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When exploring the surrounding environment with the eyes, humans and

primates need to interpret three-dimensional (3D) shapes in a fast and

invariant way, exploiting a highly variant and gaze-dependent visual

information. Since they have front-facing eyes, binocular disparity is a

prominent cue for depth perception. Specifically, it serves as computational

substrate for two ground mechanisms of binocular active vision: stereopsis and

binocular coordination. To this aim, disparity information, which is expressed in

a retinotopic reference frame, is combined along the visual cortical pathways

with gaze information and transformed in a head-centric reference frame.

Despite the importance of this mechanism, the underlying neural substrates still

remain widely unknown. In this work, we investigate the capabilities of the

human visual system to interpret the 3D scene exploiting disparity and gaze

information. In a psychophysical experiment, human subjects were asked to

judge the depth orientation of a planar surface either while fixating a target point

or while freely exploring the surface. Moreover, we used the same stimuli to

train a recurrent neural network to exploit the responses of a modelled

population of cortical (V1) cells to interpret the 3D scene layout. The results

for both human performance and from the model network show that

integrating disparity information across gaze directions is crucial for a

reliable and invariant interpretation of the 3D geometry of the scene.
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1 Introduction

Three-dimensional shape perception from binocular stereopsis is a common

perceptual process employed by animals characterized by forward pointing eyes, such

as humans and other primates, for understanding and interacting with the environment.

For such a task, our visual system relies on binocular disparity information, as the relative

displacement of corresponding image projections of the same object on the left and right
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retinas (Howard and Rogers, 1995). In humans, the underlying

neural mechanisms are already present at only 4 months after

birth, together with the ability of perceiving shape from motion

(Yonas et al., 1987).

A correct development of binocular vision is mandatory for a

reliable perceptual process and for proper coordination of

binocular eye movements (Thompson et al., 2015; Milla Baños

and Piñero, 2020). The understanding of the three-dimensional

(3D) scene is in fact obtained by constantly adjusting gaze and

vergence towards the next most salient or informative point for

the task at hand (Hinkle and Connor, 2002; Rosenberg et al.,

2013). Binocular depth perception is achieved by comparing the

left and right retinal images. To do this, we must determine for

each point in one image which point in the other originated from

the same part of the same object. False matches create the

correspondence problem. Solving the stereo correspondence

problem is computationally demanding, since a single natural

scene has unpredictable complex 3D structure, and retinal

corresponding points patterns likely depend on the active

fixation strategy, too.

So, how does our visual system successfully recover the 3D

shape information using the continuously changing gaze-

dependent disparity information provided by an actively

fixating binocular system, in a fast and reliable way? Here, we

explore the hypothesis that an active fixation geometry is

essential for the recognition of an object’s shape in depth.

Assuming a patch-wise linear model of the depth structure, a

full reconstruction of the scene is not always necessary and the

actual binocular geometry of a 3D fixating observer allows our

visual system to actively measure only deviations of the internal

model’s predictions. In the present paper, our goal is two-fold; 1)

to model a plausible cortical pathway of 3D shapes perception

through the hierarchical processing of distributed

(i.e., population-based) representation of binocular disparity

and their corresponding elementary differential components,

and 2) to investigate the integration mechanisms of the

binocular signal across multiple gaze cyclopean directions in

an active fixation setup. In the context of computational systems

with limited resources a strategy that limits the number of

exploratory eye movements (i.e., saccades) represents an

important desirable asset. Towards that goal, we combined the

findings from a psychophysical experiment with the outcomes of

a trained bio-inspired hierarchical network - where both our

human participants and the computational network were asked

to classify the orientation in depth of a dataset of planar 3D

surfaces. Our participants’ performance together with the learned

intra-gaze recurrent weights and the resulting activation patterns

of the trained network’s units demonstrate the emergence of

reliable gaze-invariant 3D representation.

The rest of the paper is organized as follows: in Section 2, we

introduce the problem of recovering the 3D layout of an object or

a scene in the case of an active fixating observer, together with a

specific experimental investigation on human subjects. In

particular, we present the outcomes of a dedicated experiment

where participants judged the orientation in depth of a 3D planar

stimulus while controlling their active fixation behavior. These

behavioral results are compared with those achieved by a trained

recurrent hierarchical network described in Section 3.

Concluding remarks and a general discussion are presented in

Section 4.

2 Materials and methods

2.1 Structure-from-stereo for an active
fixating observers

Recovering the 3D layout of an object or a scene from images

is a well formalized problem (Trucco and Verri, 1998). When we

are provided with a sufficiently dense disparity information, it

enables 3D shape recognition (Marr, 1982; Poggio et al., 1985;

Nalpantidis et al., 2008; Li et al., 2009) and classification (LeCun

et al., 2004; Fei-Fei et al., 2007). A standard Computer Vision

approach relies on a pair of cameras with parallel optical axes,

yielding to binocular disparities along the horizontal epipolar

lines. This is not the case for natural binocular vision systems,

where the stereo images are acquired by pairs of eyes that are in

vergent geometry, and that continuously explore the scene by

moving the fixation point around the 3D environment (Gibaldi

et al., 2017a; Canessa et al., 2017).

A vergent stereo imaging geometry is a powerful means for

focusing the attention of a vision system on a particular region of

interest. However, the price to be paid is a more complex

geometric relationship between binocular corresponding

points, especially during visual exploration of the peripersonal

space where large values of vergence occur (Sprague et al., 2015;

Gibaldi et al., 2021; Aizenman et al., 2022). The zero-disparity

condition at fixation, granted by vergence movements, directly

influences the pattern of retinal disparity used for estimating the

3D position and orientation of the fixated object. Moreover, the

vergence posture has an impact on the accuracy of stereopsis, too.

Different eye positions can influence the shape of the empirical

horopter (Schreiber et al., 2008; Gibaldi and Banks, 2019) and

thus the mechanisms of perceptual vision (Howard and Rogers,

1995). As a consequence, the fixation point, i.e. where the system

verges, becomes a reference that can be parameterized by the

relative orientations of the eyes.

