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The propensity of evolutionary algorithms to generate compact solutions have

advantages and disadvantages. On one side, compact solutions can be cheaper,

lighter, and faster than less compact ones. On the other hand, compact

solutions might lack evolvability, i.e. might have a lower probability to

improve as a result of genetic variations. In this work we study the relation

between phenotypic complexity and evolvability in the case of soft-robots with

varying morphology. We demonstrate a correlation between phenotypic

complexity and evolvability. We demonstrate that the tendency to select

compact solutions originates from the fact that the fittest robots often

correspond to phenotypically simple robots which are robust to genetic

variations but lack evolvability. Finally, we demonstrate that the efficacy of

the evolutionary process can be improved by increasing the probability of

genetic variations which produce a complexification of the agents’ phenotype

or by using absolute mutation rates.
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1 Introduction

One known characteristic of evolutionary algorithms consists in the tendency to

discover simple solutions. One of the first demonstrations of this property has been

reported in (Cliff et al., 1993) in which the authors evolved the sensory system and the

neural network controller of robots selected for the ability to approach triangular objects

while avoiding rectangular ones. The evolved robots relied on only two pixel

photoreceptors to solve the task. Other demonstrations of this property can be

derived from the experiments carried out by evolving robots constituted by rigid

segments attached through actuated joints (Sims, 1994; Lipson and Pollack, 2000;

Auerbach and Bongard, 2014; Auerbach et al., 2014). Indeed, in all these works the

evolved solutions consist of robots formed by few segments and few actuated joints.

The tendency to generate simple solutions has advantages and disadvantages. On one

hand, compact solutions can be cheaper, lighter, and/or faster than less compact ones. On

the other hand, compact solutions might lack evolvability, i.e. might be harder to improve

as a result of genetic variations. We hypothesize that such limited evolvability can explain

why the complexity of the problems addressed by co-evolving the body and the brain of

robots did not scale up significantly over the last 25 years (Cheney et al., 2016) and we

propose a method for overcoming this limitation.
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For this purpose, we consider the case of evolving soft robots

with varying morphology. We demonstrate that the tendency to

select robots with simple phenotypes reduces the evolvability of

the evolving agents, i.e. the propensity to discover better solutions

as a result of genetic variations, and leads to suboptimal

solutions. We demonstrate that the tendency to select

compact solutions originates from the fact that high

performing agents often correspond to phenotypically simple

robots which are more robust to genetic variations than

phenotypically complex robots but lack evolvability. Finally,

we demonstrate that the efficacy of the evolutionary process

can be improved by increasing the probability of genetic

variations which produce a complexification of the agents’

phenotype or by using absolute mutation rates.

2 Related research

For the sake of the objective of this paper we define

evolvability as the propensity to improve as a result of genetic

variations. Clearly, evolvability is influenced by the

developmental process, i.e. by the way in which the genotypes

of the evolving robots give rise to the corresponding phenotypic

robots. For this reason, most of the research on the evolution of

robots with varying morphologies focused on the design of

effective developmental processes.

The first method that was used to evolve robots with varying

morphology was proposed in the seminal work of Carl Sims

(1994) who demonstrated the possibility to evolve neuro-

controlled creatures formed by 3D rigid parts with varying

shape assembled through fixed and actuated joints. In his

method, the genotype encodes a directed graph, formed by

nodes and connections (that can be recurrent), which encodes

instructions for developing the phenotypic creature. The

developmental process starts from a root node, which

contains the instruction for synthesizing an initial body part,

and continues with the synthesis of the body parts encoded in

connected nodes. The nodes of the graph specify the properties of

body parts and of associated neurons. The connections of the

graph specify the relation of body parts with respect to previously

created body parts. Later works adopted a similar method but

relied on a smaller set of body parts and on a simpler set of

developing instructions. In the case of Lipson and Pollack (2000),

for example, the genotype consists of a list of tuples that encode

vertices and body parts. The tuples encoding vertices represent

points in the 3D space. The tuples encoding the body elements

represent cylinders with varying resting length provided with

fixed or actuated telescopic joints and associated neurons and

neural connections. The developmental process is realized by

building the corresponding body parts, one at a time, and by

placing them in the locations of the associated vertices.

