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This article presents an integrated concept of an aerial robot used for predictive

maintenance in the construction sector. The latter can be remotely controlled,

allowing the localization of cracks on wall surfaces and the adaptive deposit of

the material for in situ repairs. The use of an aerial robot is motivated by fast

intervention, allowing time and cost minimizing of overhead repairs without the

need for scaffolding. It is composed of a flying mobile platform positioned in

stationary mode to guide a soft continuum arm that allows to reach the area of

cracks with different access points. Indeed, some constructions have complex

geometries that present problems for access using rigid mechanical arms. The

aerial robot uses visual sensors to automatically identify and localize cracks in

walls, based on deep learning convolutional neural networks. A centerline

representing the structural feature of the crack is computed. The soft

continuum manipulator is used to guide the continuous deposit of the putty

material to fill the microscopic crack. For this purpose, an inverse kinematic

model-based control of the soft arm is developed, allowing to estimate the

length of the bending tubes. The latter are then used as inputs for a neural

network to predict the desired input pressure to bend the actuated soft tubes. A

set of experiments was carried out on cracks located on flat and oblique

surfaces, to evaluate the actual performances of the predictive maintenance

mechatronic robot.
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1 Introduction

The construction domain faces many constraints; one of them is the lifespan of the

structures which depends on the type of materials used in these structures. The used

materials (concrete, metal, wood, etc.) are subject to external conditions such as climate

changes and humidity. These latter cause a lot of damage and degradation that can

produce cracks and it may lead to a breakdown of the building. Repairing these cracks at

the first degradation stage is a subject of predictive maintenance. It can be less costly, with

less mobilization time and safety for workers on site. Therefore, this topic is recent original
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research in designing and controlling autonomous robots for

crack repair to anticipate important structure degradation.

Concerning concrete surfaces, it exists and works in relation

to the identification and characterization of cracks and other

structural damages. Aggelis et al. (2011) worked on a robust

methodology for damage evaluation in concrete before it

becomes visible. Also, Albishi et al. (2012) worked on metal

surfaces and proposed a new sensor based on complementary

split-ring resonators to detect surface cracks.

In addition, the research area for automation of predictive

maintenance has become wider in these last years because of the

electronic and robotic revolution. There exist various concepts

and works related to the use of robots for crack repair. In this

topic, Zhu et al. (2019) presented an arm system for roadway

crack sealing, and Tsai et al. (2013) developed an automatic

method using a mobile robot for crack detection and sealing for

roadways.

The most proposed concepts of predictive maintenance are

based on vision systems. The image processing technology is the

main step for structural health monitoring tasks, including crack

detection, quality, and safety for both modern and old

constructions. For a crack detection task, various approaches

which did not require human involvement were proposed. Based

on whether the detection system has contact with a wall surface,

the methods can be divided into two main categories: based on

contact and based on vision (without contact). Contact-based

methods usually use embedded sensors to detect and characterize

mechanical fractures based on the data recorded from the

sensors. Palermo et al. (2020) proposed a customized design

of an integrated tactile and proximity sensor. Lau (2003) used an

optical fiber to assess concrete structures. Vision-based methods

(Yao et al., 2019) rely on image structure features and they detect

the surface defects by analyzing the texture, skeleton, edge

(Canny, for example), and spectrum of the image.

Recently, deep learning convolutional neural networks

(CNNs) have been used in image-related tasks such as target

tracking (Feng et al., 2019) and semantic segmentation (Li et al.,

2019). In addition to the fast improvement of computational

ability, a CNN also has a strong ability in feature extraction,

which is a key point in this kind of detection task. He et al. (2017)

proposed a region-based convolutional neural network

architecture for instance segmentation. Mohan and Poobal

(2018) and Silva and Lucena (2018) studied and reviewed

multiple studies in the field of deep learning based on crack

detection and compared the performances in different

experimental conditions.

Researchers have validated the feasibility and satisfying

performance of deep learning CNN approaches for surface

defect detection. Dorafshan et al. (2018a) investigated the

feasibility of using a CNN based on an AlexNet dataset

(Krizhevsky et al., 2017), in the inspection of concrete

buildings using small unmanned aerial vehicles. Dorafshan

et al. (2017) and Dorafshan and Maguire (2018) proved the

feasibility and challenges of fatigue crack detection in bridge

structures as well. As for the comparative study, the CNN shows

very robust performance compared to the traditional, well-

known edge detection methods. Dorafshan et al. (2018b)

compared the performance of common edge detectors and

deep CNNs for image-based crack detection in concrete

structures. It shows the advantage of CNNs to perform crack

detection, compared to edge detection algorithms which are

more influenced by external noises. In addition to crack

detection on concrete wall surfaces, deep CNNs can also be

used in the detection of other categories of surface imperfections,

with rather good performance. Perez et al. (2019), proposed a

CNN to detect the dampness of buildings, while discussing the

cause and effects of this type of defect.

