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This paper proposes an adaptive robust Jacobian-based controller for task-

space position-tracking control of robotic manipulators. Structure of the

controller is built up on a traditional Proportional-Integral-Derivative (PID)

framework. An additional neural control signal is next synthesized under a

non-linear learning law to compensate for internal and external disturbances in

the robot dynamics. To provide the strong robustness of such the controller, a

new gain learning feature is then integrated to automatically adjust the PID gains

for various working conditions. Stability of the closed-loop system is

guaranteed by Lyapunov constraints. Effectiveness of the proposed

controller is carefully verified by intensive simulation results.
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1 Introduction

Today, the great development of science and technology has created a premise for

scientific research to develop to a new level in which the field of robotics has being chosen

to be the leading industry by many countries. To promote science and technology

backgrounds, intelligent robots in the industrial application are starting to prosper

strongly, attracting many research experts. To control robot moving safely to desired

positions with obstacles, collision avoidance and path planning were matters of concern.

In recent years, various strategies have been studied for collision avoidance control

purpose. The basic idea behind the collision avoidance algorithms is to design a proper

controller which can result in a conflict-free trajectory. Path selection methods are the one

of several techniques to avoid obstacles. It uses off-line/on-line algorithms to produce a

curve that connects the starting and target points with a predefined initial position,

velocity and acceleration. For example, an online trajectory generation algorithm called

Ruckig considered third-order constraints (for velocity, acceleration, and jerk), so the

complete kinematic state could be specified for waypoint-based trajectories (Berscheid

and Kroeger, 2021). The smooth trajectory based on method combining of fourth and

fifth order polynomial functions was presented in (Boscario et al., 2012) in which, the

outcome of the method was the optimal time distribution of the via points, with respect to

predefined objective function. After that, the joint based controller might use the inverse

kinematic to solve the desired joint angular. Early collision avoidance approaches
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concentrated on the static obstacles handling by the sensor-based

motion planning methods (Borenstein and Koren, 1991), using

nearness diagram navigation to successfully navigate in

troublesome scenarios (Minguez and Montano, 2004) and

using trajectory planning algorithms to avoid obstacles

(Shiller, 2015). In reality, many techniques have been

proposed to cope with moving obstacles. For instance, a

reactive avoidance method incorporating with a non-linear

differential geometric guidance was presented in (Mujumdar

and Padhi, 2011) and a collision avoidance algorithm based

on the potential fields was proposed in (Huang et al., 2019). It

can be seen that in normal applications of robotic manipulators,

the controllers were designed in the joint space in which it

requires exact inverse kinematic computation as well. Non-

etheless, complex internal dynamics and external disturbances

coming from divergent working conditions are main obstacles

hindering development of excellent controllers.

To realize control objectives of the robots in real-life

missions, simple proportional-integral-derivative (PID)

controllers are priority options (Bledt et al., 2018), (Wensing

et al., 2017) due to simple design. If the proper control gains were

found, the high control outcomes could be obtained (Park et al.,

2015), (Ba and Bae, 2020). A lot of research have been then

studied to improve the performance of the PID controllers using

intelligent approaches such as evolutionary optimization and

fuzzy logic (Astrom and Hagglund, 1995). The methods

exhibited promising control results thanks to using both

online and offline sections (Tan et al., 2004). The off-line

control one could flexibly select the proper PID parameters

based on the system overshoot, settling time and steady-state

error, while the on-line one would adopt the operating control

errors to adjust fuzzy logic parameters to re-optimize the system,

improving the system quality significantly. However, the tuning

methodology of fuzzy logic controllers is mostly based on

experiences of operators (Juang and Chang, 2011). Another

series of the intelligent control category was based on the

biological properties of animals in which a genetic algorithm

was combined with a bacterial foraging method to simulate

natural optimization processes such as hybridization,

reproduction, mutation, natural selection, etc., (Cucientes

et al., 2007). This evolution could deliver the most optimal

solution. That the solving process requires a large number of

samples and takes a long-running time limits its application.

Recently, tuning PID control parameters using neural networks

has become an effective approach with many contributions (Kim

and Cho, 2006), (Neath et al., 2014). The conventional PID one

itself is a robust controller (Thanh and Ahn, 2006). The learning

ability integrated to the controllers makes it flexible to the

working environment (Ye, 2008). Lack of an intensive

consideration of learning rules in steady-state time could

make the system unstable in a long time used (Ba et al.,

2019), (Ye, 2008), (Rocco, 1996).

