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Cluttered environments with partial object occlusions pose significant

challenges to robot manipulation. In settings composed of one dominant

object type and various undesirable contaminants, occlusions make it

difficult to both recognize and isolate undesirable objects. Spatial features

alone are not always sufficiently distinct to reliably identify anomalies under

multiple layers of clutter, with only a fractional part of the object exposed. We

create a multi-modal data representation of cluttered object scenes pairing

depth data with a registered hyperspectral data cube. Hyperspectral imaging

provides pixel-wise Visible Near-Infrared (VNIR) reflectance spectral curves

which are invariant in similar material types. Spectral reflectance data is

grounded in the chemical-physical properties of an object, making spectral

curves an excellent modality to differentiate inter-class material types. Our

approach proposes a new automated method to perform hyperspectral

anomaly detection in cluttered workspaces with the goal of improving robot

manipulation. We first assume the dominance of a single material class, and

coarsely identify the dominant, non-anomalous class. Next these labels are

used to train an unsupervised autoencoder to identify anomalous pixels through

reconstruction error. To tie our anomaly detection to robot actions, we then

apply a set of heuristically-evaluated motion primitives to perturb and further

expose local areas containing anomalies. The utility of this approach is

demonstrated in numerous cluttered environments including organic and

inorganic materials. In each of our four constructed scenarios, our proposed

anomaly detection method is able to consistently increase the exposed surface

area of anomalies. Our work advances robot perception for cluttered

environments by incorporating multi-modal anomaly detection aided by

hyperspectral sensing into detecting fractional object presence without need

for laboriously curated labels.
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1 Introduction

In environments filled with unorganized objects, detecting

items that do not belong is a significant problem in robot

manipulation with numerous applications. For example, in

food processing, it is advantageous to detect foreign objects

from conveyor belts full of items that are safe for

consumption. Within a domestic setting, a similar problem

class arises within the mundane task of doing laundry;

separating machine washable clothes from those that are not.

Such tasks are monotonous and repetitive, thus making them

perfect candidates for robots. Prior work has focused on

specialized object classification models to address this problem

Barnabé et al. (2015); Erickson et al. (2019); Ku et al. (2021);

Kwak et al. (2021). However, application specific solutions can

become resource intensive in data acquisition, labeling, and

tuning. A generalized approach has the potential to

significantly reduce the time needed to train and deploy new

machine learning models.

Automation research is commonly predicated on scenarios

where robots are presented with easily separable items. The

assumption of separability aids in the demonstration of other

capabilities like grasp selection; nonetheless, it may not

necessarily be indicative of environments encountered in the

field. Real world environments rarely reflect an easily separable

ordering, where objects can be easily segmented without any

occlusions. Such organization presupposes an unrealistic

tendency towards order, instead of disorder. To become

pervasive assistant, robots must learn to contend with the clutter.

Prior approaches to anomaly detection within clutter have

focused on using standard Red Blue Green (RGB) camera images

to segment scenes Zeng et al. (2018a); Zeng et al. (2018b); Bejjani

et al. (2019). However, a generalized solution would ideally be

able to effectively differentiate between objects that are similar in

appearance but different in underlying chemical-physical

properties. At a glance, a slightly spoiled fruit may look the

same as a ripe one. Discerning such visually minute differences

solely from RGB data would be insufficient. Another potential

drawback of RGB data is its lack of robustness to lighting

changes. This deficiency can be further exacerbated by optical

effects such as specular reflections or shadows. Furthermore,

state of the art methods that use Convolutional Neural Networks

(CNN) for anomaly detection require thousands Shahinfar et al.

(2020) of manually labeled images to form appropriately sized

training sets. Image augmentation Shorten and Khoshgoftaar

(2019) may be used to reduce the amount of images required for

training and testing a deep network, but these supervised

solutions require the intervention of a human-expert to tailor

labels to the present scenario, which can be impractical.

To simultaneously address both the weaknesses of RGB data

and to circumvent the intensive process of creating a labeled

dataset, we leveraged Hyperspectral Imaging (HSI). HSI captures

additional wavelength information about the environment, with

the size of data obtained from the sensor being orders larger than

RGB data. HSI outputs a three-dimensional datacube with

reflectance measurements at multiple wavelengths of light

spanning the Visible to the Near Infrared (VNIR) spectrum.

Each pixel in the hyperspectral datacube, has multiple discrete

wavelength values, indicating what proportion of light was

reflected at that specific wavelength. Across the spectrum,

these values vary as a function of the material type. These

spectral signatures involve no contact with the objects, and

are able to effectively characterize objects that to RGB

cameras appear indistinguishable.

In this work, we first fuse RGB-Depth data with HSI data. By

interpreting this data with clustering methods, we are able to

autonomously create a binary classification map where the two

labels are objects that belong to the pure class and objects that are

anomalous. This process is conducted with the assumption that

there is a preponderance of one desired material. Using this

binary classification map, a coarse initial classification is

employed to train an autoencoder (AE) for locating

anomalous regions. Our results show that a simple clustering

model is sufficient to train the relatively complex AE model, with

the AE being able to more effectively classify anomalies than the

simple cluster approach. Our framework requires no prior

knowledge of the scene other than an assumption of a

majority of one desired material.

Since the RGB and hyperspectral data are annotated with

depth information, this facilitates the determination of the

cartesian coordinates of potentially anomalous regions. As a

practical demonstration, we deploy a robot manipulator to

uncover clutter in the scene. We use the manipulator to push

items to enable grasping and picking objects in densely packed

environments. Our approach selects the optimal motion

primitive which minimizes the perturbed amount of clutter, to

highlight the ability of our detector to select meaningful

anomalies in the environment. To the authors’ best

knowledge, this is the first time a generalized hyperspectral

and RGB-Depth anomaly detection framework has been

developed and demonstrated on dynamically generated datasets.

The key contributions of this work are:

1. An algorithm to align and register multiple high-dimensional

hyperspectral data cubes to RGB-Depth data.

2. A method for clustering of registered RGB-Depth-HSI fused

data to create a coarse initial binary classification map.

3. A near-realtime training method to train a more complex

autoencoder from the initial binary classification map without

human intervention.

4. Identification and evaluation of heuristic-driven optimal

motion primitives to uncover anomalies.