With the development and massive implementation of

deep learning convolutional neural networks in defect

detection tasks, we focus, in this work, on developing a

model based on a CNN to identify cracks on concrete

surfaces. The transfer learning method is used in the

development of a crack detection model, i.e., we fine-tune

the hyperparameters of the crack detection model based on a

pre-trained model for multi-class instance segmentation.

When a crack is detected and located, it is then classified

in the following classes: microscopic (width < 5 mm),

mesoscopic (5 mm <width < 10 mm), and macroscopic

(width > 10 mm). In the following work, we were interested

in microscopic cracks. Then, their shapes and structural

features can be computed, extracted, and sent to the crack

reparation mechatronic robot to perform the predictive

maintenance process.

A soft-continuum manipulator has been introduced these

last years for inspection activities in the construction domain.

The monitoring of the surface state can be automated to detect

any appearance of cracks. Several systems have been developed to

automate the inspection process in some specific environments,

such as subway tunnels (Zhang et al., 2014), flexible pavement

surfaces (Oliveira and Correia, 2013) (Shi et al., 2016), bridge

decks (Prasanna et al., 2016), and buildings (Yan et al., 2017)

(Chen et al., 2016). De Paz et al. (2013) used a hexapod robot,

named Hex-piderix, with a stereo camera to inspect the cracking

on surfaces such as walls or roofs of buildings. Access to these

places is sometimes difficult for the operators. Some used

unmanned aerial vehicle (UAV) systems to diagnose cracks

on surfaces of the buildings. Crack detection is essential for

health monitoring of built infrastructure. An integrated system

that enables revisiting crack locations during building

inspections by means of a quadrature UAV is presented by

Kucuksubasi and Sorguc (2018). Phung et al. (2017) used a

UAV the data collection to create a 3D model of the targeted

structure by using laser scanners. For kinematic modeling of a

soft continuum arm, data-driven approaches have been

considered to improve the performance model reconstruction,

such as by Karlik and Aydin (2000) and Daachi et al. (2012),
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where neural networks were used to approximate the behavior of

a large number of Degrees of Freedom (DoF) robot manipulators,

allowing to develop adaptive controllers in the presence of

nonlinearities. A hybrid controller combining both the model-

based and neural network approaches has been proposed by

Jiang et al. (2017) and Reinhart et al. (2017). Jiang et al. (2017)

presented a control algorithm for a manipulator that can be

extended to several segments in a 2D plane. Its kinematics is

solved in two levels. In the first level, an analytical model based on

the gradient descent method is used to determine the optimized

positions of all segment peaks based on predefined

measurements. The second level uses neural networks to

determine the pressures of each segment, taking into account

the viscoelasticity property. Reinhart et al. (2017) proposed a

hybrid, data-driven analytical approach for the early control of a

bionic manipulator. The effectiveness of this approach was

demonstrated by a reduction in tracking errors, which

represents less than half of the errors observed when using

the analytical model. Lakhal et al. (2015) used a multi-layer

neural network to approximate the solutions of the inverse

kinematic equations of the soft continuum robot, where the

time-allocation for the learning process was considerable, due

to the complex kinematic of the robot. A data-driven approach

has also been used to approximate the soft arm kinematics by

MELINGUI et al. (2014), to develop a kinematic controller

(Melingui et al., 2015). A hybrid approach is introduced by

Lakhal et al. (2015) for real-time solving of the soft arm

model. It consists of a real-time resolution and

implementation in case of trajectory tracking. A methodology

of kinematic modeling and synthesis of the approximate

solutions is proposed for the case of a continuum

manipulator. The modeling approach is issued from a

modeling of a series of parallel rigid manipulators, where the

resolution of the nonlinear model is approximated using a neural

network technique.