To further improve the control performance, internal and

external dynamics of robots need to be compensated during

working processes. To this end, classical methods could be

employed based on accurate mathematical models of the

robots (Craig, 2018), (Zhu, 2010). Good control results were

exhibited using such the conventional approaches, but it is not

easy to extend the control outcome to complicated robot

structures. Intelligent modeling methods could be adopted to

increase applicability of the controllers to various robots in

different working environments (Karayiannidis et al., 2016),

(Gao et al., 2022). Excellent control performances were

accomplished with the intelligent control approaches.

However, convergence of the learning process is still not

explicitly proven (He et al., 2020), (Wang et al., 2020). To

support this kind of theoretical drawback, linear leakage

functions were integrated the estimation phases of the

network operation. However, this term could be slowdown the

overall learning performance. Hence, advanced learning

behaviors for the network need to be extensionally studied.

In this paper, an intelligent direct PID controller is

proposed for position-tracking control in task space of

robotic manipulators. Without using inverse kinematics, the

operator just needs to input the desired position value, the

controller will calculate and give the desired control position to

the robot by itself (Craig, 2005; Ba and Bae, 2021; Ba et al.,

2021). This process will be of great help since, in practice, there

are quite few robots with quite complex hardware structures

that make the inverse kinematics calculation difficult. The more

degrees of freedom a robot has, the more difficult the

calculation process, requiring more time and effort. The

proposed controller is built based on a conventional PID

framework. A non-linear neural network is then employed

to eliminate internal/external disturbances during the

working process. To increase the adaptive robustness of the

controller, a new gain learning rule is integrated to flexible tune

the PID gain for different working conditions.

Outline of the paper is structured as follows. Section

2 discusses system modeling and problem statements. Section

3 presents design of the proposed controller. Section 4 analyzes

verification results. The paper is then concluded in Section 5.

2 System modelling and problem
statements

Behaviors of a general robotic manipulator can be presented

in the following form (Craig, 2018), (He et al., 2020):

M q( )€q + C q, _q( ) + G q( ) + τf + τd � τ, (1)

where q, _q, €q are respectively vectors of joint position, velocity,

and acceleration, M(q) is the mass matrix, C(q, _q) is the

centrifugal-Coriolis moment, G(q) is the gravitational

Frontiers in Robotics and AI frontiersin.org02

Minh Nguyet and Ba 10.3389/frobt.2022.975850

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.975850


moment, τf is the frictional moment, τd stands for external

disturbances, and τ is the actuator moment or control signals.

Remark 1: the control objective of this paper is to find out a

proper control signal (τ) to control position of the end-

effector of the robot following a desired profile. To

accomplish this task, we can use inverse kinematics (IK) to

compute desired joint positions from the end-effector

reference signals. However, it is not trivial to find solutions

of complicated robots. To avoid this shortcoming, we can

apply direct control algorithms without caring of the IK

problem. Hence, one needs consider dynamic model (1) in

the task space as follows (Craig, 2018):

€x � J q( ) �M−1
q( )τ + d, (2)

where x is the end-effector position of the robot, J(q) is the

Jacobian matrix, and �M(q) is the nominal value of the mass

matrix M(q), and d is the lumped disturbance as presented as

follows:

d � J q( ) �M
−1

q( )τ + J−1 q( ) _J q( ) _q( )
−J q( )M−1 q( ) C q, _q( ) + G q( ) + τf + τd( ), (3)

where �M(q) � �M(q) − �M(q) is the deviation mass matrix.

Remark 2: It is very difficult to determine accurate parameters of

model (1), (2) or (3). Furthermore, the parameters sometimes vary

during the working processes. To treat this drawback, the proposed

controller is required to be model-free, robust and flexible.

3 Neural flexible PID controller

In this section, the proposed controller is designed with new

features to realize the control mission stated. Theoretical

effectiveness of the closed-loop system is then analyzed using

Lyapunov constraints.

3.1 A flexible PID control framework

The controller is developed based on a conventional PID

(Tan et al., 2004) structure as in Eq. 4.

τ � − �MJ+ Kpe +Kde
. + Ki ∫ edt( ) (4)

where e � x − xd is the control objective, xd is the desired

trajectory, J+ is pseudo-inverse of the Jacobian J and

Kp,Kd, Ki are control gains.

