the sub-optimal sampling of the algorithm.

Given the results from Figure 11 for MW-PF, we identify

values of N between 4000 and 12000 as possible good working

points in terms of trade-off between computational load and

accuracy.

3.3 Computational complexity

Since the two algorithms presented in these results present

some differences in their code and implementation, a summery

of their execution times is given in order to give a fair comparison

between the two. The results are reported in Table 4 for some

values of N. By fixing any N, the run time of MW-PF is slightly

longer than PF as expected, since some computations and checks

TABLE 2 Comparison of the static scenario between MW-PF and PF
(both at N =4000) in terms of RMSE on the state variables.

State PF MW-PF Improvement (%)

3D Position 2.084 1.613 22.6

3D Velocity 0.371 0.304 18.1

Clock Bias 1.089 0.766 29.7

Clock Drift 0.217 0.173 20.3

TABLE 3 Comparison of the dynamic scenario betweenMW-PF and PF
(both at N =12000) in terms of RMSE on the state variables.

State PF MW-PF Improvement (%)

3D Position 0.724 0.418 42.3

3D Velocity 0.224 0.219 2.2

Clock Bias 0.391 0.240 38.6

Clock Drift 0.120 0.116 3.3

FIGURE 10
Comparison of the CDF of the positioning error of a dynamic
receiver using PF and MW-PF solutions with different numbers of
particles.

FIGURE 11
Comparison of 90th percentile error of PF and MW-PF
solutions with different numbers of particles.

Frontiers in Robotics and AI frontiersin.org11

Zocca et al. 10.3389/frobt.2022.950427

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.950427


are performed twice. Overall, this increase is not large and is

mostly offset by the fact that the MW-PF implementation can

reach the same accuracy with fewer particles.

It is important to stress that the times reported here are given

simply in order to provide a comparison between the two

algorithms, rather than to give a thorough investigation of the

computational complexities of PF. In fact, no parallel

optimization has been implemented (although we anticipate to

do so in the future), despite some heavy computations of PFs

could be implemented this way, leading to a reduction of the run

times.

4 Discussion

This paper has presented a technique, named MW, to exploit

the information diversity of input measurements in order to

achieve a more accurate sampling of the posterior distribution

with fewer particles. Despite being applied to GNSS here, MW

can be generalized to be exploited in other types of state

estimation problems with minimum modifications of the PF

routine. While in the investigated application the state vector was

split in two subsets, any number of such subsets is possible in

principle, according to the relationship between measurements

and states in the system of interest. Along with its description, the

paper also presented a mathematical derivation to support the

technique, as well as a simplified and intuitive example to show

the advantage of the proposed method.

An extensive simulation campaign has been performed,

including both static and dynamic scenarios. Results show

that, for both cases, MW-PF provides better performance in

terms of accuracy, especially when a low number of particles is

used. In particular, the same accuracy obtained through PF can

be reached with MW-PF with as low as one fifth of the particles.

On the other hand, for the same N = 12000 in the dynamic

scenario, MW-PF can provide an improvement of over 40% in

terms of positioning error.

Indeed, when sampling over multiple weights, each particle

retains information about the likelihood of each subset of states,

rather than an overall likelihood across all states. Since each

particles holds more information about the posterior, an accurate

representation can be obtained with fewer particles. In fact, the

proposed MW-PF is able to mitigate the main drawback of SMC

methods w.r.t. to KF. Furthermore, it should be added that since

the resampling stage is performed independently on the subsets,

another advantage of the MW approach is that this step can be

implemented in parallel in a straight-forward manner, thus

possibly further reducing its run time.

MW-PF is a propedeutic concept to bridge traditional

Bayesian estimation and AI approaches. The proposed

architecture naturally requires an automated subspace

identification through a state-measurements relationship for

intelligent management of the computational resources.

Future works may address AI solutions to automate the

positioning problem analysis or the estimation problem to a

large extent.
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TABLE 4 Comparison of the simulation run times in seconds between
PF and MW-PF to solve 3000 epochs of PVT.

N PF MW-PF

1000 6.26 6.40

2000 7.98 8.05

4000 11.15 11.30

8000 15.00 15.58
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