1.1 Study contribution

Repair of wall surfaces can require time and high

precision. The automation of this operation allows for

reducing the intervention time and keeping a good repair

quality. Currently, the literature does not report on integrated

solutions for all the following steps for crack repair, namely,

detection, localization, preparation, and repair. In this study,

we propose an integrated concept for automatic detection,

localization, and in situ repair of microscopic cracks with a

local intervention on the surface. It uses cooperative behavior

between an unmanned aerial vehicle (UAV) and a soft

continuum arm to facilitate the task of predictive

maintenance of cracks on flat or oblique surfaces. The

advantage of using a UAV is that it can scan a large area

on the wall surface and reach the microscopic crack location in

less time, instead of using a scaffold. The UAV control can be

autonomous or with the operator in the loop. This last option

is considered in this development, to consider the safety

requirement of using the UAV in a confined space. Then,

the soft arm allows guiding a nozzle to realize a continuous

deposit of putty materials to fill the cracks. The choice comes

from the fact that it can be operated on congested and narrow

surfaces, due to its flexibility, after maintaining the UAV

stable at its stationary position. This inherent flexibility

makes them suitable for various applications, including

tracking the shape of the cracks and operating in complex

and congested environments. The use of continuum

manipulators not only reduces the intervention time but

they are also light and easy to install and transport. This

work explains the steps of detection, localization, and repair of

microscopic cracks in terms of local intervention with a

continuous deposit of a putty material.

The article is organized as follows: Section 2 presents the

predictive maintenance system for microscopic cracks in which

the different components of the system are described. It also

presents the deep learning approach for the identification and

localization of cracks. The quantitative approach used to control

the integrated mechatronic system is developed. The

implementation and the obtained results are presented in

section 3 followed by a discussion in section 4. The

conclusion of the results and future work are provided in

section 5.

2 Materials and methods

The aim of our concept is to repair cracks automatically

using robots and developed technologies. This task is achieved

by performing several steps. The process of this operation

called predictive maintenance is shown in Figure 1. The first

step is to scan the structures with a camera embedded on the

UAV and send the images and the current position of the

system to an on-board computer to detect cracks. Once a crack

is detected, according to the size of the crack and its location,

the reparation decision will be taken and the system generates

the shape of the crack and its centerline and they will be sent to

the mobile platform and soft robot. The next step is to

calculate the coordinates of this crack in the absolute frame

of the UAV; this operation allows the mobile platform to move

to the location of the crack. In this study, the movement of the

mobile platform to the location of the crack is done manually

using a joystick, and the UAV then keeps the same direction

and altitude. Once the mobile platform is in a stationary

position, the soft arm guides the nozzle along the

centerline of the crack when it starts pumping the material.

However, the accuracy of maintaining the UAV position can

be affected by weather conditions, external contacts, GPS

signal strength, etc.
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2.1 System description

This part presents a general description of the predictive

maintenance system, followed by a description of the methods

developed for detecting and repairing microscopic cracks.

The experimental platform is a prototype for predictive

maintenance, composed of an unmanned aerial vehicle (UAV)

and a soft arm, as shown in Figure 2. The idea is to design an

industry-scale prototype that can automatically detect, locate,

and repair microscopic cracks after filling putty materials from

an embedded nozzle.

2.1.1 Soft arm

The soft arm describes one section of the continuum

manipulator called CBHA for compact bionic handling arm

(Escande et al., 2015) as shown in Figure 3. It is a soft bionic

manipulator inspired by an elephant trunk. It is a continuum

robot and can be classified as a soft robot with intrinsic actuation.

The rigidity of the soft arm is provided first by the polyamide

material manufactured through a rapid prototyping process, and

secondly, by the high number of interconnected bionic

backbones, which provide it wide maneuverability compared

FIGURE 1
Principal of the predictive maintenance process.
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to a rigid manipulator. Due to its flexible material, one section of

the soft arm is lightweight (0.460 kg) and can carry out a maximal

payload of 0.140 kg. From a macroscopic level, the bending

section is composed of three continuous flexible backbone

tubes (soft actuator). From a microscopic level, each tube is

composed of bionic backbones. It is composed of three electro-

pneumatic valves to control the pressure of each backbone tube.

A total of three sensors are used to estimate the bending length

from the three wire-potentiometers shown in Figure 3, which

allow measuring the instantaneous lengths of the tube during

bending. Also, reflective markers are installed on the tip and

along the arm for shape control based on the Optitrack vision

system shown in Figure 13.