FIGURE 1
The testing robot. (A) Control scheme of the robotic system. (B) Configuration of the testing robot.
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We assume that the desired trajectory xd is inside of the

workspace of the robot and the end-effector x of the robot can

reach to the desired position selected. Advanced path-

planning and obstacle-avoidance algorithms (Mujumdar

and Padhi, 2011; Shiller, 2015; Huang et al., 2019) could be

employed to generate appropriate desired profiles for the

robot.

In real-time control, one can tune the control gains

(Kp,Kd, Ki) for acceptable control performances. However,

the fixed gains might not ensure good control errors for

various working conditions (Thanh and Ahn, 2006), (Rocco,

1996). To cope with this problem, we propose an automatic

tuning law for PID gains, as follows:

KP � K2K2 + K1 + K2
�k0

KD � 2K2 + �k0
KI � K2K1 + �k0K1

_�k0 � −α0diag e| |( )diag 1 + e| |( )−1�k0 + β0 _e + K2e + K1∫edt( )2

.

.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(5)

whereK1, K2 are positive core gains, α0, β0 are learning rates and
�k0 � diag(�k0) is the activation gain.

FIGURE 2
Simulation data of the controllers in the first simulation. (A) Reference inputs and system outputs of the verifying controllers. (B) Comparative
control errors. (C) The process disturbances of the joints. (D) Control signals generated by the controllers. (E) The gain behaviors of the proposed
controller. (F) Estimation results of the proposed neural network.
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Remark 3: As seen in Eq. 5, the PID gains are structured from

static and dynamic gains which respectively yield robustness and

adaptation of the closed-loop system. The control gains are

varied in non-linear manners to drive the control error to go

into the desired region regardless of unknown environments. For

faster control results, the disturbance term d needs to be

effectively compensated by a proper control signal.

3.2 Additional neural network control
signal

First of all, the disturbance d is modeled using the following

Radial Basis Function (RBF) network:

d � Wξ q( ) + δ, (6)

where W is the optimal weight vector, ξ(q, _q) is the regression
vector, and δ is the modeling error.

Based on the neural network model (6), the control signal (4)

is modified by adding an additional intelligent control term, as

follows:

τ � − �MJ+
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝Kpe + Kde +Ki ∫ edt

︸���������︷︷���������︸
uPID

+ Ŵξ q, _q( )︸���︷︷���︸
uNN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (7)

where uPID and uNN stand control terms generated by PID and

neural network structure, respectively, and Ŵ is estimate of the

weight vector W. The estimation Ŵ is updated by the following

non-linear mechanism:

_̂wi|i�1..n � −αw ei| | 1 + ei| |( )−1ŵi + βw _ei +K2ei + K1 ∫ eidt( )ξ,
(8)

where αw and βw are learning rates.

Remark 4: The system (8) uses rich information including time-

derivative, linear, and integral function of the control error to

activate the learning process. The weight matrix of the neural

network is automatically updated to ensure the minimum control

error.

3.3 Stability analysis

In this section, we discuss the stability of the closed-loop

system to ensure reliability of the proposed controller for the

robotic system (3). From the above design, we have the following

statements.

Theorem 1: Give a task-space model (3) of robotic

manipulators, if employing a conventional neural PID control

signal (7) supported by adaptive rules (5) and (8), the following

properties hold:

1) The control error e, activation gain �k0 and the neural weight

vectors are bounded.

2) In the stationary phase, the control error e converges to zero.

Proof:

We first synthesize a virtual control error (ev) as follows:

ev � _e + K2e + K1 ∫ edt (9)

The time derivative of the new error (ev) under dynamics (3)

and the model (6) is described

_ev � J q( ) �M−1
q( )τ +Wξ q( ) + δ − €xd +K2 _e +K 1e (10)

By substituting the control signal Eq. 7 and the gain structure

Eq. 5 into the dynamics Eq. 10, we have a simpler form:

_ev � −J q( ) �M−1
q( ) �MJ+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝Kpe +Kd _e +Ki ∫ edt

︸���������︷︷���������︸
uPID

+ Ŵξ q, _q( )︸���︷︷���︸
uNN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+Wξ q, _q( ) + δ − €xd +K2 _e +K1e

� −K2 _e +K2e +K1 ∫ edt( ) − �k0 _e +K2e +K1 ∫ edt( ) − ~Wξ q, _q( )
+ δ − €xd

� −K2ev − �k0ev − ~Wξ q, _q( ) + δ − €xd

(11)

where ~W � Ŵ −W is estimation error of the neural weight

matrix W.