Other researchers proposed methods inspired more directly

by the developmental process that characterizes natural

multicellular organisms (Dellaert and Beer, 1996; Eggenberger,

1997; Joachimczak et al., 2016). One of the most interesting

models of this class (Joachimczak et al., 2016) is based on 2D

spherical cells, connected through elastic springs, that grow and

differentiate from a single initial cell. The initial cell divides in

2 cells that then eventually divide in 4 cells and so on. The fate of

cells is determined by a simple abstracted genetic regulatory

network implemented in a feed-forward neural network. This

genetic regulatory network receives as input the Cartesian

coordinates of the cell and the signals received by nearby cells

and determines whether the cell keeps existing or dies, the signals

produced by the cell, whether the cell divides by producing two

new cells, and eventually the relative positions of the new cells.

The behavior of the agent is produced as a result of the periodic

contraction and extension of the springs connecting the cells. In a

related model proposed by Cheney et al. (2014), instead, the

agents are formed by cubic cells of different types arranged

within a 3D grid formed by 10 × 10 × 10 voxels (see also

Corucci et al., 2018). The presence/absence of the cell and the

type of the cell is determined by a genetically encoded neural

network that receives as input the Cartesian coordinate of each

voxel and determines as output the presence/absence of the cell

and whether the corresponding voxel will be filled with a rigid

cell, a soft cell, or a periodically contracting and expanding soft

cell. Cells can also emit signals that diffuse over space and which

regulate the contracting/expanding phase of nearby cells. Notice

how these methods address the evolution of soft robots which are

potentially more powerful and flexible than robots formed by

rigid body parts only.

A second factor that can influence the evolvability of the

agents is the timing of the developmental process. In the great

majority of the works, including the works referenced above, the

developmental process which gives rise to the phenotypic robots

is completed before the robots start to interact with its

environment and start to be evaluated. In natural organisms,

instead, the developmental process extends over the entire life of

the individuals. As demonstrated in recent experiments

(Kriegman et al., 2018; Nadizar et al., 2022), continuing the

developmental process while the robots interact with their

environment can produce better solutions.

Finally, a third factor that can influence the evolvability of the

agents is the usage of a selection bias which protects

morphological innovation (Cheney et al., 2018). The

theoretical hypothesis behind this method is that most

morphological variations have a negative impact on behavioral

performance since the variations of the morphological structure

need to be accompanied by appropriate variations of the control

policy. Temporarily reducing the selection pressure on recently

morphologically changed individuals permits to adapt the

control parameters to the new morphological structure. A

related method has been proposed by Faíña A. et al. (2013),

who retains genetic variations introducing additional body parts

independently from the fitness of the corresponding individual.
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As claimed by the authors, “This decision was taken because

adding a node can cause a fitness reduction in a given generation

but act as a root for a higher growth in the next.” (Faíña et al.,

2013, pp. 2411). In other words, also in this case the objective is to

protect morphological variations which tend to be counter-

adaptive in the short term but might be beneficial in the

long term.

In this article we analyze the role of a fourth factor, the

phenotypic complexity of the evolving robots. More specifically,

we hypothesize that favoring the evolution of phenotypic

complex robots permits to obtain individuals which are more

evolvable and consequently permits to obtain better solutions.

The rationale behind this hypothesis is that evolution tends to

select phenotypically simple solutions which are more robust to

genetic variations but which lack evolvability. This hypothesis is

supported by evidences collected in previous studies carried by

evolving digital circuits (Raman and Wagner, 2011; Milano and

Nolfi, 2016). Moreover, the rationale of this hypothesis is in line

with the idea of re-use (Anderson, 2010; Wagner, 2011; Nolfi,

2021), i.e. the fact that the larger the set of components and skill

possessed by the evolving agents is, the higher the chance that

new components and skills can be developed by re-using pre-

existing components and skills is, and the smaller the number of

variations required to develop new components and skills are. As

far as we know, our work is the first attempt to analyze the role of

this factor in the context of evolving robots and more specifically

in the context of evolving robots with varying morphology.

3 Method

To investigate the role of phenotypic complexity in evolving

robots we considered the case of 2D soft-robots made of multiple

elastic springs with variable resting length which are evolved for

the ability to locomote as fast as possible over a flat terrain

(Figure 1). The number of elastic springs, their properties, and

the way in which they are interconnected are encoded genetically.

Consequently, the morphology of the evolving robots and the

complexity of the robots’ body can vary across generations. The

complexity of evolving robots can be estimated on the basis of the

number of elastic springs forming the robots’ body.