This paper is organized as follows. In Section 2 we discuss the

current state of the art in hyperspectral and multi-modal

anomaly detection with applications in robot perception. Our
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design for a multi-modal sensing array and robot workcell is

presented in Section 3. Section 4 details the feature matching

approach used to register a hyperspectral datacube to a 3D point

cloud. Section 5 outlines our novel approach to use the fused data

product to effectively identify anomalies in a cluttered

environment and their associated confidence levels. Section 6

discusses the motion planning to generate and evaluate candidate

paths to perturb piles in a cluttered environment. Section 7

documents the sample scenarios used to demonstrate our

approach. Our results are detailed and discussed in Sections 8,

9, respectively. Finally we summarize the key experimental

results and discuss future opportunities to extend our work in

Section 10.

2 Prior work

Data-driven approaches to anomaly detection are not

without their challenges. Increasing the number and types of

sensors available to robots naturally increases the amount of data

processed to make an inference at every time step. Correlating

data acquired from different sensors, at different acquisition rates

can also prove challenging. Moreover, each sensing modality has

its own particular failure modes, and instances where failure rates

or noise will be proportionally larger. For example, long wave

infrared sensing is marked by poor texture resolution and highly

uniform surfaces Zhang et al. (2021). Hyperspectral imaging is

also dependent on adequate active illumination, and sufferers

from slow acquisition times when compared to RGB cameras.

While RGB cameras are rich in texture and resolution, their

spectral resolution is fractional compared to HSI. In many

robotics problems, sensors ultimately drive the capabilities,

and limitations of the robot’s operations. Multi-resource

anomaly detection requires the additional challenge of

extracting meaningful features from each type of sensor, and

developing frameworks to coalesce individual sensor features

into a common operating picture.

2.1 Anomaly detection and tracking

Hyperspectral imaging originated as an airborne remote

sensing technology with very coarse resolution. Therefore,

great emphasis has been placed on per-pixel and sub-pixel

anomaly detection. Reed and Yu (1990) first introduced a

statistics based approach, by creating the popular Reed-Xiaoli

(RX) algorithm, often used as a benchmark against novel

approaches for anomaly detection. The RX algorithm assumes

a multivariate Gaussian distribution of the background scene,

performing adaptive constant false alarm rate detection derived

from the generalized likelihood ratio test. However, in real world

applications, the normal distribution of hyperspectral images is

not probable as posited by Matteoli et al. (2010). To counteract

this drawback, the RX algorithm is often deployed locally with a

window such as in Taitano et al. (2010), considering a small

portion of a larger image that is far more likely to exhibit

Gaussianity. Zhao et al. (2015) consider this local focus in

conjunction with a global view, extending previous work to

create a real-time detector, that functions on small pixel

anomalies. An alternative reconstruction is the collaborative-

representation-based detector (CRD), developed by Li and Du

(2015). This method exploits the phenomena that low-resolution

anomaly pixels cannot be represented by proximal pixels, in

direct contrast to non-anomalous pixels. The CRD method

outperforms the RX algorithm Li and Du (2015); Su et al.

(2022), but with exponentially longer runtime.

Deep learning has also gained traction as a form of anomaly

detection in hyperspectral images. InMa et al. (2018), the authors

proposed an adaptive weight deep belief network that functions

as an autoencoder (AE). By attempting encoding, and then

reconstructing spectral signatures, the Euclidean distance

between the two samples can be used to identify anomalies.

Arisoy et al. (2021) also utilized an autoencoder network in

conjunction with a generative adversarial network (GAN) to

identify anomalous pixels from their reconstruction error. Xu

et al. (2022) offers a comprehensive review of machine learning

based approaches with added emphasis on deep methods. It is

important to note that deep learning approaches are often

difficult to introspect, creating adversity in troubleshooting

and guaranteeing consistent behavior. Each of these prior

studies rely on benchmarked, well-studied datasets and hence

cannot cope with dynamic scenarios. Finally these algorithms

make no claims of real-time performance, nor have they been

demonstrated on datasets acquired at a close working distance

where anomalies are much larger than a singular pixel.

Outside of pure hyperspectral imaging, other works have

proposed the use of infrared wavelengths of light to provide

enhanced target detection Zhang et al. (2021); Thananjeyan et al.

(2022). The successful use of extended wavelength information to

identify humans and materials in scenes demonstrates the utility

of the technique and its applicability to different problem spaces

Mao et al. (2022).

2.2 Hyperspectral-point cloud fusion

Hyperspectral data, providing material information, and

point clouds, providing geometric information, yield a more

complete picture of object function when considered together.

Stemming from the 2013 IEEE Geoscience and Remote Sensing

Society (GRSS) data fusion contest, HSI and point cloud fusion

has become a richly researched field Debes et al. (2014). Rasti

et al. (2017) utilized orthogonal total variation component

analysis (OTVCA) to fuse the two datasets. Their works also

incorporate extinction filters which can rapidly extract spatial

features without threshold tuning. Khodadadzadeh et al. (2015)
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proposes another method based on morphological attribute

profiles (APs) to build extended, reduced-order profiles of the

spectral and surface at each pixel. Finally, Chen et al. (2019)

demonstrated a unified system to simultaneously acquire a point

cloud and hyperspectral image. The rapidly registered data was

shown to be easily segmentable though the use of DBSCAN and

manually-curated spatial features Ester et al. (1996).

2.3 Spectroscopy in robots

This research effort builds on our prior experience with

spectroscopy for robots. In prior experiments, we designed

and implemented a gripper system to acquire recursive

estimation models of grasped items as an items was grasped

by a parallel-plate gripper Hanson et al. (2022b). We have also

applied spectroscopy to applications in soft robotics Hanson et al.

(2022a) and mobile robotics Hanson et al. (2022c). In these

studies we have found spectral signatures to be an extremely

explainable metric for understanding abstract material types in

the context of robotics.

Other groups have investigated the usage of spectroscopy to

aid in household manipulation and tasks Erickson et al. (2019)

and Erickson et al. 2020). These studies have focused on the usage

of a point-based spectrometer to acquire a single spectral

signature to classify the base material of a scanned item prior

to manipulation. However such an approach is not optimal as

only a small surface area of each item can be scanned, making

coverage times for whole spatial scenes intractable in time and

power consumption.

Hyperspectral imaging has found widespread acceptance as a

tool in machine vision for classification of fruits, waste products,

and in many other organic and inorganic items Barnabé et al.

(2015); Ku et al. (2021); Kwak et al. (2021). These approaches

demonstrate the diversity of applications the technology is

relevant to, but lack generality to multiple robotic problems.

These past works rely heavily on pre-trained, supervised

classification models to correctly identify known foreign

contaminants or other undesirable object states such as

disease, wilt, discoloration. The high accuracy achieved by

Vali et al. (2021) shows encouraging results for most non-

linear classifiers to yield high accuracy, but still with the

burdensome requirement of curated labels.