2.1.2 Flying platform (unmanned aerial
vehicle)

It is a four-rotor mobile flying platform equipped with

four brushless DC motors. It is controlled by a Pixhawk

autopilot, equipped with a GPS for outdoor missions and a

FIGURE 2
Predictive maintenance robot system.

FIGURE 3
Two serial sections of the soft continuum manipulator.
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PX4 flow sensor for indoor missions. Concerning indoor

applications of the flying soft continuum manipulator

technology, the miniature crack repair on interior surfaces

of tall buildings and edifices of historical heritage is the main

challenge. For that, a 3D scan of the indoor surfaces can be

done a priori in offline, for the automatic detection and

localization of the target cracks. The advantage of the

optical flow is the position estimation using ultrasonic data

and the image flow. For this considered UAV, the air supply

unit and the power supply are placed on the ground. They are

connected to the UAV through wires of 10 m. This is to reduce

the overall weight of the system. The UAV is used as a guide

platform for the soft arm. First, the UAV is stabilized in the

stationary mode in front of the crack with the operator control

in the loop. A wheeled contact (Figure 2) between the UAV

and the wall has allowed to maintain the system stable. The

parameters of the UAV are mass = 3.1 kg and size = 0.65 m.

The UAV can carry out a load of 2 kg in the presented version.

FIGURE 4
Architecture of the Mask RCNN.

FIGURE 5
Results of the segmentation model applied on different images of cracks.
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The soft arm, the nozzle system, and the piezo-electric valves

have a weight of 1.25 kg. The fill of the crack is realized with

the putty material traveling inside the nozzle. The Optitrack

system is used to improve the stability of the UAV, where the

tests are performed indoors, in absence of external

disturbances. The current UAV system has been designed

to hold a nozzle of 5 mm diameter, containing a maximum of

0.125 L of putty material (Figure 2). The nozzle is operated as a

pre-loaded needle where the mandarin is replaced by a

pressure-driven catheter through an electro-pneumatic

valve shown in Figure 3. The vision guidance sensor of the

UAV (Figure 2) collects image data through its embedded

cameras and distance data through its ultrasonic sensors.

2.2 Crack detection and localization

This section describes a deep learning-based approach for

the detection and localization of cracks. The approach

explores the images captured by the embedded visual

sensor (camera) of the UAV and detects existing cracks.

Furthermore, a centerline (i.e., skeleton) of the crack is

extracted to generate a tool path for the repairing task.

Then the location of the crack within the frame of the

drone and world frame is calculated. A deep learning

instance segmentation model is adopted for the detection

of cracks, followed by a morphological medial axis

transform for the extraction of the centerline. The

localization is realized by applying frame transformation to

the calculated crack location.

2.2.1 Deep learning for crack detection

The detection of an existing crack on a wall surface is an

essential step for structural health monitoring and for the

procedure of predictive maintenance. Visual-based deep

learning models are a set of widely implemented methods for

this task. Some research works have implemented image

classification (Flah et al., 2020) or object detection models

(Park et al., 2020) for the detection and localization of cracks

or cracked areas on concrete surfaces; however, those models do

not meet our requirement for the purpose of automatic crack

repair, because the tool path of the robot arm should overlap the

structural shape of the crack. On the basis of the 2D image data

available from visual sensors, we adopted an instance

segmentation model, namely, Mask RCNN (He et al., 2017)

for the detection and segmentation of cracks. Taking an image as

input, the model is able to segment the crack area at the pixel level

in the image frame.

Mask RCNN has been proven to be efficient and accurate in

other single-target-single-class instance segmentation tasks in

multiple fields including medical science (Anantharaman et al.,

2018) and agriculture (Jia et al., 2020; Hameed et al., 2022).

An image dataset is prepared based on two public concrete

crack image datasets containing over 100,000 images in total

(Özgenel, 2017; Dorafshan et al., 2018c; Maguire et al., 2018). The

images in those datasets are classified into two categories

according to the existence of cracks, but without annotation.

Since we need to train an instance segmentationmodel, instead of

using directly the datasets which are ready for training a binary

classification model, we select certain images to create an

FIGURE 6
Crack shape reconstruction in the image frame.

Frontiers in Robotics and AI frontiersin.org07

Yang et al. 10.3389/frobt.2022.980800

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.980800


annotated crack image dataset. When selecting the images to

annotate, different environmental conditions are considered,

such as shadows and the complexity of the concrete

background, to improve the performance of the model.