The genotype of the robots consists of a list of tuples which

encode the property of a corresponding list of elastic springs. The

number of springs and their properties can vary as a result of

mutations which add or remove tuples or which vary the

parameters of the tuples. The dynamics of the robots and the

interaction with the physical surface is simulated through the

DiffTaichi physical simulator (Hu et al., 2019).

Each genetic tuple contains 7 parameters which encode the

properties of a corresponding spring: 1) an integer value in the

range [0, num_tuples] which encode the relative id of the tuple/

spring from which the current spring originates, 2) an integer

value in the range [0, num_tuples-2] which encode the relative ID

of the tuple/spring in which the current spring ends, 3) a real

value in the range [−π, π] rad which encodes the relative

orientation with respect to the starting vertex, 4) a real value

in the range [0.01,0.2] m which encodes the resting length of the

spring, 5) a real value in the range [0, 0.2] m which encodes the

maximum extension and contraction of the spring with respect to

the resting length, 6) a real value in the range [−1.0, 1.0] rad/s

which encodes the oscillation phase of the spring, and 7) a real

value in the range [10,000, 20,000] N/m which encodes the

stiffness of the spring.

The developmental process that gives rise to a phenotypic

robot starts from an initial point located over the surface and is

realized by creating the springs with the properties specified in

the corresponding tuple one at a time (Figure 1). In the case of the

first parameter, 0 indicates that the spring starts from the ending

point of the previous tuple/spring (or from the starting vertex)

while values greater than 0 indicate that the spring starts from the

ending point of the corresponding preceding tuple/spring. For

the second parameter, 0 indicates that the spring ends in the

point located at the distance and orientation specified in the 3rd

and fourth parameters of the tuple (length and angle) while

values greater than 0 indicates that the spring ends in the ending

point of the corresponding preceding tuple/spring. In the latter

case, the 3rd and fourth parameters of the tuple are ignored and

the orientation and the resting length of the spring is set on the

basis of the relative position of the starting and ending points.

The coordinates of the initial and ending points of the springs are

perturbed with random values selected with an average of 0.0 m

FIGURE 1
Example of a robot constituted by 10 springs. The bottom and
top part of the figure shows the genotype and the phenotype of
the robot. The genotype is composed of a list of tuples. Each tuple
includes 7 parameters that encode the index of the starting
and the ending point of spring, the angle of the spring relative to
the previous element, the length, the actuation, the oscillation
phase and the stiffness of the spring (see also text). The top part of
the Figure shows the corresponding phenotypic robot. The black
line indicates the plane. The blue and red lines indicate the spring.
The two colors indicate the springs which are currently expanding
and contracting, respectively. The numbers indicate the ID of the
corresponding genetic tuples.
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and a distribution of 0.02 m. These variations are introduced to

emulate the variabilities characterizing physical environments.

The method used is thus similar to that introduced by Lipson

and Pollack (2000). However, it is applied to evolve robots

formed by elastic segments instead of rigid cylinders.

The initial population consists of N list of tuples generated

randomly. The number of tuples included in each genotype is

chosen randomly in the [10, 20] range, with a uniform

distribution. The parameters of the tuples are generated

randomly with a uniform distribution within the

corresponding ranges. In the case of the first two parameters,

instead, the probability to generate 0 and above 0 values are 75%

and 25%, respectively. The maximum number of tuples is

constrained to 32 since the DiffTaichi simulator become

unstable with larger structures.

The robots are evolved by using a steady-state (µ + λ)

evolutionary strategy (Rechenberg, 1973; Beyer and Schwefel,

2002) in which the best µ robots of the current generation are

preserved in the next generation and are allowed to produce λ

offspring each. We ran two series of experiments by using a (1 +

4) and a (20 + 20) evolutionary strategy. The former is commonly

used to evolve digital circuits and graph structures (Miller et al.,

2000; Miller and Thomson 2000; Miller, 2011). The latter is

commonly used to evolve robots (Pagliuca et al., 2018).