3 System architecture

As a precursor to the algorithm, and technical development,

it is necessary to outline the robot testbed and its capabilities. For

fuller details on the system design, our prior work offers detailed

instructions to replicate the robot workcell. Hanson et al. (2022).

The full system diagram is annotated in Figure 1.

3.1 Robot manipulator

At the core of our setup was a 6 Degree of Freedom (DoF) robot

manipulator (Universal Robotics). When operating the arm, we

represented the end effector pose with a vector xn ∈ R6 with the

first three elements allocated to the 3D position, xn
p ∈ R3, and the

latter to a quaternion representation of rotation xq
n ∈ R4. The base of

the robot was established at the origin of the global coordinate frame.

The end effector pose, relative to this base frame was determined

through a forward kinematic chain. This kinematic modeling was

used to both position the arm for capturing multiple images of the

workcell scene (Section 4), and planning uncovering motions

(Section 7). The robot was controlled through the Robot

Operating System (ROS) software interface via a Linux PC

Quigley et al. (2009). The end effector contained a modified

finger parallel plate gripper (RobotIQ) with optically clear finger

pads, which will be utilized in future research.

3.2 Perception

On the last link of the robot arm, we mounted two sensors to

capture high resolution spatial and spectral information. The first

sensor, a Time of Flight (ToF) depth camera (Microsoft). At the

nominal operating height of 0.7 m above the workcell surface, the

ToF camera was estimated to have a systematic spatial error ≤ 1 mm,

making it perfect for perceiving the presence of small objects in scene

Kurillo et al. (2022). The camera outputs registered RGB and depth

images; the latter of which can easily be projected into 3D space

FIGURE 1
Test bed architecture used to acquire and register multiple
Visible Near-Infrared (VNIR) hyperspectral scans for analysis. Note
the axes orientations and workspace size.
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relative to the robot base with the TF package Foote (2013). The

sensor layout is presented in Figure 2.We co-aligned a VNIR

pushbroom hyperspectral camera (Headwall Photonics) with the

lens of the ToF camera. Unlike typical RGB image formation which

integrates a spatial scene over a single timestep, pushbroom cameras

need motion to generate a 2D spatial image. This was achieved by

moving the camera and stitching subsequent rows into a singular

spatial scene. The exposure time was set to 60ms per line image and

the system moves at 0.01 m/s.

3.3 Linear rail

The main robot assembly was mounted to a linear rail

(LOPRO) driven by a high precision stepper motor. The rail

provided a steady means to move the robot arm at a fixed rate

along a linear path in the y-axis. This motion is critical to the

successful operation of the hyperspectral camera, as the usable

rail length (1.0 m) exceeded the Cartesian path capabilities of the

arm ( ≈ 20 cm), while maintaining the end effector in a constant

orientation. For usage with the hyperspectral camera, the rail was

operated at a velocity of 1 cm/s. This optimal velocity value was

empirically determined by measuring pixel size distortion in the

pushbroom image formation process and accounting for the

number of detected photons per integration period.

3.4 Illumination

Good scene illumination is integral to hyperspectral imaging.

Normal Light Emitting Diodes nominally cover

≈ 20nmFullWidthHalf Maximum (FWHM) Weik (2001)

wavelength range, making them poor candidates for full scene

illumination across the VNIR spectrum. We circumvent a

complicated LED lighting display by using overhead mounted

Quartz Tungsten Halogen (QTH) work lights. QTH bulbs

provide uniform intensity illumination between 350–2,500 nm

and are regularly used in spectroscopy for material interrogation.

The lamps are rated at 250 Watts and output of 4,000 lumens

each. Although the lights do generate a significant amount of

heat, that thermal energy is primarily convected upward resulting

in only minimal heating of the surface. No heat related

compensation is necessary in processing the raw hyperspectral

datacube.

3.5 Computation

A core motivation for this research is anomaly detection

algorithms congruent with reasonable computer requirements.

All algorithms were developed in Ubuntu 20 on a desktop PC

with 32 gigabytes (GB) Random Access Memory (RAM) and

8 processing cores. For training the autoencoder network, we

used an NVIDIA GeForce GTX 1070 GPU to expedite training

and offload computation from the CPU.

4 Data registration

A depth image as well as RGB-image of the entire workspace

can be obtained from the ToF infrared camera instantaneously

from the home position of the arm, with the robot base located at

{0,0,0} in the global X,Y,Z coordinate frame. The sensor’s field of

view allows for the imaging of the entire scene in a single image.

In contrast to the ToF camera, the hyperspectral push-broom

sensor has a horizontal field of view along the x-axis, requiring

both linear motions and repositioning of the arm to characterize

the entire workspace. For our calibration procedures, we

constructed a working environment out of piles of unpainted

wooden blocks of varying size and shape, constituting the “pure”

material. We mixed in smaller colored blocks, made of both

plastic and wood as anomalies.

4.1 Data collection

To collect a scan, the system was initialized with three pre-

planned end effector positions covering the top, middle, and

bottom sections of the robot workcell. The chosen manipulator’s

small workspace constrained the coverage to three parallel scans

offset by 10 cm along the y-axis, but the methods presented in

this section are generalizable to any number of scans. In each

position the hyperspectral camera and ToF camera were aligned

so their lenses are perpendicular to the surface plane. Holding

FIGURE 2
Sensor array fitted to end effector of manipulator arm, with
sensory systems for both scene and in-hand object sensing. NB:
Z-axis is perpendicular, coming out of the page.
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this assumption simplifies the data association task by forcing

image registration to be dominated by affine transformations.

The inverse kinematic planning to each of these position was

solved using the Levenberg–Marquardt algorithm Levenberg

(1944). With the joint angles from the solution, the robot was

commanded through ROS to move to set overhead scan

positions.

In each scan configuration, the linear actuator translated the

robot arm and imaging array over the cell contents at a speed of

1 cm/s. A preallocated memory buffer was used to read incoming

hyperspectral linescans and stack them into a singular image. The

speed at this stage was precisely controlled to minimize

stretching or compression induced by inconsistent scan

speeds. Each image in its raw format is approximately

2.8 gigabytes (GB). After the scan was completed, the image

was written to disk to avoid excess storage of data in the

system RAM.

4.2 Image preprocessing

We first preprocess the raw hyperspectral sensor data.

Association requires the generation of image features and

descriptors. Since preprocessing is particularly challenging due

to limited spatial resolution of the hyperspectral camera relative

to the RGB camera, we first normalize the hyperspectral image

according to the equation presented in Eq. 1. Sraw is a row from

the hyperspectral camera (640 × 273 pixels). DHSI is the dark

sensor reading averaged for each photodetector pixel over

100 lines of acquisition. Normalization allows us to account

for sensor noise caused by temperature and system intrinsics.