We now consider a new Lyapunov function:

L � 0.5eTv ev + 0.5�k
T

0
�k0 + 0.5∑n

i�1
~wT
i β

−1
wi ~wi. (12)

Differentiating the function Eq. 12 with respect to time and

noting the dynamics Eq. 11 lead to

_L � eTv _ev + �k
T

0 β
−1
0
_�k0 +∑n

i�1
~wT
i β

−1
wi
_~wi � −eTv K2ev + �k0ev − δ + €xd( )

−∑n
i�1
evi ~w

T
i ξ + �k

T

0 β
−1
0 −α0diag 1 + e| |( )−1�k0 + β0e

2
v( )

+∑n
i�1

~wT
i β

−1
wi −αw ei| | 1 + ei| |( )−1ŵi + βw _ei +K2ei + K 1 ∫ eidt( )ξ( )

� −eTv K2ev − δ + €xd( ) − �k
T

0 α0diag e| |( )diag 1 + e| |( )−1�k0
+∑n

i�1
~wT
i β

−1
wi −αw ei| | 1 + ei| |( )−1 wi + ~wT

i( )( )≤ − 0.5eTv K2ev

− �k
T

0 β
−1
0 α0diag e| |( )diag 1 + e| |( )−1�k0 + 0.5λ max K−1

2( ) δ + €xd‖ ‖2

−∑n
i�1

~wT
i β

−1
wiαw ei| | 1 + ei| |( )−1 ~wi +∑n

i�1
β−1wiαw ei| | 1 + ei| |( )−1 wi‖ ‖2 (13)

Applying Cauchy-Schwarz inequality, we obtain the

following result:
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_L≤ − 0.5eTv K2ev − �k
T

0 β
−1
0 α0diag e| |( )diag 1 + e| |( )−1�k0

−∑n
i�1

~wT
i β

−1
wiαw ei| | 1 + ei| |( )−1 ~wi + Δ (14)

where Δ is a lumped term defined as

Δ � 0.5λ max K−1
2( ) δ + €xd‖ ‖ 2

max +∑n
i�1
β−1wiαw wi‖ ‖ 2

max (15)

Since wi and δ are bounded, hence Δ is bounded as well.

This discussion leads to the proof of the first statement of

Theorem 1.

In the stationary phase, the time derivative of the virtual

control error ev converges zeros. By differentiating Eq. 9 with

respect to time and applying Hurwitz criterion on the results, we

can achieve the second proof of Theorem 1.

Remark 5: As carefully observing on the definition (15), one

could selectK2 and βwi to large enough to reduce the disturbance

bound Δ. However, these are still fixed values. From Eq. 14, it can

be seen that the control performance could be enhanced by the

learning gain k0 for various working cases. The control idea is

graphically summarized in Figure 1A. The following

implementation procedure could be referred for deploying the

proposed control algorithm on simulation or real-time testing. 1)

In the first step, all of the learning rates (α0, β0, αw and βw) are set

to be zeros. The positive core gains (K1, K2) are manually tuned

for acceptable control performances. The gain K2 are

recommended to be greater than the gain K1. 2) In the

second step, the learning rates (α0 and β0) of the activation

gain (K0) are adjusted to further enhance the control

performance. In this step, the core gains (K1, K2) could be

retuned in some cases for higher control precision. 3) In the

third step, the regression vector ξ(q, _q) is built and the learning

rates (αw and βw) of the neural network are manually selected

bring the control accuracy to a higher level. The whole tuning

procedure could be applied several times for seeking an excellent

control outcome. Note that, from the second turn, it does not

need to reset the learning rates (α0, β0, αw and βw) to be zeros

anymore.

4 Validation results

This section presents validation results of the proposed

controller in simulations. The control algorithm was applied

to a 2-degree-of-freedom (DOF) robot, as sketched in

Figure 1B. The manipulator was modeled as two rigid links

with lengths of l1 and l2. The mass was distributed at the end of

each link (m1, m2). The robot would work in a vertical plane

with downward gravitational acceleration. Viscous friction

was modeled at the joints (a1, a2). Although this robot is quite

simple, it contains all the necessary components of a general

multi-degree of freedom manipulator including moment of

inertia, centrifugal terms, Coriolis terms, gravity terms and

friction effects.