The annotated dataset contains RGB images of two

different sizes (256 × 256 pixels and 227 × 227 pixels);

each image contains between 0 and 4 cracks. With a

computer vision annotation tool (CVAT), we have

annotated 300 images containing 493 crack instances and

have split them into train (260 images) and validation

(40 images) sets. For each image, a binary mask is created,

in which the value 0 is assigned to background pixels and the

value i is assigned to the pixels of the i-th crack. To enhance

the diversity of the dataset, data augmentation methods are

applied randomly, such as image flipping, blur, and

shadowing.

The transfer learning methodology is used in the training

of the model. The model is developed based on a pre-trained

instance segmentation model Mask R-CNN, which is trained

on a large-scale dataset, namely, Microsoft COCO (Lin et al.,

2014). As mentioned previously, our annotated dataset is not

a large one, while MS COCO contains over

200,000 annotated images. The pre-trained Mask R-CNN

model is able to detect 80 different categories of objects, but

cracks are not included. Thus, by applying transfer learning,

we can train a model on our annotated crack dataset for crack

detection, without losing the robustness of the model by fine-

tuning the pre-trained one. The model is constructed upon

ResNet50 with feature pyramid networks (FPN) as the

backbone. The model is flexible and has the ability to be

generalized to other instance-level recognition tasks (Zhao

et al., 2019), which allows us to fine-tune for crack detection.

The multi-task loss function 1 is optimized during the

training. The architecture of the adopted model is shown

in Figure 4. The crack segmentation task is achieved in two

stages: first, the input image is fed to the backbone networks

for feature extraction and then region proposal networks

(ROI) generate a number of Region of Interest (ROI)

candidates in which an optimal one will be obtained

through regression. Then the feature map and the chosen

ROI are aligned and a fixed-size feature map is obtained; it is

sent to two branches, one for the classification and bounding

box, while the other generates a mask for pixel-level

segmentation.

L � Lclass + Lbox + Lmask (1)

The training stage was carried out with an Intel(R)i7-9850H

CPU, 32 GB RAM, and NVIDIA Quadro RTX3000 GPU. The

model was built and trained upon the open-source Tensorflow-

Keras frame. In the real-time implementation, the model takes an

image frame captured by the camera and the target output

contains a score, a bounding box, and a binary mask for the

detected crack if it exists in the input image.

As shown in Figure 5, The trained model is tested on some

sample images with different sizes that are not contained in the

training or validation dataset. Figure 6 shows the bounding boxes

and binary masks generated for detected crack instances. The

shape of the crack can be reconstructed with its contour in the

image coordinate system. The real-time implementation of the

model is also tested with the same graphic card on the video

stream captured by a USB camera with a resolution of 640 ×

480 pixels; it achieves 2 ~ 4 frames per second (FPS).

FIGURE 7
Extraction of the crack centerline in the image coordinate system. (A) Crack centerline; (B) reconstruction of crack and centerline in the image
coordinate system.
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2.2.2 Crack centerline extraction and
localization

To allow the soft arm to access and follow the shape of the

detected crack, the localization consists of two steps depicted as

follows: centerline extraction and frame transformation.

First, we extract the centerline of the crack in the image

frame. The trajectory to be followed by the robot in the

reparation system should represent the structural shape of

the detected crack. In the image coordinate system, given S is

the set of points of the crack region bounded by C which is the

contour of the crack shape, the centerline of the crack is the set

of points p ∈ S having more than one closest point on the

contour C. As the output of the detection model contains a

binary mask representing the crack, by applying the

morphological medial axis transformation algorithm (also

referred as skeletonization) on the binary mask, we can

obtain the coordinates of the points on the centerline in

the image frame. Figure 7 shows an example of crack

centerline extraction in the image frame. The medial axis

transformation also gives the local widths of the crack at every

point on the centerline, expressed in pixels units.

FIGURE 8
Crack centerline extraction and localization. (A) Crack centerline in the raw image; (B) reconstruction of crack and centerline in the image
coordinate system (pixels); (C) reconstruction of crack and centerline in the real dimension (mm).

FIGURE 9
Schematic of an inter-vertebra modeled as a parallel robot with 3 UPS–1 UP.
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A frame transformation is then applied to the points on the

centerline in the image frame obtained from the previous

step. For the soft arm to reach the detected crack, it is

necessary to locate the centerline in the frame of the soft arm

and in the world frame. With a depth camera embedded in the

UAV, the distance between the camera and the scanned surface

can be obtained.