During reproduction each tuple is mutated with a probability of

10%. Mutations are realized by applying one of the following genetic

operators: 1) a value-change operator which replaces a randomly

selected parameter of the tuple with a new value, 2) a delete operator

which eliminate the tuple, or 3) an add operator which add a new

tuple with randomly generated parameters after the current tuple. In

the case of the mutate operator the new value of the parameter is

chosen randomly within the corresponding range with a uniform

distribution with the exception of the two parameters of tuples which

are replaced with 0 and above 0 values with a probability of 75% and

25%, respectively. The values of the other parameters are generated

randomly with a uniform distribution. We repeated the experiments

by using a standard evolutionary strategy and a complexity-biased

evolutionary strategy. In the former case, the probability to choose

each of the three genetic operators is the same. In the latter case,

instead, the probability to select the three genetic operators is [25%,

25%, 50%], respectively. Notice that this implies that in the latter case

the mutations which produce a complexification of the agents’

FIGURE 2
Fitness (top) and phenotypic complexity (bottom) in the case of the experiments performed with the (20 +20) evolutionary strategy. The data
shown in blue and red correspond to the experiments performedwith the standard and complexity-biased algorithm, respectively. Data collected by
running 10 replications of each experiment. Mean and 75% bootstrapped confidence intervals of the mean (shadow area) across 10 replications. The
top-left figure shows the performance of the best individuals of each generation, averaged over 10 replications. The top-right figure shows the
distribution of performance of the best 10 robots obtained in 10 corresponding replications of the experiment. The bottom-left figure shows the
average phenotypic size of the best robots across generations. The bottom-right figure shows the distribution of phenotypical size of the 10 best
robots obtained in the 10 corresponding replications of the experiment. The boxes represent the interquartile range of the data and horizontal lines
inside the boxes mark themedian values. The whiskers extend to themost extreme data points within 1.5 times the inter-quartile range from the box.
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phenotype are introduced more often than the mutations which

produce a simplification of the agents’ phenotype.

The resting length of the springs varies periodically and is

computed on the basis of the following equation:

y � a · sin(t + φ);

where t is the time step, a is the maximum contraction/expansion of

the spring, and φ is the phase of the spring. The latter two

parameters are encoded in the genotype of the corresponding robot.

The length of the elastic spring is modified on the basis of the

following equation:

x � xc · (1 + y);

where xc is the current length of the spring and y the sinusoidal

deformation of the spring, which is encoded genetically. For a

detailed description of the equations behind the physics of the

simulator see (Hu et al., 2019).

The robots are evaluated for 3 episodes lasting 2000 steps.

The fitness is computed by measuring the distance between the

initial and final position of the center of mass of the robot

averaged over the episodes. The evolutionary process is

continued until the total number of steps exceeds 24 107.

4 Results

The analysis of the results indicates that, as expected, the

complexity-biased algorithm produces robots which are

phenotypically more complex than the robots produced with

the standard algorithm. Moreover, the results indicate that the

robots evolved with the complexity-biased algorithm outperform

the robots generated with the standard algorithm. This both in

the experiments performed with the (20 + 20) and (1 + 4)

evolutionary strategies.

The fact that the robots generated with the complexity-biased

algorithm are phenotypically more complex than those generated

with the standard algorithm is shown by the fact that the number

of springs of the best robots obtained with the former algorithm

FIGURE 3
Fitness (top) and phenotypic complexity (bottom) in the case of the experiments performed with the (1 +4) evolutionary strategy. The data
shown in blue and red correspond to the experiments performedwith the standard and complexity-biased algorithm, respectively. Data collected by
running 10 replications of each experiment. Mean and 75% bootstrapped confidence intervals of the mean (shadow area) across 10 replications. The
top-left figure shows the performance of the best individuals of each generation, averaged over 10 replications. The top-right figure shows the
distribution of performance of the best 10 robots obtained in 10 corresponding replications of the experiment. The bottom-left figure shows the
average phenotypic size of the best robots across generations. The bottom-right figure shows the distribution of phenotypical size of the 10 best
robots obtained in the 10 corresponding replications of the experiment. The boxes represent the interquartile range of the data and horizontal lines
inside the boxes mark the median values. The whiskers extend to the most extreme data points within 1.5 times the interquartile range from the box.
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is greater than the number of spring of the best robots obtained

with the latter algorithm (bottom of Figure 2 and Figure 3,

Wilcoxon non parametric test p-value < 0.01 in both cases,

sample size = 20).

The fact that the complexity-biased algorithm produces

better solutions than the standard algorithm is shown by the

fact that the fitness of the robots obtained with the former

algorithm is greater than the fitness of the robots obtained

with the latter algorithm (top of Figure 2 and Figure 3,

Wilcoxon non parametric test p-value < 0.01 in both cases,

sample size = 20).