The detailed dynamic equations of the robot are as follows:

τ1 � m2l
2
2 €q1 + €q2( ) + l1l2m2 cos q2( ) 2€q1 + €q2( )

+ m1 +m2( )l21€q1
−m2l1l2 sin q2( ) _q2 _q2 + 2 _q1( ) +m2l2g cos q1 + q2( )
+ m1 +m2( )l1g cos q1( ) + a1 _q1
τ2 � m2l

2
2 €q1 + €q2( ) + l1l2m2 cos q2( )€q1 +m2l1l2 sin q2( ) _q21+m2l2g cos q1 + q2( ) + a2 _q2

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(16)

To estimate the disturbances d, we used an RBF neural

network with 4 input neurons, 256 hidden neurons and

2 output neurons.

FIGURE 3
Simulation data of the controllers in the second simulation.
(A) The desired profile of the manipulator. (B) Comparative control
errors.
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The actual values of the length of links, mass and viscous

friction coefficients were chosen as

follows: l1 � 0.2; l2 � 0.3;m1 � 7;m2 � 3.5; a1 � 3;m2 � 10

To evaluate the adaptability and robustness of the controller

under divergent working conditions, we compared the proposed

controller (called anPID) with a conventional PID controller

(referred to as cPID) and an adaptive PID controller with using

only automatic tuning law for PID gains (referred to as aPID).

The parameters of the controller were chosen as: K1 �
diag([5; 5])K2 � diag([50; 50]) �M � diag([0.1; 0.1]) while

learning coefficients were α0 � 0.01, β0 � 40 and

αw � 0.01, βw � 50

To carefully express the performance of the proposed

controller, the robotic manipulators were simulated in three

cases. In the first simulation, the robot was controlled to track

the desired trajectories of smooth multi-step signals.

Furthermore, process disturbances in the form of white

noises, as shown in Figure 2C, were added to the output

torques of the actuators. Simulation results of the

conventional and intelligent PID controllers for the tracking

control mission are also shown in Figure 2.

Figures 2A,B shows that the proposed controller maintained

good control errors even though the end-effector of the

manipulator worked throughout a singularity point of (0.1; 0)

(m). Figure 2D exhibits the control signals of the smart PID

controller which had large values at the initial and singularity

points in order to decrease the control errors as fast and much as

possible. This superior property was the achievement of the

learning laws (5) and (8) that are demonstrated by the gain

and weight variations as depicted in Figures 2E, F, respectively.

These terms were first started from the zero value, then their

values had a large overshoot to bring the system to the steady

state rapidly. It can be seen that the system adapted to the

reasonable approximation of the disturbances to bring the

control error to the smallest possible value. Therefore, the

learning ability of the system has been confirmed with

FIGURE 4
Simulation data of the controllers in the third simulation. (A) Trajectory in a straight line. (B) Comparative control errors. (C)Obstacle avoidance
trajectory. (D) Comparative control errors.
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uncertain non-linearities and perturbations through this

simulation validation.

The manipulator was employed to draw a circle whose radius

was 0.15 m and origin was at a point of (0.3; 0) (m) with a

frequency of 1 Hz in the second simulation. The reference input

used is shown in Figure 3A.

With the application of the neural flexible PID controller for

unknown environments but using the adaptive rule (7), the

control results obtained are presented in Figure 3B. From the

data in this figure, although disturbances were not known in

advance, the control qualities of the joints were good at both the

transient and steady-state phases. The results were achieved

thanks to the learning characteristics of the PID gains and the

designed RBF neural network. There was a little overshoot in the

y-direction error due to the large learning rate selected, but this

overshoot might cause the system to quickly reach steady state.

From the comparison of the control data in Figure 3B, it can be

seen that the quality of proposed controller (anPID) was better

than that of the aPID controller which was employed only one

learning law (5). This is possible because the more adaptive terms

the controller had, the more approximation with disturbances it

gained.