A convenient way of expressing the binocular posture is by

considering azimuth and elevation rotations of the left and right

cameras, separated by a baseline b = 60 mm, with respect to their

straight-ahead (primary) positions. Figure 1 shows the sketch of

an active binocular system. Eye position is expressed in a head-

centric reference frame. The nose direction is the line orthogonal

to the baseline and lying in a transverse plane passing through the

eyes. Gaze direction defines the fixation line, the fixation point is

at the intersection of these lines on the first visible surface. Since
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our aim is to simulate the actual images projecting on the retinas

of a verging binocular vision system, we generate the stereo pairs

through the toe-in method. Each ‘model camera’ is pointed at the

target point (the fixation point) through a proper rotation that

mimics human eye movements (Gibaldi et al., 2017a; Canessa

et al., 2017). Then the left and right views project onto two

different planes (see Figure 2). The cameras are characterized by

the following parameters (each expressed with respect to the

fixed head reference frame): camera position OL/R and camera

orientation RL/R � RL/R(ϵL/R, αL/R), function of the elevation ϵ
and azimuth α angles.

Cameras have pinhole optics with unitary focal length. The

origin of the left and the right view volume is fixed at

TL/R � ±
b

2
, 0, 0( ) (1)

while the cyclopic view volume is located at the origin of the head

reference frame. To emulate the behavior of a couple of verging

pan-tilt cameras, the complete rotation of each camera is defined

by composing in cascade the above rotations following an

Helmholtz gimbal system:

RL/R � RL/R
ϵ RL/R

α . (2)

Considering human binocular eye coordination, the

complete 3D pose of the eyes must take into account

rotations about gaze directions (i.e., binocular Listing (L2)

torsion angles). Accordingly, and compliantly with L2, we

pre-multiply the rotation matrices RL/R by a torsional rotation

matrix RL/R
γ to obtain the complete rotation of the view-volumes:

RL/R
L2 � RL/R

γ RL/R. (3)

For a complete derivation of the γ angles refer to (Canessa

et al., 2017). In this way, it is possible to insert a camera in

the scene (e.g., a perspective camera), to obtain a stereoscopic

representation with convergent axes and to decide the

location of the fixation point. Thus, for any point in

the scene we can obtain its retinal disparity as the

difference in retinal position of the left and right

projections of the point.

The resulting disparity is defined as a vector δ = (δ1, δ2)

comprising horizontal and vertical retinal disparity components

(Poggio et al., 1985):

FIGURE 1
Schematic of the viewing and imaging geometry of a
binocular active vision system. F is the fixation point, defined by the
azimuth α and elevation ϵ angle pair, C is the cyclopic position
(halfway between the eyes), L and R are the left and right
camera positions, separated by a baseline b = 60 mm. The ϵL/R, αL/R

and γL/R values stand for the elevation (pitch), azimuth (yaw) and
torsion (roll) angles of the left L and right R eye.

FIGURE 2
Different binocular viewing conditions for varying stimulus
orientation and gaze direction: a frontoparallel planewith straight-
ahead gaze (top), a slanted plane with straight-ahead gaze
(middle), and a slanted plane with eccentric gaze (bottom).
Slant and tilt of the plane are expressed as rotations around a fixed
[X, Y, Z] world reference frame.
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δ1 � xR
1 − xL

1

δ2 � xR
2 − xL

2

(4)

measuring the difference of the retinal left (xL
1 , x

L
2 ) and right

(xR
1 , x

R
2 ) image coordinates that correspond to the same point in

the scene.

To investigate how the (local) disparity information can be

used to estimate the structure of the scene, we consider the

simplified problem of estimating the orientation of a planar

surface. The orientation of a plane in depth can be

parameterized by its two degrees of freedom, namely slant

and tilt, defined as successive rotations around a world

gravitational reference frame (Stevens, 1983), see Figure 3.

More precisely, the center of rotation of the plane is set at a

fixed distance along the intersection of the median plane (vertical

in an upright position of the body, perpendicular to the baseline

at its center) and the horizontal visual plane (containing the two

eyes’ rotation centers); we considered a distance of 350 mm,

which is a typical average distance for visually-guided

manipulation tasks. Note that as the eye can move over the

planar surface, the plane does not necessarily represent the first-

order approximation of a smooth physical surface at the fixation

point. As a result, the disparity patterns depend both on the

viewing geometry and on the surface orientation, making it

impossible to recover the disparity pattern from a single

measurement (i.e., a single gaze).

Using the ideal observer’s head model described above, we

computed the disparity vector field patterns related to differently

oriented 3D planes, and for a number of different gaze directions.

The 3D plane, as a mesh in space with its center at (0, 0, 350) mm

is subtended by a 50°) visual angle. This size was chosen so that it

fully remains in the observer’s binocular field of view for every

orientation and gaze direction as defined below. As illustrated in

Figure 1, the plane’s rotation in depth is defined by composing in

cascade two rotations:

R � RτRσ (5)

with σ, τ being the slant and tilt orientation angles expressed as

rotations around the Y and X axes, respectively, of a fixed left-

handed triplet (X, Y, Z) in a world gravitational head-centric

reference frame.

The slant and tilt values were sampled on a polar grid where

the latitude represents a constant slant angle and the longitude

represents a constant tilt angle (Figure 2). This parameterization

stems from experimental evidence on the just noticeable

differences (JND) of oriented stereoscopic planes in depth

(Norman et al., 2006). Indeed, slant-tilt polar encoding

naturally decomposes the problem of determining surface

orientation into two substantially independent perceptual

problems. Psychophysical studies (for example, (Balch et al.,

1977)) suggest that both rotation values are encoded as

internal visual parameters and that they vary linearly with the

objects’ orientation in depth.

As shown in Figure 4, the zero-order disparity conveyed for

different plane rotations in depth with (σ, τ), i.e. (0°, 0°), (28°, 60°)

and (28°, 300°), provide ambiguous information for recovering

the invariant 3D planar orientation. This is due to the fact that,

even when the position of the 3D object in space remains stable,

the change in the cyclopean gaze direction induces considerably

high variance on the disparity signal. An example of this can be

seen in the columns of Figure 4), where for the same slant and tilt

parameters the disparity information conveyed by our binocular

system significantly changes with gaze position. Hence, how does

our visual system instantly recover an object’s 3D planar

orientation, in a gaze invariant headcentric coordinate system,

from a so highly variable disparity signal? Here, we explore the

idea that active fixations are a crucial mechanism for the

integration of the disparity signal towards a complete

understanding of the object’s 3D shape and also, that a single

disparity map is able to provide enough information on the

FIGURE 3
Images of oriented disks showing examples of slants and tilts components of surface orientation. The line segment at the center of each disk is
aligned in the direction of the surface normal. The joint slant and tilt components form a spherical coordinate system in which lines of latitude have
constant slant, and lines of longitude have constant tilt.
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plane’s 3D characteristics bymaking use of its, partially invariant,

first-order disparity components expressed as first-order

differentials of the disparity vector fields.