The robots obtained with the (20 + 20) and (1 + 4)

evolutionary strategies do not differ significantly in term of

performance and phenotypic complexity (Wilcoxon non

parametric test p-value > 0.05, sample size = 20).

The qualitative difference among the robots obtained with

the standard and complexity-biased algorithms can also be

appreciated by visually comparing the morphologies

(Figure 4) and the behaviors (see the appendix) exhibited by

the robots evolved with the standard and complexity-biased

algorithm.

The advantage of the complexity-biased algorithm can be

explained by assuming that the variations increasing phenotypic

complexity provide an adaptive advantage in the long term but

not in the short term. In other words, it can be explained by

assuming that the variations which increase the complexity of the

phenotype improve the evolvability of the agents.

The hypothesis is confirmed by the analysis of the correlation

between the size of the evolving agents and the probability that

mutations are adaptive or counter-adaptive. Indeed, the percentage of

mutations that result adaptive correlates positively with the size of the

phenotype of the individuals (Figure 5, Pearson correlation coefficient:

0.35). Moreover, the hypothesis is confirmed by the analysis of the

different types of genetic variations displayed in Figure 6. Indeed, the

fraction of variations which result adaptive is greater in the agents

evolved with the complexity-biased algorithm which produce

phenotypically more complex individuals (Wilcoxon non

parametric test p-value < 0.01 in both cases, sample size = 40).

FIGURE 4
Examples of robots evolvedwith the standard and complexity-biased algorithm, left (A–D) and right respectively (E–H). The agents shownwere
selected among the best performing agents. The link to the videos of the corresponding behaviors are included in the Appendix A. The colored lines
indicate the springs forming the robot’s body. The colors indicate the contraction/extension phase of the springs.
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Notice in particular, that the fraction of additions and deletions

which result adaptive in the case of the experiment performedwith

the (20 + 20) evolutionary strategy is small but significant in the

case of the complexity-biased algorithm while is negligible in the

case of the standard algorithm. We will discuss the difference

between the (20 + 20) and (1 + 4) evolutionary strategies below. A

positive correlation between evolvability and size was already

found in digital circuits by Raman and Wagner (2011) and by

us (Milano andNolfi, 2016). As far as we know, this is the first time

that the correlation is observed in evolving robots.

Notice that the property that influences the evolvability of the

agents in these experiments differs from the property discussed in

previous studies (Wagner and Altenberg, 1996). In this work the

authors hypothesize a relation between evolvability and modularity,

defined as a genotype-to-phenotype mapping ensuring a reduced

pleiotropy between genes responsible for different functions. In this

study, instead, we found a relation between evolvability and

phenotypic complexity, defined as the number of elementary

parts forming the agents’ body. Both properties can play a role

and future studies might investigate the relative weight of the two

properties. We do not analyze this issue here since our experimental

setting is probably inadequate to study the role of modularity.

At this point wemight wonder why the phenotypic complexity of

the evolving agents do not keep increasing across generations despite

phenotypical complex individuals achieve higher performance and

are more evolvable (i.e. have a higher propensity to generate better

solutions as a result of mutations) than phenotypically simple

individuals. In the context of our experimental setting, we might

wonder why additions, which produce phenotypically complex

individuals, are not retained more often than deletions, which

produce phenotypically simple individuals.

Apossible explanation is that the advantages provided by additions

with respect to deletions is too weak to ensure a significantly different

retention rate of additions with respect to deletions. However, a weak

advantage should produce at least a small difference in the survival rate

of the individuals. The fact that the difference is small should have an

impact on the rate with which individuals complexify across

generations but should lead to a progressive complexification which

does not manifest in our experiments.

A second possible explanation is that the advantages granted by

additions are compensated by a disadvantage caused by a second

factor. Such a second factor can be the robustness to genetic

variations, i.e. the propensity to generate offspring who maintain

the performance level of the parent (who do not perform poorer

than the parent). Such second factor is caused by the fact that the

offspring of phenotypically simple individuals undergo a smaller

number of variations, on the average, than the offspring of

phenotypically complex individuals. Mutations are counter-

adaptive in most of the cases (see Figure 6). Consequently, the

smaller the number of mutations received, the higher the chances

that the individual preserves a performance level similar to the

parent is. This hypothesis was already demonstrated in the context

of the evolution of digital circuits (Milano and Nolfi, 2016; Milano,

Pagliuca and Nolfi, 2019; Milano and Nolfi, 2021). In this article we

demonstrate for the first time that this factor also constraints the

evolution of morphologies in evolving robots.