For the operation of predictive maintenance, the tool path for

the end effector of the soft arm robot is identical to the crack

centerline. The centerline is expressed as [ u v ]T in the pixel

frame. In the frame of the scanned surface, the tool path of the

end effector of the robot Xee can be given by

Xee � R−1 M−1 sU( ) − t( ) (2)

where.

• R is the rotation matrix of the camera fixed to the UAV.

• M is the intrinsic matrix of the camera.

• t = [t1, t2, t3] is the translation vector of the camera with

respect to the scanned surface frame.

FIGURE 10
Configuration 3UPS-1UP of the soft arm. (A) Configuration of a vertebra. (B) Inter-vertebra model.

FIGURE 11
Architecture of the inverse kinematic model-based control validation.
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• s = t3 is the depth value, as the UAV stabilizes and is

perpendicular to the scanned surface, and it is equal to the

distance.

• U = [u v 0] is the vector of the centerline in the image

frame.

Figure 8 shows an example of localization of the extracted

centerline in real dimension. The unit of the obtained Xee is in

mm and will be sent to the controller of the soft arm robot to

execute the maintenance procedure; the robot guides the tip of

the nozzle to deposit material for repairing the localized crack in

an injection way. The unit of the local widths of the crack is also

transformed to mm after the localization step; this allows to

classify the crack into microscopic, mesoscopic, and macroscopic

according to its size.

The overall processing time from the capture of an image to

the calculation of the tool path takes around 0.3 s, allowing a real-

time implementation of this visual-based approach.

2.3 Model-based inverse kinematic
control of the soft arm

2.3.1 Assumptions
The inverse kinematic model (IKM) of the soft arm is

developed under the following assumptions:

• The continuum manipulator is considered as a series of

N = 8 vertebrae.

• An inter-vertebra is a flexible and non-deformable

structure with 3-DoF mobility. It is modeled with

3 UPS–1 UP (3 universal-prismatic-spheric–1 universal-

prismatic) joints.

• The manipulator yaw motion is not applicable to the

existing mechanical links between the tubes.

• The UAV is considered stable and static in a reference

position with contact with the wall, allowing the soft arm to

operate autonomously without external disturbances.

TABLE 1 Results achieved by each neural network model on the test
samples.

Neural network topologies Neurons MSE

MLP, pressures section 1 (2 layers) 11 4.3242.10–5

MLP, pressures section 2 (2 layers) 11 3.7519.10–5

FIGURE 12
Comparison between the desired pressures and the predicted pressures of the three bending tubes. (A) Tube 1. (B) Tube 2. (C) Tube 3.
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Based on these assumptions, our soft arm is a series of eight parallel

robots composed of 8 vertebrae with 24 DoF in total (Figure 9).

It consists of a lower and upper vertebra connected by three limbs

with the same kinematic configuration, and a central leg. The limbs

are modeled by a kinematic configuration of type UPS, in which only

the prismatic joints are active, allowing to control the position and

orientation of the upper vertebra relative to the lower vertebra. qi,j
represents the variation of the length of the prismatic joint, where j =

1, .., 3 is the index of the active joint and i is the index of the frame. The

central leg ismodeled by a kinematic configuration of typeUP located

in the center of an inter-vertebra. It is considered a passive joint.

The inverse kinematic equations (IKEs) of an inter-vertebra of

the soft continuum manipulator (Figure 9) are obtained by

calculating the joint variables qi, j=1:3, corresponding to the pose

(position and orientation) of the upper vertebra’s center, relative to

the lower vertebra frame. In the case of the considered soft arm, the

inter-vertebra is considered as a 3-DoF parallel robot, because of

movement constraints related to the passive kinematic chain

universal-prismatic (UP). In fact, the rotation with respect to the

z axis, denoted byRot (z,ϕi), and the translations relative to the x and

y axes denoted byTrans (x,Xi) andTrans (y,Yi), respectively, are not

considered, because it does not exist amovement on these axes. Only

the translation along the z axis is possible which is denoted by Trans

(z, Zi). Hence, the IKEs can be formulated as follows:

qi,j � f Zi,ψi, θi( ) (3)

where the angles θi and ψi indicate pitch and roll angles,

respectively.

Ai,j represents the connection point between the extensible

driving leg j = 1, .., 3 and the vertebra i, as shown in Figure 10.