LHSI is an averaged sensor reading over a sheet of Spectralon

white reference material, which reflects 99% of incident light in

the VNIR range Bruegge et al. (1993). The Spectralon reference

provides and upper limit for what ≈ 100% reflectance looks like

for each pixel subject to the current environmental lighting

conditions.

ScalHSI � Sraw −min DHSI( )
max LHSI( ) −min DHSI( ) (1)

Next, we select bands constituting reflectance at the peaks of

the visible Red, Blue, and Green reflectance as 707.48 nm,

477.27 nm, and 537.04 nm, respectively. Together these

images yield an RGB representation of the data cube which is

used in feature extraction. This image is then converted to

grayscale by averaging the channel intensities together.

The hyperspectral sensor prioritizes spectral over spatial

resolution, resulting in degraded borders and fuzzy features

which would ordinarily frustrate detection of reliable image

features. We first remove image noise by adopting the

formulation provided by Buades et al. (2011). We assume the

measured value of each pixel is represented by p � p0 +N (0, σ)
where p0 is the true intensity and is subject to zero-mean

Gaussian noise. This step importantly removes image

speckling which might otherwise create false features in the

spectral signatures.

Next we sharpen the image using a convolved window

function, following Eq. 2.

Imgsharp � Imgoriginal + Imgoriginal − G ⊛ Imgoriginal( ) p κ (2)

κ represents the proportional amount of the blurred image

difference to remove. Gi is a Gaussian filter of set kernel size

and width. Finally, we apply Contrast Limited Adaptive

Histogram Equalization (CLAHE) which ensures localized

contrast areas Zuiderveld (1994). This step is not strictly

necessary when the image has multiple different objects

present but is aids when the scanned surface is relatively

homogeneous as CLAHE can emphasize local features that

were previously obscured by global image intensity. The

individual steps of the image cleaning process are shown in

Figure 3.

4.3 Feature detection and matching

Our process entails the mosaicing of individual image scans

to each other, before the registration to the full scene RGB image.

Distinct features in all images are determined through using SIFT

Lowe (2004). We also considered the ORB feature detector

Rublee et al. (2011), but found the distribution of features

across the image was confused by the poor image resolution.

The Fast Library for Approximate Nearest Neighbors (FLANN)

Muja and Lowe (2014) is used to identify and score candidate

matches between images. Using Lowe’s ratio test, we can

eliminate ambiguous features matches by considering the

L2 norm between both features as source and destination

matches Lowe (2004). Our usage of SIFT generates

1,000 candidate keypoints in each image, although the

number of matches depends on the scene contents. The

matched points are assumed to be co-planar, meaning we can

warp the two images together with the formula given in Eq. 3. H

is a 3 × 3 homography matrix, c is a scale factor, and the two

matrices represent pixel coordinates Figure 4.

x̂i

ŷi

1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦c � H1→2

xi

yi

1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (3)

Random Sampling Consensus (RANSAC) Fischler and Bolles

(1981) assists in the estimation of the homography matrix from

matched points {xi, yi}, regardless of potential image noise or

feature poor feature matches. This step is essential as the image

formation process is subject to system noise, causing the length to

vary from one scan to the next, typically by ± 10 pixels.

We start the association with the center image and work

outward iteratively registering images to the center mosaic. As we
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combine images, we calculate an additional translation needed to

keep the warped image fully in the bounds of the new image

canvas: H′ = H · t, storing the perspective transform of the

cumulative hyperspectral image with each added hyperspectral

image. The same method is repeated to register the hyperspectral

mosaic to the RGB method. We found Gaussian blurring the

RGB image yields better matches with the lower-resolution

hyperspectral scene. In images with weak features, the fiducial

markers Wang and Olson (2016) on the borders of the scene

greatly aid in the successful registration of the image. The

homographies determined from comparing the RGB

representation datacubes among themselves and the RGB

Kinect image are applied to each channel of the hyperspectral

datacube. This results in warped and translated datacubes, which

are added to the same final canvas, resulting in the a single RGB-

D-Hypersectral data representation used in the rest of this work.

This image registration step holds an assumption that the scene

held with be largely planar. This is reasonable given that the imaging

FIGURE 3
Image registration with (A) Noise filtering, sharpening, and CLAHE applied to each respective image (B) Enhanced images stitched together
from shared features and homography (C) Stitched hyperspectral image warped to directly correspond to the RGB image from shared features, and
overlaid for visualization.

FIGURE 4
The blocks labeled with red highlights showing ground truth regions that should be detected as anomalous and distinct from the background.
When using RX as the statistical anomaly detector, the colorized outline scores are shown on the right. The RX outlier detector fails to distinguish
anomalous regions from the pure wooden blocks.
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array is translated linearly above the object surface at a fixed height.

The selected objects for use in this study do not exceed a height

greater than 10 cm above the surface plane. Althoughwe do observed

some small distortions around taller objects, the homography can be

quickly calculated and results in a 2D representation of the scene,

aligned with the Kinetc-generated depth and RGB images. Treating

these points as 3D would then require reprojection into a 2D frame

for correlation with the Kinetc image, thus further complicating the

reconstruction. The final perspective transform results in some

spatial data reduction as the hyperspectral scan length, typically

4,000 pixels, exceeds that of the RGB image. The final data product

includes three equally sized images: the hyperspectral mosaic, the

scene RGB image, and the registered depth image. From the depth

image, we are able to generate a point cloud for object manipulation.

5 Anomaly detector

In order to achieve good unsupervised model results, we make

assumptions regarding the composition of the workspace. We

assume that the two dominant material abundances will be the

background and the pure objects. We also assume the presence of

anomalies will never constitute more than one-third of the total

visible item surface area in the workspace. The novelty of our

approach comes in a two stage detector leveraging both classical

clustering techniques, and then an autoencoder network trained in

real-time to rapidly identify anomalies.

5.1 Clustered anomaly detection

Initially, we attempted to use a global RX detector for

anomaly detection. This statistic based approaches considers

spectral dissimilarity of pixels relative to the background of

the scene. Given a set of pixels, with their full spectrum

wavelength values, the RX score for each is calculated

following Eq. 4.

δRX x( ) � x − μ( )u Σ xi − μ( )
N

( )−1
x − μ( ) (4)

x represents the current pixel vector; μ is the average spectral

signature; N is the total number of pixels in the image, however,

large clusters of anomalous pixels confuse the classical RX global

anomaly detector. Following the results of Su et al. (2022), we

note that local patch-based anomaly detectors, such as CRD and

LRX 2 will only further exacerbate runtime problems. In our RX

results, we observed very poor detection of the anomalies due to

their multiple pixel presence Figure 4.