In the third simulation, the end effector of robot manipulator

was controlled to move from a point of (0.35; 0.25) (m) to

another point of (0.15; 0.05) (m). After applying the three

controllers for this mission in a free condition in which the

desired trajectory was planned as a straight line, their control

outcomes including the actual outputs and the control errors

were illustrated in Figures 4A, B, respectively. In these figures,

although the proposed controller (anPID) had more oscillation

in the transient state to find adaptive term quickly, it had smallest

overshoot and steady state error when compared with cPID and

aPID controllers.

To further challenge the controllers with a more difficult

working condition, an obstacle was set on the moving trajectory

of the robot in the task space. By applying the trajectory planning

method and the referred avoidance collision method (Borenstein

and Koren, 1991), (Craig, 2005), the desired trajectory was

generated as a curve by using two third-order-segment

polynomials for the position, velocity and acceleration of the

end-effector. The control data in this case are shown in Figures

4C, D. From the comparison of the data in these figures, it can be

seen that the control quality of proposed controller (anPID) was

better than that of the others (aPID and cPID) even though with

the non-linear trajectory generated.

Table 1 described themaximumabsolute (MA) and root-mean-

square (RMS) values of the control performances for a specified

manipulated time (20 s–25 s). The proposed controller always

provided the best MA and RMS error in all cases. These results

show that the proposed control technology compensated efficiently

for the non-linear uncertainties and unknown disturbances. Here,

the advantages of the proposed controller have been confirmed.

Therefore, the simulation results have proved that the studied

control method outperform over the previous ones.

5 Conclusion

In this paper, an intelligent controller is proposed to

optimize the position control performance of a 2DOF

TABLE 1 Statistical computation of the controllers from the validation results.

Control error X position Y Position

MA RMS MA RMS

The 1st case cPID 0.0045 0.0023 0.0036 0.0021

aPID 0.0019 9.36 × 10−04 0.0016 7.66 × 10−4

anPID 7.28 × 10−4 2.45 × 10−4 7.16 × 10−4 2.27 × 10−4

The 2nd case cPID 0.0423 0.0189 0.059 0.0362

aPID 0.0089 0.0046 0.0088 0.0059

anPID 7.33 × 10−4 3.14 × 10−4 0.0016 4.91 × 10−4

The 3rd case (no obstacle) cPID 0.0055 0.0044 0.0089 0.0077

aPID 0.0029 0.0021 0.0033 0.0027

anPID 0.0013 5.24 × 10−4 0.0012 5 × 10−4

The 3rd case (obstacle) cPID 0.0048 0.0037 0.0072 0.0057

aPID 0.0026 0.0018 0.0029 0.0022

anPID 8.37 × 10−4 3.14 × 10−4 0.0016 6.9 × 10−04
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robotic manipulator. The controller is developed based on a

conventional PID structure. New advanced features designed

for disturbance learning and gain adaptation are then

integrated into the ordinary control signal to improve its

robustness and result in high control accuracies. The

control efficiency of the proposed approach was then

successfully verified by theoretic proof and comparative

simulations. It can confirm that the controller is model-

free, simple, robust and flexible. In the near future, the

proposed control algorithm will be integrated with an

additional control term that could result in asymptotic

control performances for dynamical trajectories.

Furthermore, advanced path-planning and obstacle-

avoidance algorithms will be considered to combine with

the controller to increase the flexibility when the system

works in complex environments.

Data availability statement

The raw data supporting the conclusion of this article will be

made available by the authors, without undue reservation.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it for

publication.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Astrom, K., and Hagglund, K. (1995). PID controllers: Theory, design and tuning.
Washington, DC, USA: ISA Press.

Ba, D. X., and Bae, J. B. (2020). A nonlinear sliding mode controller of serial robot
manipulators with two-level gain-learning ability. IEEE Access 8, 189224–189235.
doi:10.1109/access.2020.3032449

Ba, D. X., and Bae, J. B. (2021). A precise neural-disturbance learning controller of
constrained robotic manipulators. IEEE Access 9, 50381–50390. doi:10.1109/access.
2021.3069229

Ba, D. X., Tran, M. S., vu, V. P., Tran, V. D., Tran, M. D., Tai, N. T., et al.
(2021). “A neural-network-based nonlinear controller for robot manipulators
with gain-learning ability and output constraints,” in 2021 International
Symp. Electrical and Electronics Engineering (ISEE), Ho chi minh,
Vietnam, 149–153.