Interestingly, this explanation implies that the chance to

retain additions and deletions should depend on whether each

tuple has a certain probability to be mutated or whether the

number of mutations is fixed. Indeed, in the former case we

should expect a correlation between phenotypic complexity and

robustness to genetic variations. In the latter case, instead, the

robustness to genetic variations should be independent from the

phenotypic complexity of the individuals.

To verify this prediction, we carried out additional

experiments in which we mutated a single tuple, independently

from the length of the genotype, and in which we used different

mutation rates (2%, 5% and 10%). For each condition we ran

10 replications of the experiments. The obtained results confirm

that mutating a single tuple produces phenotypically larger

individuals and leads to better performance (Table 1), in the

case of the (20 + 20) evolutionary strategy. In the experiments

in which each tuple is mutated with a probability of 2%, 5%, or

10%, the mutation rate has an effect on performance and does not

have an effect on the size of the evolving individuals. As expected,

FIGURE 5
Correlations between the size of the robots’ phenotype and
the percentage of adaptive variations. Data computed by
subjecting the agents of intermediate generations to single
genetic variations for 1000 times. Intermediate generations
refer to generation totg/2, where totg correspond to the total
number of generations. The black line indicates the linear
interpolation of the data. Data obtained by analyzing 40 robots
evolved with the (20+20) and (1+4) evolutionary strategy and
evolved with the standard and complexity-biased algorithm (i.e.
the robots produced in the four experimental conditions,
10 replications for each condition).
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the best performance is obtained with an intermediate mutation

rate which maximizes the exploration/exploitation ratio.

Before concluding this section, we should discuss the

difference between the (20 + 20) and the (1 + 4) evolutionary

strategies. The results reported in Figure 2 and Figure 3 and

in Table 1 show that the (1 + 4) evolutionary strategy, which

generates the population from a single parent, produces

individuals which are phenotypically more complex than

the individuals generated with the (20 + 20) evolutionary

strategy. This can be explained by considering that in the

case of the latter algorithm, the offspring of the agents which

are phenotypically simpler have more chance to survive than

the offspring of the agents which are phenotypically more

complex. In other words, the competition among the lineages

generated by multiple parents favors phenotypically simpler

agents which are more robust to mutations. The only

exception is the case of the experiment performed by

introducing a single mutation. In this case in fact, the

genetic robustness of the individuals does not depend on

the complexity of the phenotype.

FIGURE 6
Fraction of adaptive and counter-adaptive value-change, addition, and deletion mutations. The top and bottom figures display the results
obtainedwith the (1+4) and (20+20) algorithms, respectively. The left and right figures display the results obtained with the standard and complexity-
biased algorithms, respectively. Data calculated on the best evolving individual of an intermediate generation, i.e. of the generation which
corresponds to the half of the total number of generations. Data averaged over 20 individuals extracted from 20 corresponding replications of
the experiment. The fraction of adaptive and maladaptive mutation is calculated by verifying whether the fitness of the individual increases or
decreases after the introduction of a single value-change or addition or deletionmutation. For this analysis the agents are evaluated for 10 episodes.
Each individual is subjected to 1000 genetic variations of each kind. The fraction of neutral genetic variations is negligible.

TABLE 1 Performance obtained by introducing a single mutation and by varying the mutation rate. The values included in round brackets show the
average and the standard deviation of performance. The values shown in square brackets indicate the average and the standard deviation of size.
Results obtained with the standard (20+20) and (1+4) algorithms. The experiments performed by using a mutation rate of 10% are the same
experiments reported above.

Algorithm Single Mutation Mutation rate 2% Mutation rate 5% Mutation rate 10%

(20+20) ES (4.7 ± 0.6) [25.3± 7.5] (3.6 ± 0.7) [17 ± 8.6] (4.2 ± 0.7) [16.9 ± 9.3] (3.5 ± 0.9) [16.2 ± 8.8]

(1+4) ES (3.2 ± 1.9) [23.2 ± 8.3] (3.1 ± 1.7) [24.4 ± 7.2] (3.7 ± 1.9) [24.1 ± 7.5] (3.2 ± 1.6) [23.1 ± 8.3]
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The (1 + 4) evolutionary strategy differs in that respect since the

presence of a single parent eliminates the competition among

multiple lineages. This explains why in the case of the (1 + 4)

evolutionary strategy, mutating a single tuple or mutating each tuple

with a certain probability does not have an impact on the size of the

evolving individuals. As mentioned above, the (1 + 4) evolutionary

strategy produces individuals which are genotypically more complex

than the individuals generated with the (20 + 20) evolutionary

strategy. On the other hand, the (20 + 20) evolutionary strategy

produces better results in settings in which the phenotypic

complexity is not constrained by the necessity to be robust to

genetic variations, like in the single mutation setting.