Therefore, our reformulation of the base detector problem is

as follows. We begin by assuming the environment consists of

four primary classes: {no-signal, background, base material,

anomalies}. No-signal constitutes all regions where there is no

co-registered hyperspectral data; background indicates regions

where there is hyperspectral data but the dominant signal is the

black table mat; base material is the “pure” material to which all

anomalies should be considered; anomalies are all other regions

not fitting the three prior descriptors. This presumed

decomposition follows the following ranking of cardinality: |

anomalies| ≤ |base material| ≤ |background| ≤ |no-signal|.

Simple heuristics here can guide the selection of candidate

regions for these classes. Visual reference for the following

procedure is given in Figure 5. First, we decompose the x, y, λ

datacube into a 2D representation x*y, λ. Next, we consider

datacube’s wavelength channel is often redundant and not fully

necessary to explain the total variance in the image. Minimum

Noise Fraction (MNF), also known as noise-adjusted Principal

Components Analysis (PCA) is used to perform a change of

basis and reduce the wavelength channel dimensionality Lee

et al. (1990). We heuristically selected 10 components as the

number of components to retain, as this exceeds the number of

expected classes by a factor of 2.5. Here we apply mini batch

k-means clustering to segment the scene into four regions. Prior

dimensionality reduction provides the added benefit of faster

cluster convergence, as the number of features needing

comparison decreases by an order of magnitude through

MNF. The number of pixels belonging to each class is

counted, and the size-ordered regions are given the initial

labels following the previously discussed ranking. Visual

inspection of Figure 6B reveals adequate clustering the

background and no-signal, and base material classes, but

generally poor performance within the anomaly class. As

long as the base material is still accurately dominated by the

true base material, erroneously assigned pixels in

anomalous regions will not significantly impact the final

classification.

5.2 Superpixel region creation and
evaluation

As a result of k-means considering pixels in isolation, pixels

lose out on surrounding neighborhood information. Isolated

pixels may be erroneously assigned to the wrong initial class,

thus skewing the correct assignment of the data. To regain spatial

information and avoid erroneous pixels, the overhead RGB

image of the workspace obtained from the Kinect ToF camera

is decomposed into multi-pixel regions called superpixels.

Superpixeling creates indicative pixel conglomerates to analyze

for anomalies calculated through clustering which is simpler than

evaluating each pixel for anomalies on an individual basis. We

empirically determined 1,000 superpixels was a sufficient

number given the size of the composite image. Superpixels

under this strategy generally consist of 3,800 pixels, with an

average spatial dimension of 3 cm × 3 cm. Our implementation

uses Simple Linear Iterative Clustering (SLIC) Achanta et al.

(2010), which converts images to the CIELAB color space before

Frontiers in Robotics and AI frontiersin.org08

Hanson et al. 10.3389/frobt.2022.982131

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.982131


FIGURE 5
The data segmentation pipeline showing the flow of data during the initial segmentation.

FIGURE 6
The process of cautiously creating definitively pure data to train the AE is as follows: First, superpixeling is used to split the RGB image into
characteristic regions (A). k-means segmentation in abundance classes from the hyperspectral datacube is applied to segment the associated RGB-
HSI data into four clusters (B). The dominant cluster within each superpixel, biased to favor potentially anomalous regions, is identified (C). This
information is then used to create a binary classification map, with the two labels being pure regions and potentially anomalous regions, the
latter of which is excluded in the autoencoder training process (D).
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iteratively updating cluster centers. The distance function for

determining cluster centers is enumerated as:

dc �
��������������������������
lj − li( )2 + aj − ai( )2 + bj − bi( )2√

,

ds �
������������������
xj − xi( )2 + yj − yi( )2√

,

Dtotal �

������������
d2
c +

ds

S
( )2

m2

√√
l, a, b, are values from the LAB color space conversion; x, and y

are pixel coordinates, S is the average desired size of superpixels,

in number of pixels, and m is a scale factor for the relative

importance of color and spatial distance factors. This approach

comes with the consequential assumption that superpixels will

have relatively homogeneous visible color values. This

assumption minimizes the time needed to generate regions of

reasonable purity, using a subset of the hyperspectral camera

range. We avoid overvaluing the contributions of color by

favoring ds by a factor of 10. Implementing a similar SLIC

algorithm on the HSI data cube would include a distance

function over 91 times more data per image pixel. Figure 6A

shows the distribution of superpixels in a sample image scene.

For each superpixel, we count the constituent class members,

understanding the superpixels might contain several regions.

Using majority voting biased towards anomalies we then

reclassify each pixel as “pure” or “impure” according to the

following binary classification rule:

x̂ � argmax 0.80 p |no − signal| + |background|((
+|basematerial|), |anomalies|)

where x̂ is the predicted class. The value 0.80 is an empirically

determined constant that diminishes the weighting of non-

anomalous pixels in the superpixel. This calculation is enabled

through the aforementioned one-to-one mapping of stitched

hyperspectral images to the RGB image using homography,

where each pixel’s location is the same across hyperspectral

and RGB images. Figures 6C,D show the majority voting and

application of the binary classification rule. Weighted majority

voting prevents the accidental inclusion of anomalies in the

training of the autoencoder, detailed in the subsequent section.

5.3 Autoencoder

The k-means method constitutes a weak learner since it

leverages assumptions and heuristics to create general

separability in the scene data. The method is also designed to

avoid overfitting description of the data. Namely, the

classification rule for pure vs. impure is intentionally biased to

avoid regions with potential impurity. The next stage in our

detector pipeline uses an unsupervised autoencoder to provide

per pixel scoring of anomalies in the environment.

The autoencoder works on a simple principle: by learning a

low-dimension representation of the data (encoding), and then

reconstructing the signal (decoding), the error in reconstruction

can be used to assess the presence of anomalies. Because the

encoding layers in the network are fully-connected, the latent

space representation is a non-linear combination of the

individual features of the input spectral signature. This

contrasts with other dimensionality reduction techniques like

Principal Components Analysis (PCA) or Non-negative Matrix

Factorization (NMF) which provide a strictly linear combination

of the input features.Formally we define the structure for our

network:

ϕ: X → S
ψ: S → X

ϕ,ψ � argmin
ϕ,ψ

‖X − ψ+ϕ( )X‖2

where X is the input signal such that x ∈ R273, and S is the latent

space given that dim(S)< dim(X ). ϕ is the encoder network, and ψ

is the decoder network. When trained, we use a mean-squared loss

function to construct the network weights of the encoder and

decoder.