2.2 The role of eye movements

During the last decades, psychophysical research on

structure-from-stereo perception evolved along two main

experimental paradigms: simple 3D shapes rotated in depth

either by slant or tilt, only (Backus et al., 2001), (Tsao et al.,

2003) or complex 3D structures (Yamane et al., 2008),

(Georgieva et al., 2009) (Rosenberg et al., 2013). In the first

case, researchers usually study the subjective perception of the

ordinal or interval differences of 3D surface orientation in

depth (e.g Reichel et al., 1995), (Norman et al., 2006),

whereas in the second case they are mostly concerned with

the more complex underpinnings of 3D shape perception

(Koenderink et al., 1992), (Koenderink et al., 1996). For the

purpose of the current study, the former approach is too simple

and the latter one is too complex. Furthermore, to the best of

our knowledge, none of these studies explicitly account for the

active fixation condition in a vergent geometry binocular

setup. On this ground, we designed a visual psychophysical

experiment that employs a variation of the gauge figure

technique (Koenderink et al., 1992), (Todd et al., 1997),

where participants are asked to judge the orientation in

depth of a plane by adjusting a gauge figure superimposed

on its surface, while explicitly controlling the joint slant and tilt

rotation of each plane, as well as the participant’s active fixation

behavior; see Figure 5A. This setup aims to replicate as closely

as possible the circumstances of a person that quickly explores

and recognizes the orientation of a small object’s hold in her

hands.

Experimental protocol - As shown in Figure 5B, each stereo

image pair was presented on an LG 42LW450A stereoscopic LCD

screen (1920 × 1,080 pixels resolution) and viewed dichoptically

through a pair of passive polarized glasses. Each 3D planar

surface used as a stimulus is rotated in space by one of

81 pre-defined pairs of slant and tilt angles: nine values of

slant in the range [4°, 48°] by steps of 4°, and nine values of

tilt in the range [30°, 360°] by steps of 4.5°. This parameterization

stems from psychophysical evidence on the just noticeable

differences (JNDs) of oriented stereoscopic planes in depth

((Stevens, 1983), (Norman et al., 2006)). These orientation

pairs were further grouped into nine overall orientation

classes for the purpose of comparing our human participants

performance with the one of our modelled network described in

the subsequent section. This way of parameterization results in a

common chance level of 1/9 across our behavioral experiments’

and our computational models’ results.

Participants were seated at a fixed distance of 570 mm from

the screen and their heads were restrained by a chin rest. A

perceptual matching task was performed. For each trial,

participants were presented with a rendered planar surface

(test stimulus) for 5 s. After this time window, a gauge ring

appeared in a frontoparallel arrangement. Participants were

asked to use a joystick (Thrustmaster T16000M FCS) to place

the gauge figure so as to appear lying flat on the test stimulus.

The joystick’s movement was continuously mapped in to the

gauge’s figure slant and tilt angles parameterized as the

longitude and the latitude of a spherical coordinate

FIGURE 4
Examples of binocular disparity patterns related to angled planes observed under different viewpoints. Both the change in the cyclopean gaze
direction (α, ϵ) (0°, 0°) and (11°, 11°), and the plane’s rotation in depth (σ, τ) (0°, 0°) and (28°, 60°) result in distortions (i.e., rotational components) in the
disparity vector field.
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system, respectively. At the moment that the gauge ring was

perceived aligned with the planar surface orientation in a

satisfactory way, participants were instructed to press the

keyboard’s spacebar for ending the trial. For each trial, we

measured reaction time and accuracy as to whether the

chosen gauge figure’s orientation class matched the one of

the presented planar surface underneath it. Subjects had any

time limit to provide the answer and the average response

time typically decreases over trials.

We explicitly conditioned the participants’ binocular fixation

control by introducing two experimental conditions: sustained

gaze fixation (SG) and multiple gaze shifts (MG). For the first

condition, participants were instructed to keep their eyes strictly

on the central fixation dot whereas for the second condition they

were encouraged to actively explore the 3D rendered oriented

planar object. Participant’s cyclopean gaze direction movements

were recorded for both SG and MG conditions, during the initial

5 s period when the participants - actively or not - were invited to

perceive the orientation in depth of the test stimulus.

Subjects - Behavioral perceptual and motor data were

collected from six participants (3 females) with an average age

of 35 years with normal or corrected-to-normal binocular vision.

All participants have given informed consent for their

involvement in this study. The procedure was in accordance

with the Declaration of Helsinki. Each participant performed a

total of 567 trials (7 repetitions for each of the 81 slant and tilt

pairs) for each of the two experimental conditions, sustained gaze

fixation andmultiple gaze fixations, referred as SG andMG in the

following. Each participant randomly started with SG or MG

condition, which were equally distributed.

Apparatus and stimuli - The 3D geometry of the scene was

implemented with the use of the C++/OpenGL architecture

extension for Psychophysics Toolbox (Brainard, 1997) for

MATLAB (Mathworks) based on the biological principles of

cyclopean binocular geometry as described by Hansard and

Horaud (2008). More precisely, the stimuli were 3D planar

surfaces, simulated as a mesh around a point P0 = (0, 0, 370)

mm, expressed in headcentric coordinates. Each 3D plane was

initially defined as an union of all the points Pi that satisfy

equation P = {Pi: n
T (Pi − P0) = 0} with n being the normal

vector of the plane. After that, a gauge figure was initialized as a

small circular gray ring with an internal diameter of 6 mm and an

external radius of 16 mm to that it covers ≈ 16 deg of visual field. Its

world gravitational center was defined at Pa = (0, 0, 350) mm,

coinciding with the center of the screen (cf. Figure 5A). For the

subsequent rendering of the 3D shape we followed the experimental

paradigm proposed by Gibaldi et al. (2017a) and we used the vergent

geometry setup therein defined for the simulation of the ideal

observer’s eyes. This setup allows us to consider the disparity cue

as a vector field composed of both horizontal and vertical

components. More in detail, we initialized the two virtual cameras

in space with a baseline b= 60mmparallel to theX axis. Each camera

was subsequently rotated according to the Helmholtz reference

frame, so that its optical axis will pass through the world

gravitational point Pa = (0, 0, 350) mm, coinciding with the

center of rotation of the gauge figure.