Ba, D. X., Yeom, H., and Bae, J. B. (2019). A direct robust nonsingular
terminal sliding mode controller based on an adaptive time-delay estimator for
servomotor rigid robots. Mechatronics 59. May. doi:10.1016/j.mechatronics.
2019.03.007

Berscheid, L., and Kroeger, T. (2021). “Jerk-limited real-time trajectory
generation with arbitrary target states,” in Proceedings of Robotics: Science and
Systems, July 2021.

Bledt, G., Powell, M. J., Katz, B., Carlo, F. D., Wensing, P. W., and Kim, S. (2018).
MIT cheetah 3: Design and control of a robust, dynamic quadruped robot in
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Madrid, Spain.

Borenstein, J., and Koren, Y. (1991). The vector field histogram-fast obstacle
avoidance for mobile robots. IEEE Trans. Robot. Autom. 7 (3), 278–288. doi:10.
1109/70.88137

Boscario, P., Gasparetto, A., and Vidoni, R. (2012). “Planning continuous-jerk
trajectories for industrial manipulators,” in Proceedings of the ASME 2012 11th
Biennial Conference on Engineering Systems Design and Analysis, Nantes, France,
July 2012.

Craig, J. J. (2018). Introduction to robotics: Mechanics and control. 4. Hoboken,
NJ, USA: Pearson Prentice Hall. th ed.

Craig, J. J. (2005). Manipulator dynamic Introduction to robotics:
Mechanics and control,. 3. Hoboken, NJ, USA: Pearson Prentice Hall,
165–200. inrd ed.s

Cucientes, M., Moreno, D. L., Bugarin, A., and Barro, S. (2007). Design of a fuzzy
controller in mobile robotics using genetic algorithms. Appl. Soft Comput. 7 (2),
540–546. doi:10.1016/j.asoc.2005.05.007

Gao, X., Li, X., Sun, Y., Hao, L., Yang, H., and Xiang, C. (2022). Model-free
tracking control of continuum manipulators with global stability and assigned
accuracy. IEEE Trans. Syst. Man. Cybern. Syst. 52 (2), 1345–1355. doi:10.1109/tsmc.
2020.3018756

He, W., Sun, Y., Yan, Z., Yang, C., Li, Z., and Kaynak, O. (2020). Disturbance
observer-based neural network control of cooperative multiple manipulators with
input saturation. IEEE Trans. Neural Netw. Learn. Syst. 31 (5), 1735–1746. doi:10.
1109/tnnls.2019.2923241

Huang, S., Teo, R. S. H., and Tan, K. K. (2019). Collision avoidance of multi
unmanned aerial vehicles: A review. Annu. Rev. Control 48, 147–164. doi:10.1016/j.
arcontrol.2019.10.001

Juang, C. F., and Chang, Y. C. (2011). Evolutionary-group-based particle-swarm-
optimized fuzzy controller with application to mobile-robot navigation in unknown
environments. IEEE Trans. Fuzzy Syst. 19 (2), 379–392. doi:10.1109/tfuzz.2011.
2104364

Karayiannidis, Y., Papageorgiou, D., and Doulgeri, Z. (2016). A model-free
controller for guaranteed prescribed performance tracking of both robot joint
positions and velocities. IEEE Robot. Autom. Lett. 1 (1), 267–273. doi:10.1109/lra.
2016.2516245

Kim, D. H., and Cho, J. H. (2006). A biological inspired intelligent PID controller
tuning for AVR systems. Int. J. Control, Automation, Syst. 4 (5), 624–636.

Minguez, J., and Montano, L. (2004). Nearness diagram (ND) navigation:
Collision avoidance in troublesome scenarios. IEEE Trans. Robot. Autom. 20
(1), 45–59. doi:10.1109/tra.2003.820849

Mujumdar, A., and Padhi, R. (2011). Reactive collision avoidance of using
nonlinear geometric and differential geometric guidance. J. Guid. Control Dyn.
34 (1), 303–311. doi:10.2514/1.50923

Neath, M. J., Swain, A. K., Madawala, U. K., and Thrimawithana, D. J. (2014). An
optimal PID controller for a bidirectional inductive power transfer system using
multiobjective genetic algorithm. IEEE Trans. Power Electron. 19 (3), 1523–1531.
doi:10.1109/tpel.2013.2262953

Park, H. W., Park, S., and Kim, S. (2015). “Variable-speed quadrupedal bounding
using impulse planning: Untethered high-speed 3D Running of MIT Cheetah 2,” in