The pure regions of high certainty from the hyperspectral image

are used as training input for the autoencoder. The encoder network

decreases the data size from a 273 unit vector to a 20 unit vector. The

network was implemented in Python using TensorFlow. The

network consisted of fully-connected layers followed by a

Rectified Linear Unit (ReLU) Nair and Hinton (2010). The

network architecture is illustrated in Figure 7 The model was

trained for 20 epochs and utilized early stopping to exit model

training in situations where the model failed to improve after five

consecutive epochs. Using the compute setup detailed in Section 3.5

each epoch takes an average of 3 min to train, and 10 s to evaluate on

the full datacube. After training the model weights are saved for later

reuse in model evaluation on similar datasets. Although this network

is shallow, the reduction in weights greatly expedites the training time

and prevents the network from simply memorizing the existing data.

This network is trained immediately following the initial binary

segmentation, without tuning by a human operator. This real-time

training results in a faster generation of a deployable anomaly

detector compared to one that requires copious hyperparameter

tuning and expert systems input Figure 8.
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Once generated, anomalous pixels are scored by considering

the Mean Absolute Error of the reconstruction loss:

L x, x̂( ) � ∑n
i�1|xi − x̂i|

n

After training, the autoencoder is optimized to perfectly

reconstruct spectra of the majority class, which dominated the

distribution of training data. Anomalies, which are not

particularly abundant, are reconstructed with a high degree of

error.

6 Motion primitives

With the results from the anomaly detection pipeline, the

system shifts to focus around motion primitives to disturb the

areas where anomalies are located. Grasp selection is another

challenging problem in cluttered environment. Selecting the

optimal attachment point requires understanding of the 3D

structure and segmentation of items from one another.

Moreover, grasping with a rigid gripper applies direct force,

squeezing items as they are manipulated; potentially damaging

FIGURE 7
Network architecture for fast hyperspectral anomaly detection. The input data is reduced by an order of magnitude in the latent space, before
reconstruction into the original dimension.

FIGURE 8
Generation of optimized motion primitive to perturb object clutter. The circle shows the radially generated candidate motion plans. In the
situation, the entry and exit points of the plan are modified to prevent collisions with the gripper as it descends into place.
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deformable items. For these reasons, in this research we constrain our

actions to pushing, instead of retrieval actions. Our approach is

comparatively gentler and shows good generality to different

environments. In executing a push, the two-finger gripper is closed

to create a single contact point, providing more precisely controllable

impact points than are capable with the open-jaw gripper. Given an

anomalous region, we calculate its centroid under the assumption the

polygon region is closed and non-intersecting. In this formulation, x

and y represent the vertices of the polygon superpixel.

Cx � 1
6A

∑n−1
i�0

xi + xi+1( ) xiyi+1 − xi+1yi( ),
Cy � 1

6A
∑n−1
i�0

yi + yi+1( ) xiyi+1 − xi+1yi( ),
A � 1

2
∑n−1
i�0

xiyi+1 − xi+1yi( )
From the center point, cartesian paths are generated radially from

the center at intervals of π
12 radians between paths. These plans are

candidates which are heuristically scored by the volume of the cells

they will cross. Intuitively, this means the robot will select the path

which disturbs the smallest volume of clutter, and will increase the

visible surface are of the occluded objects. The path selection is

optimized by minimizing the intersected volume. The volume of

the intersected superpixel is numerically estimated using a double

trapezoidal integration of the z-axis values.

x, x′, y, y′ � argmin∑n
i

∫∫
V
d i[ ] dx dy( ) (5)

x, y indicates the start of the motion path, and x′, y′ indicates
the end of the path. The summation is conducted over all

intersecting cell values, and d is the depth values for the ith

superpixel. If the start position places the gripper above the

clutter, then it is further improved by extending the point

radially along the same line, until a point with more open

space is found. Minimizing the impacted object volume

enforces a constraint that motions should directly target

the anomaly and its vicinity, rather than perturbing a large

path crossing the entirety of the object pile Figure 8.

Upon selecting the optimizedmotion plan, the pixel coordinates

are converted to a world coordinate frame using a pin-hole camera

model. The arm first moves to x, y, z + offset where the offset is a

parameter, set to 10 cm for the following experiments. The arm then

descends to x, y, z and begins to move in a cartesian path to x′, y′, z′.
The arm then returns to the home position, and the cycle repeats

itself until the anomalous regions have been depleted.

7 Experiments

To validate our modeling approach, we constructed several

challenging scenarios for the robot to operate in. Namely each

scenario consisted of one predominant object, with variations in

size, shape and coloration. Anomalies consisting of reasonably

considered debris and detritus were added to the scene. Similarly,

these objects also possessed considerable variance in their shape,

color, and optical transmission. The specific scenarios consisted of the

following setups:

• Plain natural wood blocks with painted, color blocks and

plastic building block pieces both partially occluded.

• Real green vegetation mixed with faux plastic leaves.

• Lemons contaminated with small fragments of plastic from

a shopping bag.

• Real lemons mixed with visually identical fake lemons, and

yellow-green limes.

These scenarios serve as demonstrations of the algorithms

ability to learn anomalies with limited examples. Specifically the

mixing of visually indistinguishable real and faux items challenge

traditional RGB-based methods.

For each setup, the items were pseudo-randomly distributed on

the table, with some manual reordering undertaken to increase the

environment complexity. The items were then scanned following the

previously delineated procedure and a single normalized

hyperspectral datacube was generated. After fitting and applying

the unsupervised two-stage anomaly detector to the environment,

candidate regions of interest were generated. The three most likely

anomalies were selected and minimally disruptive motion primitives

to each point were planned. After executing the three motions, the

scan process was repeated to generate an after-action hyperspectral

datacube. We intentionally limited the number of allowed pushing

motions to three to minimize over-perturbing the items. The end-to-

end workflow to detect anomalies with the HSI camera is show in

detail in Figure 9.