Eye tracking - A Tobii EyeX table eye tracker was used, with a

frame rate of 60Hz placed at a distance of ≃ 300 mm from the

participant’s head. Before the experiment starts, the eyetracker

was calibrated for each eye, separately. The recording of the eye

FIGURE 5
A schematic view of the human slant/tilt perceptual experiment. (A) Each 3D oriented plane is rendered stereoscopically. The observer adjusts
the orientation of the gauge ring in depth until it appears lying flat on the surface of the planar stimulus. (B) The experimental protocol: for the first 5 s
participants were presented with a 3D rotated planar surface and were asked to either keep their gaze fixed on a central dot - ‘SG condition’ - or
actively explore the stimulus - ‘MGcondition’. The two conditionswere also parameterized by the aperture size: small one (121 mmof diameter)
for the SG and a wider one (242 mm of diameter) for the MG condition. Each stimulus is presented dichoptically in the left eye (LE) and in the right
eye (RE).
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movements as well as the calibration procedure relied upon the

integrated functions of the Tobii EyeX toolkit for Matlab (Gibaldi

et al., 2017b). During each trial, the participant’s current

cyclopean gaze direction was computed as the middle point

between the left and right 2D gaze points recorded by the

eyetracker and approximated to a point of a regular grid at

the surface of the screen. For each trial, the 2D fixation points on

the cyclopean image of the 3D planar surface were obtained from

each cyclopean gaze scanpath by considering aminimum fixation

time of 0.3 s and then backprojected and analyzed on a

normalized grid superimposed onto the surface of each 3D

planar surface. In the SG condition, subjects who had not

kept fixation close to the center of the screen (i.e., < 0.5 visual

deg) were discarded.

Resulting evidence - During the MG condition, participants’

accuracy was significantly higher compared to the SG

condition, across all slant and tilt combinations (t (5) =

-3.3534, p = 0.0203) (Figure 6A). Reaction times were

similar between the two experimental conditions, with the

reaction times of the SG condition being slightly longer than

those measured in the MG condition. A thorough examination

of the interactions between the orientation classes in the slant

and tilt parametric space and the participant’s accuracy was not

possible due to the low number of participants in our study.

However, we visually inspected the average accuracy level

across all the participants in the Multiple Gaze condition. As

we shown in Figure 6B there is a high inter-subject variability in

performance - as denoted by the vertical lines representing the

Standard Error of the Mean between our participants - across

all classes of slant and tilt 3D orientation parametric space. The

orientation classes with the largest values of slant across all

values of tilt ({3, 6, 9}) appeared to have the highest

classification rate and the lowest variance.

The active fixation behavior of our participants varied

significantly between the two conditions (SG and MG) with

their eye movements covering a smaller distance from the center

of the screen during the SG condition (t (5) = 6.5872, p = 0.001)

as it can be seen in Figure 6C. The number of gaze directions was

similar for both our conditions (≈ 43). The average performance

level of our participants varied significantly with gaze number

across both our experimental conditions as determined by a two-

way ANOVA F (2,5) = 31,893, p = 0).

FIGURE 6
Averaged behavioral results across all the rotation pairs (slant and tilt) and all the participants (A) Average accuracy and average reaction time
(RT) for sustained gaze fixation (SG) and multiple gaze (MG) conditions. Each circle represents each participant’s accuracy for each of the nine
orientation classes and the black lines denote the standard error of themean (SEM) (B) Average accuracy for the Multiple Gazes condition for each of
the nine orientation classes. The blue lines denote the standard error of the mean (SEM) (C) Gaze directions across all participants and
orientation classes plotted for the Single Gaze condition (left) and the Multiple Gaze condition (right). The polar plot’s angle denotes the gaze
direction’s orientation whereas its radius represents the gaze direction’s distance from the center of the screen (D) Estimated slant and tilt orientation
values as a function of the actual plane’s slant and tilt. During the sustained gaze condition (SG) and for small values of slant, participants tend to
grossly misjudge the tilt values of the stimulus plane 3D orientation.
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Furthermore, as it can be seen in Figure 6D, there is no

significant difference between the experimental condition

(sustained vs. multiple gazes) and the estimation of slant

across all values of tilt (t (5) = 0.6363, p = 0.5525) whereas

the values of the slopes of the best fit lines of perceived to actual

tilt were significantly different across all values of slant (t (5) =

-3.9109, p = 0.0113). These results agree with previous findings

on the amount of slant-induced bias found in the perception of

tilt in a natural stereoscopic images, and on the influence on the

estimates of the intrinsic cardinal bias in the tilt prior probability

distribution (Burge et al., 2016).

Taken together, these results indicate that using an active

binocular fixation strategy is more effective not only for a correct

perception of the environment’s 3D structure but also for its

computational efficiency. In the following section we explore this

hypothesis further by training a recurrent hierarchical network to

recognise the orientation in depth of the same 3D planar stimuli

as the ones used in our behavioral experiment, using as an input

the activation of a modeled population of V1 cells collected

through a series of different gaze directions.

2.3 Biologically-inspired representation of
slant and tilt from binocular disparity
patterns in vergent geometry

As mentioned before, zero-order disparity information is highly

variant as a function of the plane’s rotation, as well as of the binocular

fixation point. However, inspired by previous work on optic flow

research (e.g. Koenderink and van Doorn, 1979), (Koenderink and

van Doorn, 1979), (Verri et al., 1992), it is possible to exploit linear

variations of the disparity field to obtain structure-from-stereo

information that is invariant to the direction of gaze. These first-

order differentials of the disparity field are indeed invariant to the

absolute distance of the object with respect to the cyclopean point of

view (depth), even though they actually need information on the

geometry of the fixation system for recovering the local surface

properties, explicitly.