For each vertebra, the points Ai,1Ai,2Ai,3 form an equilateral triangle.

The frame Ri−1(Oi−1, xi−1, yi−1, zi−1) is attached to the lower vertebra

of origin Oi−1, center of the triangle Ai−1,1Ai−1,2Ai−1,3 and the frame

Ri (Oi, xi, yi, zi) is attached to the upper vertebra of originOi, located

at the center of the equilateral triangle A1,iA2,iA3,i. Knowing that the

entire shape of the soft arm is conical, it is necessary to find the

circumcircle radius rn of the considered vertebra, where n = 1, ..,N is

the number of vertebrae. Let rmax and rmin, respectively, be the radius

of the base and the apex of the backbone, then the radius of each

vertebra rn can be calculated by

rn � Ni rmin − rmax( ) + rmax (4)

where N = 8 is the number of vertebrae. Therefore, the IKE

for the ith vertebra can be expressed as follows (Lakhal et al.,

2015):

q2i,1 � Zi
2 + 2riZiSθi − 2ri−1riCθk + ri−12 + ri

2

q2i,2 � Zi
2 + Ziri

�
3

√
CθiSψi − Sθi( ) − riri−1

�
3

√
2

SθiSψi(
+3
2
Cψi +

1
2
Cθi) + ri−12 + ri

2

q2i,3 � Zi
2 − Zkrk

�
3

√
CθkSψk + Sθk( )

+ riri−1

�
3

√
2

SθiSψi −
3
2
Cψi −

1
2
Cθi( ) + ri−12 + ri

2

(5)

FIGURE 13
Stereo-vision system for trajectory tracking.
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The notations C and S stand for the cosine and sine functions,

respectively.

2.3.2 Kinematic tracking control of the
soft arm

The inverse kinematics tracking control proceeds as shown in

Figure 11. The desired posture of the soft arm is generated by applying

a set of the desired pressures to the three bending tubes. The desired

positions of the soft arm tip is applied to IKM, and the predicted

lengths generated by the IKM are used as input to the length-pressure

converter, approximated by a multi-layer perceptron neural network

(MLPNN) (Melingui et al., 2017) as shown in Table 1.

The pressures generated by the length-pressure converter are

applied to the soft arm by means of the internal

proportional–integral–derivative (PID) controllers of the Festo

VEMA piezo-electric valves. The position predicted by the Optitrack

system is compared with the desired positions shown in Figure 12.

3 Results

This section presents the experiment results of the applied

predictive maintenance. It focuses on the validation of the

developed kinematic models. Different cracks are considered

on a tile plate sample to validate the algorithms of detection,

localization, and repair.

3.1 Real-time implementation

The tracking process is shown in Figure 13. The system is

based on the Optitrack motion capture system and consists of a

set of 10 infrared cameras, as described in the previous

paragraph. After calibration, a precision of 0.3mm for

measuring the 3-D displacements of the UAV and the tip of

the arm is obtained. The reflection markers placed at the base of

the arm are used to obtain the coordinates of the base relative to

the UAV.

FIGURE 14
Trajectory of the tip of the arm during the reparation process of crack 1. (A) 3D position tracking of crack 1. (B) X-axis error. (C) Y-axis error. (D)
Z-axis error.
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FIGURE 15
Trajectory of the tip of the arm during the reparation process of crack 2. (A) 3D position tracking of crack 2. (B) X-axis error. (C) Y-axis error. (D)
Z-axis error.

FIGURE 16
Repair steps for crack 1.
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3.2 Experimental results

Figure 14A, Figure15A show the trajectories of the tip of the

arm (nozzle) during the deposit of putty materials on crack 1

(vertical shape) and crack 2 (horizontal shape), respectively. The

desired trajectories represent the center-lines of the

reconstructed shapes of the cracks after a crack detection and

classification technique. The measured trajectory is issued from

the Optitrack system and the estimated trajectory is generated

from the inverse kinematic model of the soft arm. It is noticed

from these experimental tests that the estimated kinematic model

reconstructs globally the desired trajectory, while the measured

trajectory based on the Optitrack vision capture is perhaps

sensitive to the micro-motion of the UAV in its stationary

positioning. Figures 14B, C represent the Euclidean errors

along x, y, and z axes for crack 1, whereas, Figures 15B , 15c,

and 15d represent the Euclidean errors along x, y, and z axes,

respectively, for crack 2. It is noticed that the errors are less than

5 mm. However, the error in z can be relatively higher than the

others and can be explained by the gravity effect on the soft arm.