Frontiers in Robotics and AI frontiersin.org09

Minh Nguyet and Ba 10.3389/frobt.2022.975850

https://doi.org/10.1109/access.2020.3032449
https://doi.org/10.1109/access.2021.3069229
https://doi.org/10.1109/access.2021.3069229
https://doi.org/10.1016/j.mechatronics.2019.03.007
https://doi.org/10.1016/j.mechatronics.2019.03.007
https://doi.org/10.1109/70.88137
https://doi.org/10.1109/70.88137
https://doi.org/10.1016/j.asoc.2005.05.007
https://doi.org/10.1109/tsmc.2020.3018756
https://doi.org/10.1109/tsmc.2020.3018756
https://doi.org/10.1109/tnnls.2019.2923241
https://doi.org/10.1109/tnnls.2019.2923241
https://doi.org/10.1016/j.arcontrol.2019.10.001
https://doi.org/10.1016/j.arcontrol.2019.10.001
https://doi.org/10.1109/tfuzz.2011.2104364
https://doi.org/10.1109/tfuzz.2011.2104364
https://doi.org/10.1109/lra.2016.2516245
https://doi.org/10.1109/lra.2016.2516245
https://doi.org/10.1109/tra.2003.820849
https://doi.org/10.2514/1.50923
https://doi.org/10.1109/tpel.2013.2262953
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.975850


2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle,
USA. in.,

Rocco, P. (1996). Stability of PID control for industrial robot arms. IEEE Trans.
Robot. Autom. 12 (4), 606–614. doi:10.1109/70.508444

Shiller, Z. (2015). Off-line and on-line trajectory planning Motion and operation
planning of robotic systems, mechanisms and machine science. Switzeland: Springer
International Publishing, 29–62.

Tan, G. Z., Zeng, Q. D., and Li, W. B. (2004). Intelligent PID controller based on
ant system algorithm and fuzzy inference and its application to bionic artificial leg.
J. Cent. South Univ. Technol. 11, 316–322. doi:10.1007/s11771-004-0065-7

Thanh, T. D. C., and Ahn, K. K. (2006)., 16.Mechatronics. doi:10.1016/j.mechatronics.
2006.03.011Nonlinear PID control to improve the control performance of 2 axes
pneumatic artificial muscle manipulator using neural network

Wang, M., Wang, Z., Chen, Y., and Sheng, W. (2020). Adaptive neural event-
triggered control for discrete-time strict-feedback nonlinear systems. IEEE Trans.
Cybern. 50 (7), 2946–2958. doi:10.1109/tcyb.2019.2921733

Wensing, P. M., Wang, A., Seok, S., Otten, A., Lang, J., and Kim, S.
(2017).Proprioceptive actuator design in the MIT cheetah: Impact mitigation
and high-bandwidth physical interaction for dynamic legged robots, IEEE
Trans. Robot, 33. IEEE Transactions on Robotics, 509–522. doi:10.1109/tro.2016.
2640183

Ye, J. (2008). Adaptive control of nonlinear PID-based analog neural networks for
a nonholonomic mobile robot. Neurocomputing 71. doi:10.1016/j.neucom.2007.
04.014

Zhu, W. H. (2010). Virtual Decomposition Control: Toward hyper degrees of
freedom robots. Berlin Heidelberg: Springer-Verlag.

Frontiers in Robotics and AI frontiersin.org10

Minh Nguyet and Ba 10.3389/frobt.2022.975850

https://doi.org/10.1109/70.508444
https://doi.org/10.1007/s11771-004-0065-7
https://doi.org/10.1016/j.mechatronics.2006.03.011
https://doi.org/10.1016/j.mechatronics.2006.03.011
https://doi.org/10.1109/tcyb.2019.2921733
https://doi.org/10.1109/tro.2016.2640183
https://doi.org/10.1109/tro.2016.2640183
https://doi.org/10.1016/j.neucom.2007.04.014
https://doi.org/10.1016/j.neucom.2007.04.014
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.975850

	A neural flexible PID controller for task-space control of robotic manipulators
	1 Introduction
	2 System modelling and problem statements
	3 Neural flexible PID controller
	3.1 A flexible PID control framework
	3.2 Additional neural network control signal
	3.3 Stability analysis

	4 Validation results
	5 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References