Formally, around any image point (x0), the disparity field

δ(x) can be described as linear deformations by a first-order

Taylor decomposition:

δ x( ) � δ x0( ) + Jδ( ) x0( )x + higher order terms (6)

where x = (x1, x2) is the image point and

Jδ( ) x( ) � zδ x( )
zx1

,
zδ x( )
zx2

( ) � ∇Tδ1 x( )
∇Tδ2 x( )( ) (7)

By combining the first-order differential components of the

disparity field we can obtain its elementary transformations,

namely a pure expansion (div), a pure rotation (rot) and two

components of deformations (def1, shear and def2, stretching)

(Figure 7A):

div δ x( ) � zδ1
zx1

+ zδ2
zx2

rot δ x( ) � zδ2
zx1

− zδ1
zx2

def 1 δ x( ) � zδ2
zx1

+ zδ1
zx2

def 2 δ x( ) � zδ1
zx1

− zδ2
zx2

.
(8)

These four disparity transformations have been found to be

quite informative and relatively invariant to the viewing

geometry and to the environmental noise, thus an ideal input

for a hierarchical network trained to discriminate planar surface

orientations, as detailed in the following. On the basis of such

differential invariants - and by recurrently combining

information associated to the same surface orientation fixated

with different gaze directions - we will show that it is possible to

gain reliable complex visual descriptors to properly tile the (σ, τ)

space. These descriptors will be obtained by the hard-wired

convolutional stage of the network and used as input to the

subsequent recurrent trainable stage, as illustrated in Figure 8.

2.3.1 Encoding disparity information from built-
in binocular energy detectors

As the front-end of the network architecture that we will

propose in the next section, we have a distributed coding of the

binocular disparity across different orientation channels through

a filtering stage that resembles the filtering process of primary

visual cortex (area V1). Disparity information is extracted

from a sequence of stereo image pairs by a population of

simple and complex cells. Each simple cell response rs (x; Δψ)
is obtained through a linear binocular Gabor-like receptive

field gL(x) + gR(x) positioned in corresponding points x of the

left and the right images, oriented by the same angle with

respect to the horizontal axis, and characterized by the same

peak frequency ω0 and spatial envelope. A proper binocular

phase shift (Δψ = ψL − ψR) between the left and right

receptive field along the direction θ orthogonal to the

orientation of the receptive fields confers to the cell a

specific disparity sensitivity along that direction.

According to the binocular energy model (Ohzawa

et al., 1990; Qian, 1994; Fleet et al., 1996), the response

of a complex cell r(x) finalizes its tuning by taking the

sum of the squared response of a quadrature pair of simple

cells:

r x( ) � r2s x,Δψ( ) + r2s x,Δψ + π/2( ). (9)

Hence, r(x) has its maximum when the product of the magnitude

of the stimulus disparity and the spatial peak frequency equals

the phase difference in the binocular receptive field.

1 By consideringM/2 pairs of orthogonal vectorsm(k)
1 andm(k)

2 we cover
the full [0, π) periodicity.
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FIGURE 7
(A)The differential elementary components of a vector field, namely divergence, rotation and two components of deformations (Koenderink
and van Doorn, 1979) (B) Examples of the bio-inspired activation maps of the population of complex binocular neurons (57 maps), for each single
slant and tilt rotation pair and each single gaze direction.

FIGURE 8
The proposed neural architecture (A) The non-trainable preprocessing module is a three-layer convolutional architecture that receives
multidimensional disparity-related activation maps for each of the nine gaze directions, and provides a set of neural maps representing disparity
differential elementary components (div, rot, def1, and def2). (B) The trainable three-layer module that relies on recurrent connections between its
hidden units to learn gaze-invariant disparity representations in the slant/tilt parametric space, from the input neural maps related to a set of
different gaze directions.
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2.3.2 Building distributed representation of first-
order disparity field differentials

For each image position, binocular disparity δ(x) can be

equivalently defined with respect to any orthogonal coordinate

system, rotated by an angle θk:

δ k( ) x( ) � m k( )
1 ,m k( )

2( )Tδ x( ) (10)

where m(k)
1 � (cos θk, sin θk)T and m(k)

2 � (−sin θk, cos θk)T are

equivalent generators that point in direction θk and θk + π
2,

respectively.

With respect to such a rotated basis, vector disparity

differentials can be properly defined through directional

derivatives:

Jδ k( )( ) x( ) � m k( )
1 ,m k( )

2( )T ∇Tδ1 x( )
∇Tδ2 x( )( ) � m k( )

1 ,m k( )
2( )T Jδ( ) x( ).

(11)
Considering that the neuromorphic energy detectors act

through different orientation channels, each disparity value,

defined in R2 can be (redundantly) mapped in the responses r

of a population of neurons defined in RN, where N = L ×M, with

M is the number of cortical orientation channels, and L is the

number of the specific phase-based disparity tuning values, for

each orientation. The ordered vector space of the N-tuples of

these responses can be conveniently denoted by two indices: k =

1, . . . , M/2 that represents the direction θk of the disparity

component to which the binocular disparity detector is tuned1,

and l = 1, . . . , L that represents the specific (scalar) value of

tuning Δψl along direction θk. Consistently with previous

definitions, we can map zero-order disparity δ(k) (x) into

(r(k)1,l (x), r(k)2,l (x))
T

l�1,...,L. Similarly, first-order differentials (Jδ(k))

(x) map into (∇Tr(k)1,l (x),∇Tr(k)2,l (x))
T

l�1,...,L where ∇Tr(k)i,l �
(zr(k)i,l /zx1, zr

(k)
i,l /zx2).

By composition of dyadic components, we can eventually

map the set of disparity differential invariants into the tensor

fields of the neural population activity, for each (k, l) channel:

div δ x( ) ↦ zr k( )
1,l

zx1
+ zr k( )

2,l

zx2

⎧⎨⎩ ⎫⎬⎭ k�1,...,M/2
l�1,...,L

(12)

rot δ x( ) ↦ zr k( )
2,l

zx1
− zr k( )

1,l

zx2

⎧⎨⎩ ⎫⎬⎭ k�1,...,M/2
l�1,...,L

def 1 δ x( ) ↦ zr k( )
2,l

zx1
+ zr k( )

1,l

zx2

⎧⎨⎩ ⎫⎬⎭ k�1,...,M/2
l�1,...,L

def 2 δ x( ) ↦ zr k( )
1,l

zx1
− zr k( )

2,l

zx2

⎧⎨⎩ ⎫⎬⎭ k�1,...,M/2
l�1,...,L

.