8 Results

In performing our analysis of the effectiveness of the pipeline,

we decompose the system into two parts:

• Effectiveness of anomaly detector under partial occlusions

• Effectiveness of the motion primitives in exposing

occluded clutter

8.1 Anomaly detector

The two-stage anomaly detector was evaluated as followed. After

running through the workflow presented in Figure 9, we saved the

results collected from the autoencoder, the pixel-wise reconstruction

loss, and used prior knowledge of the environment to create polygon

labels for the anomalous regions in both the pre and post disturbance

scene. Given a pixel s, in the data cube d the anomaly score is

calculated by
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norm s( ) � s −min d( )
max d( ) −min d( )

This formula normalizes the anomaly scores in a range between

0 and 1. The data. Once the normalized value is obtained, the score

used in determining final probability of anomaly is given by:

score s( ) � norm s( ) − μ

σ

Here μ represents the mean value of all the normalized data,

and σ is the standard deviations of the normalized

values. Essentially, here we treat the likelihood of a pixel

being anomalous as the number of standard deviations a pixel

is from the mean. These values are used to observe the overall

performance of the anomaly detection workflow.

As a metric for quantifying the performance of the system we

consider the True Positives (TP), True Negatives (TN), False

Positives (FP), and False Negatives (FN). We define TP as

considered anomalous material that is correctly identified, TN as

“pure” regions that are correctly identified, FP as pure regions that are

incorrectly classified as anomalous, and FN as regions that are

anomalous that are identified as pure. These individual

categorizations are used to create metrics for the overall

performance of the system. Specifically, we calculate the following

metrics for each scene:

Precision � TP

TP + FP

Recall � TP

TP + FN

Figure 10 shows an extracted wavelength channel from the

associated, normalized datacube and the associated ground truth

information.

FIGURE 9
Three stage process for automated anomaly detection and uncovering. The data workflow is separated into three categories: data registration,
anomaly modeling, and motion primitives.
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8.2 Motion primitives

For deciding on actionable pixels, we note that single

pixels are not strong indications of an anomaly; however,

clusters of anomalous pixels within a region are a better

marker. For this calculation, we turn to our previous

superpixeling strategy to generate small pixel groups.

Given a superpixel p containing normalized score values,

the priority that the region should be perturbed with a

pushing motion is given as:

Priority p( ) � max p( ) − p
~( )σ p( ) ∑n

i

pi > �p⎛⎝ ⎞⎠2

The notation p
~
indicates the median value of the superpixel and

�p is its mean. We used median in contrast to mean since it

avoided situations where a single erroneous pixel would skew the

scores for the entire region. σ(s) designates the standard deviation

of the superpixel. The calculation is designed to give maximum

weight to regions with large standard deviations, indicating a

relatively large reconstruction error, and multiple pixels that

exceed the mean. The summation prevents sensor noise from the

hyperspectral camera, occasionally manifesting in the form of

dead pixels, from generating false positives. Our decision rule for

detecting anomalous pixels is bound to an outlier detection

approach when comparing the score of a single superpixel the

collection of superpixels in the entire scene.

Following from the results of the anomaly detector and

region prioritization, where the anomalies consistently

identified, we utilized a per-pixel count for the true number

of visible anomalies. By counting the number of regions

identified as anomalous both before and after the application

of pushing motions, we can quantify the tangible difference the

FIGURE 10
Four scenarios showing the pile of clutter after the initial scan, with associated ground truth labels for anomalous items. The end image shows
the scene after disruption by three motion primitives, and ground truth shows the labeled anomalies in the scene.

Frontiers in Robotics and AI frontiersin.org14

Hanson et al. 10.3389/frobt.2022.982131

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.982131


arm made in exposing occluded clutter. Table 1 shows the results

of the motion primitives and the percent change in the visible

surface area of the exposed anomalies.

8.3 Receiver operator/precision-recall
curve evaluation

As the anomaly detection algorithm is a variant of an

unsupervised classification problem, we characterize our

results with a Receiver Operator Curve (ROC) to evaluate the

performance of the classifier as the classification threshold is

altered. For each of the scenarios, we generate a plot showing the

ROC curves as show in Figure 11. The ideal curve here would

feature a curve immediately ascending to 1.0 for both the True

Positive and False Positive rates, with an Area Under the Curve

(AUC) of 1.0. In these graphics, class 0 is the pure material, and

class 1 is the anomalous material. The ROC curve for the

anomalies quickly ascends to a greater than 90% true positive

rate before the false positive rate exceeds 10%. Along with the

ROC curves, each scenario also includes an image presenting the

reconstruction error for each pixel. The stronger yellow accents

indicate a higher reconstruction error and a correspondingly

higher probability of constituting an anomalous region Figure 12.

Although ROC curves are a classically used metric to

demonstrate performance in hyperspectral anomaly detection,

they can demonstrate skewed performance under situations of

high class imbalance. The anomalies represent a fractional

portion of the total information visible in the images. Under

this imbalanced class distribution, the classifier performance is

further evaluated by generating precision-recall (PR) curves. For

both the leaves and the lemons, the anomaly classifier exemplifies

strong performance as the recall increases. These results

demonstrate that the model is able to consistently classify

anomalous pixels, even those at lower threshold values. The

Blocks and Lemon + Plastic Bag scenarios also demonstrate good

initial performance, but then begins to fall off as recall increases.

This initial spike indicate the highest probability points are

correctly classified, while the lower thresholds are likely to be

incorrectly classified. Although individual pixel values are

important, averaging the probability across the superpixel has

the two-fold effect of eliminating noise, and strengthening

regions where a multi-pixel anomaly is present. Moreover, by

design the robot is programmed to only act on the most probable

regions to avoid unnecessary actions. The results in Section 8.2

further underscore the notion that good performance can be

achieved by only executing a few motions on the most likely

anomaly points. Table 2 directly compares the performance of

both measures in each of the scenarios.

8.4 Ablation study

As a further validation of our two stage anomaly detector, we

remove the first stage of the pipeline to avoid any of the initial

clustering; excluding superpixeling, noise adjusted PCA, and

k-means segmentation. In this scenario, the autoencoder is

trained on the entirety of the registered hyperspectral datacube

obtained directly after data registration 4. As a consequence, the

autoencoder is given training samples for each of the anomalous

pixels, and attempts to reconstruct the sample spectra while

minimizing the MSE. Figure 13 shows the results of removing

the data segmentation from the pipeline. As before, yellow indicates

the strong likelihood of a pixel being anomalous. Comparing the

results excluding segmentation to those which include segmentation

in Figure 11, we see that the non-segmented results are in general

noisier. The presence of darker violet indicates a comparatively low

reconstruction error. In particular the block, leaves, and lemons

environments are all substantially noisier when not segmented as

compared to the pipeline which includes segmentation. This

observation is also reflected in the ablation precision-recall

curves. Each of these three reduced scenarios has a smaller AUC

than the pipeline which includes segmentation. This result

corresponds to worse classifier performance at every possible

decision threshold. From these results, the clustering step

functions sufficiently as a noise removal step, allowing the

autoencoder to learn a better representation of the dominant

class. In the ablation study, the presence of anomalies increases

the average noise, even if the anomalies trigger a slightly stronger

response than the average pixel.