Euclidean errors in Figure 14 and Figure 15 conclude that the

proposed kinematics model is able to predict the position of the

tip of the nozzle with position errors less than 5 mm, where the

nozzle diameter is about 5 mm.

In Figure 16, a sequential representation of the deposit

material during the deposit of a putty material is shown. The

accuracy of tracking tasks by the system is shown in the video

(Lakhal et al., 2021), for online target tracking.

Finally, based on the results shown in Figure 16 and the

Euclidean errors in Figure 14, the performance of the

microscopic crack detection and localization using the deep

learning technique is demonstrated.

4 Discussion

An artificial intelligence-based method using deep learning

techniques has been developed to detect and repair cracks

automatically. After applying the automatic detection algorithm

to the wall surface, the classification of the cracks is obtained by

dividing them according to their sizes into microscopic (less than

5 mm width), mesoscopic (in between 5 and 10 mm width), and

macroscopic (more than 10 mmwidth). In this work, we focused on

the microscopic cracks, where the preparation of the surface is not

required and only the repair is needed. Then, the localization of the

centerline of the crack shape is determined. Using the current

position of the UAV, the ultrasonic sensor and the camera

embedded in the robot give the measures for planning the

trajectory to be followed by the tip of the soft continuum arm.

The model-based control of the position of the arm tip is applied

along the crack with various disturbances such as not-zero stability

of the UAV but also the contact of the soft arm during the deposit of

the material. This is because errors are corrected by the soft arm,

which has faster and more accurate stability than the millimeter-

scale drone. The stability of a UAV in flight is slightlymore complex,

especially for millimeter-scale movements. In our case study, the

UAV is in a stationary position throughout the repair, which means

that the sum of the opposing forces is zero, and therefore, the

displacement of the system’s center of gravity is small due to the

ground effect. In addition, when the soft arm comes into contact

with the wall, it unloads to maintain a constant force when

depositing the material, but also to avoid large disturbances to

the movement of the drone that could involve a crash. Indeed, the

combination of the soft arm capabilities and the flying mobile

platform offers great cooperation to perform an operational task.

The soft arm can reach complex positions of the crack, while the

UAV can guide and load the arm with different postures. In view of

the results obtained, the proposed concept achieves promising

performances in terms of precision and robustness for automatic

detection and repairs in predictive construction maintenance. The

accuracy is in the millimeter range. The trajectory tracking is well-

respected despite the total instability of the drone. However, as we

can see from the curves, the intervention time is about 60 s for a

crack of about 80mm in size. In fact, for precise control and optimal

material deposition quality, it is preferable to work in quasi-static

kinematics. If one wishes to increase the speed of loading and

unloading of the pressure of the flexible arm, it is necessary to

consider using other types of sensors than piezos. In Figure 16, the

results are relatively satisfactory in terms of the quality of the

material deposit. Indeed, a more or less identical contact force is

obtained along the whole trajectory. Nevertheless, we have

determined the gain by assuming that the forces are exerted only

on the z axis. However, curved trajectories require larger

deformations of the flexible arm, which implies that the contact

force is not only on the z-axis but on all three axes.

5 Conclusion

This study deals with an integrated robotic concept design for

automatic crack detection and repair. This concept is composed of a

stationary UAV and a soft continuum arm. The latter is used to

guide the putty material but also to reach complex shapes of

microscopic cracks in flat and oblique surfaces of wall surfaces.

The concept integrates the tasks of detection and localization of the

crack shapes using deep learning techniques. The repair task is

summarized by a continuous deposit of thematerial to fill the cracks.

The stationary UAV interacts with the wall surface using wheeled

contact, while the soft arm is not directly in contact with the external

surface. Themethodology of the inverse kinematic control of the soft

arm has been deployed. A neural network-based predictive model

allows for estimating the relationship between the bending tube’s

length and the input pressure. The experimental results show the

performance of the kinematic control as a function of material

deposition accuracy. In future work, the objective is to implement a

joint control on the robot position and the material deposition flow

Frontiers in Robotics and AI frontiersin.org15

Yang et al. 10.3389/frobt.2022.980800

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.980800


rate, as a function of the width and the deep of the crack, to improve

the quality of the deposit.
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