Note that all derivatives can be approximated as sort of scale-

space differentials of the neural population responses:

z

zxj
r k( )
i,l ≃

z

zxj
Gspr

k( )
i,l . (13)

Consequently, information about the local differential structure

of the disparity map is gained through the computation of the local

differential geometry of the neural maps.

3 Results

3.1 Learning gaze-invariant active 3D
shape recognition

The use of a naturalistic stereoscopic experimental setup as

described in Section 2.2, gave us the opportunity to investigate

how the human visual system integrates multiple, gaze-

dependent, pieces of disparity information towards a head-centric

invariant representation. From a computational point of view, data

provide compelling evidence of a key role of binocular eye

coordination in active fixation, for correctly categorizing a global

3D shape property; the planar orientation. However, to date the

plausible underlying biological mechanisms responsible for this

integration remains rather elusive. In this part of the paper, we

tackle this problem from a modeling point of view, by relying on

awide dataset of disparity information of 3D oriented planes obtained

by our simulator for training a cortical-like neural architecture to

classify planar orientation in depth. The whole multi-layer recurrent

network architecture is illustrated in Figure 8.

The proposed architecture comprises two distinct stages:

preprocessing and training. The preprocessing stage behaves as a

convolutional neural network with two non-trainable layers. The

binocular energy input consists of L ×Mmaps of 43 × 43 pixels. For

each orientation (k) and phase (l) channel, and for each gaze direction

(q), the activity dj of unit j in the first layer, is given by:

dj � Wrrj (14)

whereWr is a set of 12 × 12 two-dimensional Gaussian derivative

kernels

Wr � zm+n

zxm
1 zx

n
2

G( ), m, n � 0, 1 m + n � 1 (15)

and rj is the 12 × 12 binocular energy population response

captured by the jth unit. This operation yields a set of 4 ×

L × (M/2) neural maps of 32 × 32 pixels representing a set of first-

order differentials, which are pairwise combined to obtain

information about elementary disparity field components (cf.

Eq. 8). Each component is eventually pooled by means of a 8 × 8

sliding Gaussian kernel Wd to obtain the activity of the second

convolutional map.

Accordingly, for each orientation and phase channel, and for

each gaze direction, the activity zj of the j-unit is given by:
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zj � Wddj (16)

where dj is the 8 × 8 input from the previous layer captured by the

jth unit. This process results in a set of 4 × L × (M/2) neural maps

discretized into 5 × 5 pixels, that conveys, for each gaze direction,

information about (slant, tilt) orientation pairs. The dataset is

finally normalized to have zero mean and [ − 1, 1] magnitude

range, and divided in 70% and 30% for the training and test sets,

respectively.

The training stage consists of a three-layered network that we

will train with a supervised learning algorithm. To each input

pixel it corresponds a zj unit. The output units encode the slant

and tilt of the oriented surface. The hidden units receive

contributions from the input units and from other hidden

units, and relay their output activation to the output units.

The input layer consists of nine ‘gaze blocks’ trained in a

batch mode. Connections from the input layer to each hidden

unit are initialized according to a radially symmetric 4 × 4

Gaussian profile that gradually decreases with the distance

between each input unit i and the corresponding hidden layer

unit j. The whole stack of gaze-dependent neural maps z feed-

forwardly projects to a corresponding single hidden layer,

resulting in a four-to-one reduction in dimensionality.

Hidden layers include recurrence between all gaze-related

hidden units, which ensure the exchange of information and thus

the emergence of gaze-invariant 3D shape descriptors. More

specifically, each hidden unit j receives an input from the

activation aj of all the units belonging to the same hidden

layer map (i.e., gaze direction q) as well as inter-maps

contributions from the units of the maps related to all the

other gaze directions. As a whole, the activation of each

hidden layer unit j can be written as:

a
q( )

j � S w
q( )

z z
q( )

j︸���︷︷���︸
FF−term

+ ∑
p
w

p( )
a a

p( )
j︸�����︷︷�����︸

recurrence

+ b
q( )

j
⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠ (17)

where S (·) is a sigmoid function and bj the activation bias. The

input Wz and the recurrent weights Wa are initialized Gaussian

kernels introducing smooth decreasing functions between the

two spatial dimensions of the input and the respective hidden

layer units. Finally, the weighted output of all hidden units, as

shown in Figure 8B, linearly project to a set of nine output classes

cj that encode univocal 3D surface orientations (slant and tilt) in

head-centric coordinates:

cj � ∑
q
w

q( )
a a

q( )
j . (18)

The connection weights between each hidden layer unit and

each output unit are initialized as Gaussian kernels of 3 × 3 pixel

resolution and standard deviation equal to 1.5 pixel.

A modified version of the Backpropagation Through Time

algorithm (BTT) was used to operate in batch mode as in Liu and

Van Hulle (1998). The BTT algorithm considers a special case of

the general gradient descent backpropagation algorithm

Rumelhart et al. (1986), where the weights are updated

through a number of steps defined by the number of

recurrent connections between their layers. For a given 3D

orientation category, the desired output was 1 for the

corresponding output unit and 0 for all other units (1-out-of-

N coding). More in detail, at each iteration of the learning

algorithm, the weights were updated as

w(q)
z ← w(q)

z − λzE/zw(q)
z , w(p)

a ← w(p)
a − λzE/zw(p)

a ,

w(q)
a ← w(q)

a − λzE/zw(q)
a , until the logistic error E was below

0.1. Note that the partial derivatives in the weight update

equations measure the rate of increase of E with respect to the

changes in different dimensions of w(q)
z , w(p)

a and w(q)
a .