5 Conclusion

In this work we studied the relation between phenotypic

complexity and evolvability in the case of soft-robots with

varying morphology. Moreover, we discussed the mechanisms

which can favor the evolution of evolvable robots and

consequently which can lead to better solutions.

We started our analysis by demonstrating that the phenotypic

complexity of the robots, estimated by counting the number of body

parts forming the robots’ body, correlates positively with the

evolvability of the robots, defined as the propensity of the evolving

robots to improve as a result of genetic variations. Previous works

hypothesized a correlation between evolvability and modularity,

defined as reduced pleiotropy among genes serving different

functions (Wagner and Altenberg, 1996). As far as we know this

is the first time that a link between evolvability and phenotypic

complexity has been pointed out in the context of evolving robots.

We then demonstrated that evolution does not necessarily

select phenotypical-complex robots characterized by high

evolvability. On the contrary, evolution remains stuck on robots

with relatively simple morphologies which are suboptimal and

which have a low evolvability. This is caused by the relationship

between phenotypic complexity and robustness to genetic

variations. Indeed, the longer the number of genes playing a

function is, the higher the chance that mutations modify the

characteristics of the offspring with respect to the parent is, and

the higher the chance that the offspring is less fit than the parent is.

Notice that the negative correlation between phenotypic

complexity and robustness to genetic variations affect only the

settings in which the number of genes can vary across generations.

This is typically the case of the experiments in which the morphology

of the evolving robots and/or the architecture of the robots’ neural

controllers vary evolutionarily. In the experiments in which the

morphology of the robot and the architecture of the robots’ neural

controller is fixed and in which the only parameters that are subjected

to variations are the connectionweights, the phenotypic complexity of

the robots’ phenotype remains constant. This is probably the reason

why the evolution of robots with fixed architecture has been scaled to

significant more complex problems over the years (see for example

Salimans 2017) while the study of the evolution of robots with varying

morphology remained stuck on relatively simple agents and problems

(Cheney et al., 2016).

Finally, we demonstrated that the problem described above can

be ameliorated by: 1) introducing genetic variations leading to a

complexification of the agents’ phenotype more often than variations

leading to a simplification, 2) introducing a fixed number of

variations, and 3) using evolutionary algorithms which generate

the population on the basis of a single parent. The first strategy

operates by introducing a bias that acts directly on the

complexification of the robots’ phenotype. The second strategy

eliminates the correlation between the length of the genotype (and

of the phenotype) and the robustness to genetic variations. The third

strategy eliminates the competition between alternative lineageswhich

favors the selection of phenotypically simple individuals.

Algorithms fostering the selection of novel solutions or the

generation of population including diversified solutions (Lehman and

Stanley, 2011;Mouret and Clune, 2015; Nordmoen et al., 2021) can also

contrast the tendency to remain stuck on phenotypic simple solutions.

Consequently, the efficacy of these algorithms can be interpreted at least

in part to their ability to overcome the problem discussed above.

The relative efficacy of these strategies and the possibility to

combine the advantages of multiple strategies should be analyzed

in future studies.

The relation between robustness to genetic variations and

phenotypic complexity can depends on the genotype-to-

phenotype relationship. More specifically, it could be weaker or

absent in experimental settings in which the relation between the

genotype and the phenotype is more indirect. Future research

should verify this aspect. The comprehension of this aspect could

also be used to design genotype-to-phenotype mappings which are

not biased toward phenotypical simple and low evolvable solutions.
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Appendix A:

Standard evolved morphologies examples:

https://youtu.be/Jl8QScKBZSs

https://youtu.be/Zh8jtc70WOA

https://youtu.be/9xYrA84yKPY

https://youtu.be/GgVO_wpSdpo

Complexity biased evolved morphologies examples:

https://youtu.be/48zt0gZ4qnk

https://youtu.be/qxO6sutm2YE

https://youtu.be/EnZ0XFelNnI

https://youtu.be/PXMaUU61V2A
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