9 Discussion

The results presented above demonstrate the effectiveness of

the system by quickly identifying anomalies without operator

TABLE 1 Change in exposed anomalous pixels before and after application of pushing motions.

Scenario Pre-motion pixels Post-motion pixels Change %

Lemons + Plastic Bags 576,308 1,222,574 112.14

Real + Plastic Leaves 881,866 2,009,668 127.89

Lemons + Fake Lemons/Limes 383,116 813,200 112.26

Painted + Unpainted Blocks 231,724 372,970 60.95
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intervention. We note that on rare occurrences, a poor

initialization of the center of the k-means clusters could lead

to poor initial segmentation of the trainable data. This

segmentation was generally over-conservative, and excludes

additional pure regions that ideally could contribute to the

model training. Even in the midst of such poor initializations,

FIGURE 11
Mean absolute reconstruction error for each of the four environments and their associated Receiver Operator Curve (ROC) for multiple
classification thresholds.
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the autoencoder was able to learn a generally good representation

of the non-anomalous class, although the reconstruction error in

such situations was generally limited.

In the results for the anomaly detector, we see surprisingly good

performance of the detector in identifying other anomalies not

considered part of the original clutter. For instance, in the lemons

environment, the scan not only detected the partially occluded

lemons, but one lemon which had a grocery store sticker on it

was also flagged as highly anomalous. Additionally, some of the

leaves are connected to woody stems, which peek through the rest of

the leaves. Although we did not consider stems as initially part of the

anomaly class, their minimal presence and spectral difference from

leaves with an abundance of chlorophyll logically follows.

The motion primitives demonstrate impressive improvements

in exposing object clutter. In 3 of the 4 scenarios, impurity surface

area was increased by over 100%, and in the other scenario (painted

blocks) the change in surface area was non-negligible. The approach

proved to be generalizable to multiple scenarios and fast to execute.

Planning from the time of identification of the target coordinate, to

optimization of the pushing trajectory averaged 7 s to generate the

joint angles needed to achieve the desired motion. As it takes several

minutes to acquire a hyperspectral datacube with a pushbroom

camera, we reuse the same hyperspectral data in the determination

of target regions of interest for all motion primitives. This approach

succeeds with items that will not move beyond the point of applied

motion, but can cause discrepancies with objects that continue to

roll, such as lemons and impact objects not in the gripper path of

motion. Pushing also had the effect of creating a greater distribution

of the scene anomalies, creating better opportunities for grasping. In

Figure 10, the end ground truth images demonstrate a greater

distribution of anomalies over the image plane. A wider spread is

advantageous for grasp planning, as isolation of the anomalies from

the pure items allows the target item to be cleanly grasped with

minimized risk of perturbing unnecessary items.

In the ablation study, the lemon + plastic bag scenario

generates similar results to the two stage pipeline. The AUC in

both setups is also similar. This could be a result of the plastic

bag pieces being different in both color and material, leading

to a greater difference in the mean spectral signatures of the

two items. Nonetheless, this observation shows that the two-

stage pipeline only improves results, and is able to identify

anomalies that are visually similar, which supports the

generality of this work.

In future work, we will study the selection of motion primitives

and how they are heuristically generated. The formulation we

employed in the current scope of work made assumptions

regarding the nature of clutter. Specifically, we assumed the

FIGURE 12
Precision recall curves for each of the scenarios. A consistently high precision score is desirable. A no-skill classifier will lie on the x-axis (recall).

TABLE 2 Anomaly detector performance with the area under the
Receiver Operator and Precision Recall Curves.

Scenario AUC ROC AUC PR

Lemons + Plastic Bags 0.97 0.483

Real + Plastic Leaves 0.97 0.842

Lemons + Fake Lemons/Limes 0.98 0.718

Painted + Unpainted Blocks 0.94 0.413
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objects would be separable with linear motions in the x-y plane.

However as the leaf example best demonstrated, the presence of

items with large surface areas and contact between items causes

difficulty in separation. This fact is further exacerbated when the

coefficient of friction is lower between the table and the items than

between items. Initial pushing and nudging could be used to create

FIGURE 13
Mean absolute reconstruction error for each of the four environments and their associated precision recall curves conducted for the ablation
study.
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larger visibility of previously occluded items. With an opening into

the clutter at least as large as the gripper finger width, the items could

then be grasped and removed. Additionally, the UR3e co-robot used

in this research has a limited working distance. This constraint

limited the number of cluttered points that could be properly

addressed to within an area generally beneath the robot.

Increasing the size of the robot should ameliorate this concern

and enable motion planning to all points in the visible scene.

Improving the diversity of motions available to declutter the

workspace will increase the versatility and generality of the

proposed algorithm.

10 Conclusion

In this paper, we present a novel generalizable model to

detect and expose partially occluded anomalies in a cluttered

scene. Our model does not assume prior semantic knowledge of

the scene or the objects contained within, operating on the

assumption that the anomalies are the minority of objects in

the scene. Our methodology circumvents the intensive process of

needing to curate labels for comparable problems solved with

purely RGB data. We accomplish this by registering together

hyperspectral and RGB-Depth data to create an information rich

model of the environment which can be interpreted with

magnitudes greater granularity than RGB data. Through

feeding an AE definitively pure regions from the registered

HSI-RGB-Depth data selected with iterative clustering, we

train a more complex generalizable model where anomalies

are detected in regions with high reconstructive loss. We

found that traditional approaches to detecting anomalies

within hyperspectral images either do not work for regions

where anomaly sizes are greater than a few pixels, or are

prohibitively expensive computationally, taking far too long to

run. We found that our approach works well in situations where

purely RGB-driven solutions likely would fail, as demonstrated in

our experiments where we are able to successfully differentiate

plastic fruit from their visually similar real fruit counterparts.

With the information obtained from our anomaly detection AE,

we are able to uncover potentially occluded anomalies by

selecting an optimal plan from our heuristic motion primitives.

Moving forwards, we plan to increase the robustness and

speed of our system, as well as to decrease the collection period of

the scans. Our pushbroom hyperspectral camera requires several

passes to survey a workspace, passes that could be eliminated

entirely by a snapshot hyperspectral camera with a reasonable

horizontal field of view. We plan to increase the robustness and

speed of the scans by optimizing or scheduling our algorithms

involved with registering data and creating the pure feed for the

AE. This work represents a substantial step towards meaningful

integration of robot-centric hyperspectral data into the handling

of cluttered environments.
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