3.1.1 Network implementation and simulation
details

After simulation of an actively fixating binocular head as

described in Section 2.1, we built the input to our network,

corresponding to 144 unique sampling points of slant and tilt

angles: 12 values of slant in the range [4°, 48°] by steps of 4.8°, and

12 values of tilt in the range [30°, 360°] by steps of 30°. The ranges

for the slant and tilt values were the same as those used in the

psychophysical experiment described above, whereas the

sampling frequency was increased to provide us with a richer

input for training the network. Subsequently, these slant and tilt

combinations were categorized into nine overall planar

orientation groups to serve as network’s classification outputs.

For each of the original 144 planar orientations, the initial

cyclopean gaze direction was defined by the initial pair of

azimuth and elevation angles [α0, ϵ0] = [0, 0] coinciding with

the plane’s rotation center. Following that, we sampled each new

gaze direction pair as �uL � (α0 + Δα, ϵ0 + Δϵ) where Δα = Δϵ =
{ − 5°, 0°, 5°} resulting in a 3 × 3 gaze grid, for each oriented

surface. This results in an overall dataset of 144 × 9 stereo

image pairs, serving as the input of the convolutional neural

network. Each image has a 123 × 123 pixel resolution, which,

for the adopted focal length of 350 mm and linear size of the

image sensor of 210mm, subtends a visual field of ≃
20 ° × 20 °.

For each of the so generated stereo image pair, the binocular

disparity information was encoded in the distributed activity of

the population of binocular energy neurons. The population of

binocular energy detectors is composed of 56 cells for each pixel

sensitive to as much values of vector disparities, according to

7 magnitude values and along 8 orientations uniformly

distributed between 0 and π.

3.1.2 Active recognition results
The algorithm’s performance and the activation of its output

and hidden (middle layer) units were tested, using a procedure

similar to the one used in electrophysiological experiments for

single cell recordings. As an input we used the bioinspired

population response to 3D surfaces rotated in depth with
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rotation values of slant and tilt belonging to the same 12 × 12

dataset - excluding those used for the training procedure (cutoff

rate 70% training and 30% test values). The training algorithm

was run for 500 iterations with a learning rate λ = 0.2 until the

logistic error E reached a level of > 0.001. After the end of the

training procedure, the proposed hierarchical recurrent network

reached a level of 100% accuracy on the training set and of 97%

on the test set, over all orientation classes. Since the random

selection of the test data excludes any potential bias, the source of

the 3% error is possibly due to the entrapment of the cost

function in a local minima - a well-known vulnerability of

neural networks with long recurrent temporal series (Medsker

and Jain, 2001). Another potential limitation concerns the fact

that the accuracy of the network appears to be higher for extreme

values of slant (independently of the value of tilt). This result

suggests the need of a finer sampling of the 3D orientation

parametric space for spanning a greater number of output classes,

and thus better analysing the inter-class discriminability; this will

be addressed in a future work. For testing the robustness of the

trained algorithm we de-noised the disparity input with a

Gaussian filter of gradually higher Standard Deviation (SD =

[0.1 : 80] by steps of 0.7. The resulting differential responses of

our modeled cortical cells, for all the nine gaze directions, were

processed through the network by using the learned weights. For

each of the nine orientation classes, the accuracy level of the

corresponding output units was averaged over all slant and tilt

pairs that belong to the same class.

As shown in Figure 9A, the trained algorithm’s performance

varies between 93% and 97% with no statistically significant

differences between the orientation classes. Interestingly, the

classes belonging to the inner ({1, 4, 7}) and outer ({3, 6, 9})

orientation ‘rings’ (i.e the ones with the smaller and largest values

of slant across all values of tilt) appear to reach higher accuracy

levels than the middle ‘ring’ ones (Marr, 1982; Yonas et al., 1987;

Hinkle and Connor, 2002). This may be due to the fact that the

disparity input maps with extreme values of slant are more easily

classified by the algorithm than the middle level ones, suggesting

a potential limitation of the network that will be addressed in

future work (for example by including a more detailed sampling

of the 3D orientation input space). It is also worth noticing that

tilt does not appear to affect the classification performance of the

algorithm. Furthermore, the algorithm’s classification

performance has higher variance when it comes to small

values of slant across all levels of tilt classes (Howard and

Rogers, 1995; Trucco and Verri, 1998; Thompson et al., 2015)

as it can be seen by the standard error of the mean (95%

confidence interval) in Figure 9A. Overall these results

confirm the robustness of the trained network’s parameters

and agree with the performance of our human participants.

Figure 9B, shows an example of trained weights between all

the nine recurrent units of the network’s middle layer and the

output orientation class 5 neuron (slant from 20 deg to 32 deg by

steps of 4 deg, and tilt from 150 deg to 240 deg by steps of 30 deg).

The learned bell–shaped profile centered around output unit 5 in

the x - axis of the plot, permits the transformation from the

retinocentric information of the input disparity components to

the headcentric information of the orientation of the 3D surface

in depth in an absolute, gaze invariant, way. This result is in

accordance with the neurophysiological evidence of the

functional progression of depth representation in higher visual

cortical areas in primates and humans (Orban, 2008). The

activations of these units, indeed, appear to be modulated in

amplitude under the same tuning constraint, as in the case of gain

field neurons (Salinas and Abbott, 1996). This is a valid clue that

the trained recurrent activation patterns in response to specific

3D rotated planar stimuli, may be indeed the origin of an abstract

representation in our visual cortical pathway, moving from a

retino-centric to a gaze invariant coordinate system.

One of the main goals of this paper was to investigate the role

that the binocular active movements play in the recognition of an

FIGURE 9
(A) The network’s performance (accuracy) averaged over all slant and tilt pairs belonging to each of the nine orientation classes. The red lines
denote the standard error of themean (SEM) across all different slant and tilt pairs belonging to each class (B) The trainedweight parameters between
the recurrent and output layers for orientation class 5, showing the emergence of an invariant slant and tilt representation across all nine different
gaze directions (C) The algorithm’s performance as a function of the number of gaze-variant disparity maps used as an input averaged across
classes (left) and for the orientation classes 9 and 4 (right).
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object’s 3D rotation and shape and whether it is possible tomodel

the action-perception cycle in a vergent geometry setup. Towards

that goal, we examined the interplay between the algorithm’s

performance and the number of gaze - defined disparity maps we

use as an input. In other words, we wondered how many

‘saccades’ does our trained hierarchical network need to reach

a given accuracy threshold for each different orientation class.

The left panel of Figure 9C shows the average gaze-defined

disparity inputs needed by the algorithm for reaching

increasing accuracy thresholds. That result is directly

comparable with our participants’ overall accuracy levels in

our psychophysical experiment, previously displayed in

Figure 6A.

Furthermore, as it can be seen in Figure 9C (right), while for

the orientation class 9 (σ ≈ 42° and τ ≈ 303°) the algorithm needs

only two gaze defined disparity inputs to achieve an accuracy

threshold of up to 90%, on the other hand for orientation class 4

(σ ≈ 9° and τ ≈ 180°) it needs all nine gazes to reach a classification

accuracy above chance level. This in accordance with our

psychophysical results described in the previous section where,

during the sustained gaze condition, our participants’

performance is significantly modulated as a function of the

value of slant of the 3D stimulus plane.

4 Discussion

As it occurs for human vision system, active strategies, like

foveation, are adopted by natural systems to cope with

bandwidth limitations of the retinocortical pathway. When we

consider stereoscopis vision, the advantage of active fixation

becomes even more compelling as it allows a reduction of the

search zones within which binocular correspondences have to be

found. Unfortunately, eye movements dramatically complicate

the geometrical problems implying the motion of epipolar lines,

and make visual information highly dependent on the contingent

fixation point. As a whole, vision processes become inescapably

related to the fixation strategy, which must be selected or learnt

by trading off the cost of eye movements for the accuracy of the

recognition performance, to eventually obtaining an efficient

gaze-invariant 3D shape understanding.

In this paper, we have employed a bio-inspired population of

modeled cortical energy neurons, developed by some of the

authors (Chessa et al., 2009), (Gibaldi et al., 2010), (Gibaldi

et al., 2016), to train a recurrent hierarchical network that uses as

input the responses of a population of cortical disparity detectors.

We trained the network to classify the binocular input into the

relevant combination of slant and tilt planar orientation,

invariantly to the current binocular gaze direction. Specifically,

a cascade of a feed-forward (FF) and recurrent network is

adopted. The first FF network received the outputs of

horizontal and vertical disparity detectors and processes them

to obtain approximations of disparity field first-order

differentials. We incorporated this network into a closed-loop

system along which a set of gaze blocks to integrate perception

across eye movements. Recurrent interactions between all gazes

ensure the exchange of information and eventually the

emergence of gaze-invariant 3D descriptors. The dataset of the

population’s activation patterns to validate network’s results was

collected by using the same 3D planar stimuli adopted in the

psychophysical experiment. To this end, an active vision

simulator was used, implementing the biological principles of

vergent geometry as described by Hansard and Horaud (2008).

By analysing the data of the dedicated psychophysical

experiment, we observed that subjects were not only

significantly more accurate, but also faster to detect the 3D

planar object’s orientation when they actively perform free

fixation movements on the surface of the plane (multiple gaze

condition) than when their gaze was kept fixed in the center.

Remarkably, the artificial network “developed” a similar

behavior, suggesting that the active integration of the disparity

signals across a number of gaze directions is a crucial mechanism

of a binocular vision system, towards an active perception of the

3D environment in a head-centric coordinate system.

The learned weights and the activation patterns of our three-

layered recurrent architecture agree with evidence on the

existence of a short-hierarchy network that involves the mid-

stages of the visual cortical pathway. The response profiles of the

trained output units closely resemble the tuning functions

observed for neurons in the areas V3/V3A and MT (Orban,

2008) and agree with the activation patterns referenced by Salinas

and Abbott (1996) on the existence of populations of gain-

modulated neurons in the sensorimotor occipito-parietal

networks. Taken together, the results provide compelling

evidence that it is possible to train a recurrent compositional

network to perceive the local 3D orientation of a planar surface in

depth from distributed representations of binocular disparity

fields and of their elementary differential components, and to

integrate this differential disparity information across multiple

binocular fixations, thus capitalizing on the active fixation set-up.

It is plausible that the visual system develops convenient

visual descriptors of 3D object shape concurrently with the

capacity of making convenient exploratory fixations on their

surfaces. As a further step in assessing the role of eye movement

in our network, its potential for predicting the next most

informative gaze direction deserves a discussion. In order to

give a flavour of the capacity of the approach, we progressively

fed the network gaze blocks with gaze-contingent disparity

information one at a time. Accordingly, we randomly selected

a gaze direction as the initial condition and we provide the

network with the corresponding visual input only, whereas the

remaining hidden layers maps receive a null input (representing

the lack of activation of their corresponding neuronal population

input). Then we measured the accuracy of the output layer, as

well as the recurrent activation a(q) (q = 1 . . . 9) of the hidden

layer maps. The hidden map with the highest activation indicates
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the gaze block “co-active” with the current gaze during training,

for the specific class of the 3D orientation input. Thus, the next

gaze direction is identifies and the corresponding new disparity

input added to the pool for the next iteration processing. The

procedure was repeated for the number of iterations necessary to

achieve at least a 75% classification rate. Results for four 3D

planar orientation example demonstrated that the network was

always capable of achieving the desired classification accuracy

after ≃ 3 eye movements. Each fixation scanpath for a given 3D

orientation is unique and characteristically distinct from the

others, thus indicating that some disparity patterns associated

with gazes can be more informative than others to develop

reliable slant/tilt detectors. Active fixation is a complex

behavior of our visual system that comprises changes in

different parameters such as the number of gazes, the

amplitude and directions of their shifts with respect to the

center, the latency of sequential eye movement, etc. The

present paper does not claim that solely the number of gaze

directions improves human performance in perceiving the

3D shape of objects in the natural environment. Yet, it tries to

explore the fact that active fixational behavior is beneficial for

our visual perception and as such should be more often

included as a valuable part of computational models of

image classification, instead of being considered as a

hindrance. For that reason, it was not possible for us to

make a one to one comparison between the classification

performance of our model as a function of the number of gaze

defined disparity input and the accuracy of our participants

achieved in the two experimental conditions. However,

overall, restricting the participant’s active gaze movements

resulted in a lower classification accuracy even for very trivial

tasks. The classification results of our algorithm suggest that

this could be due to the lower variability of disparity

information conveyed to their visual system.
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