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Manual annotation for human action recognition with content semantics using 3D
Point Cloud (3D-PC) in industrial environments consumes a lot of time and
resources. This work aims to recognize, analyze, and model human actions to
develop a framework for automatically extracting content semantics. Main
Contributions of this work: 1. design a multi-layer structure of various DNN
classifiers to detect and extract humans and dynamic objects using 3D-PC
preciously, 2. empirical experiments with over 10 subjects for collecting
datasets of human actions and activities in one industrial setting, 3.
development of an intuitive GUI to verify human actions and its interaction
activities with the environment, 4. design and implement a methodology for
automatic sequence matching of human actions in 3D-PC. All these procedures
are merged in the proposed framework and evaluated in one industrial Use-Case
with flexible patch sizes. Comparing the new approachwith standardmethods has
shown that the annotation process can be accelerated by 5.2 times through
automation.
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1 Introduction

Recognition and prediction of human actions are increasingly crucial in industrial
production. Flexible and agile machine systems should be able to recognize their
environment, detect persons in the workspace and predict human intentions. Based on
the future human action information, the machine systems adapt the production sequence in
real-time and optimize the production process situationally. Such an activity prediction
would allow the human to work very closely with the robot in specific product steps in
collaboration without the danger of a collision. On the other hand, there is no loss of machine
utilization because the system can increase the speed again when a permissible safety
distance is reached (Rashid et al., 2020). By ensuring the safety, interactions such as teaching
a heavy-duty robot by gestures very close to the robot can be enabled without requiring
complex approvals by the operator The No-Code approach allows the human to teach the
robot directly by guiding, showing, or demonstrating without the need for knowledge of
complex programming languages (Bdiwi et al., 2016; Halim et al., 2022). Working directly
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with the robot on the production component enables the human to
use his sensitive skills in very complex activities and thus drive the
level of automation forward, even in non-industrial areas such as
surgery (Su et al., 2021; Su et al., 2022). To make these possible,
efficient algorithms are needed, that can robustly recognize and
predict human behavior in all its variations. Many approaches have
been implemented to deal with different video data (Baradel et al.,
2016; Feichtenhofer et al., 2016; Gkioxari et al., 2017; Liang et al.,
2019; Morais et al., 2020). Most convert the input video data into
spatio-temporal representations and infer labels from these
representations. Different types of information are used in these
works, such as human posture, interaction with objects, and
appearance features.

A large number of published data sets with daily and sports
activities are available for the method development (Shahroudy
et al., 2016; Kay et al., 2017; Carreira et al., 2018; Carreira et al.,
2019; Jang et al., 2020; Liu et al., 2020; Lucas et al., 2020; Shao et al.,
2020). Annotating these datasets is very time-consuming and labor-
intensive. Human annotators must define and describe spatial
regions associated with an image frame from a video or delineate
temporal segments in conjunction with the video. Standard shapes
such as rectangles, circles, points, or polygons frequently
characterize the spatial regions. In contrast, marking the
temporal segments requires only the start and end
timestamp. These spatial regions and temporal segments are
described by textual metadata.

Activities in an industrial context are usually very complex and
consist of a combination of simple actions. In most cases, items are
used to perform the activity. Up to that, it comes to interactions with
other persons to accomplish extended, more complex action
sequences. The activity duration is usually longer than 1 s, but
the duration of action is mostly only up to 0.5 s (Das Dawn and
Shaikh, 2016; Trong et al., 2017; Dang et al., 2021). In very rare cases
there are crowds of people or crowded scene, but more often there is
occlusion by industrial plant parts and machinery in the scene.
Furthermore, many items, such as ladders or chairs, are often
classified as humans by 3D sensor systems, depending on their
shape. In addition to these static objects, there are dynamic objects
such as robots or AGVs, whose position changes continuously, and
these temporarily provide occlusions in the workspace.

In order to face these challenges, it is necessary to apply a 3D
multi-sensor system that observes the industrial workspace from
multiple perspectives and avoids the risk of occlusion. Each 3D
sensor provides a 3D point cloud and an RGB image with a frame
rate of 10 fps ~ 30 fps, which leads to a vast amount of data for an
action sequence with a duration of about 1s, if at least 4 sensors are
used. Manual annotation of action and activity sequences is
impossible because of this amount of data and the complexity of
such a multi-sensor system. Furthermore, manual annotation of
objects in 3D space requires different modeling tools than those
required for annotation 2D images.

The automatic annotation approach presented in the paper can
fulfill all these requirements. The manual effort of the annotation
process would be reduced to a significant amount, and training data
from different perspectives can be generated due to the multi-sensor
technology. By using deep learning models for skeleton-based
recognition of human activities (Pavlakos et al., 2016; Barsoum
et al., 2017; Ruiz et al., 2018; Li et al., 2020; Mao et al., 2020; Yuan

and Kitani, 2020; Dang et al., 2021; Mao et al., 2021; Martínez-
González et al., 2021), the action sequences can be classified and
tracked very easily. The annotator no longer needs to focus on the
elaborate annotation of the human pose and can take care of
tracking multiple people.

In our work, we designed a multi-layered structure of different
DNN classifiers to recognize humans and dynamic objects in the 3D
point clouds of a multi-sensor system. To do this, we combined
several available AI classifiers to distinguish humans from robots or
other objects accurately. We developed and implemented a
methodology for automatically matching human actions in 3D
point clouds for human activity sequence detection. To operate
these methods and verify the results, we designed an intuitive user
interface that allows the user to correct the automatic annotation or
improve the process by optimizing the classifiers. To finally evaluate
the approach, we created extensive datasets based on empirical
experiments with ten subjects performing various simple and
complex activities in an industrial environment. As part of the
experiments, we addressed human-robot cooperation scenarios
where humans and robots coexist in a workspace very close.

2 Related work

Annotation of human activities in video data is very time and
labor-intensive work. It requires a massive amount of human and
hardware resources. There are two general approaches for
generating data sets with human actions.

1) Data sets like NUCLA, SYSU, NTU-RGB + D, PKU-MMD
(Bdiwi et al., 2016; Rashid et al., 2020; Su et al., 2021; Halim
et al., 2022; Su et al., 2022) (Wang et al., 2014; Shahroudy et al.,
2016; Hu et al., 2017; Liu et al., 2017; Liu et al., 2020) were
generated under laboratory-like conditions, the activities were
controlled, and the sensors had optimal perspectives on the
scene. Based on this boundary condition, the human activity
in the video sequences can be very well recognized, annotated,
and quickly separated. In this case, annotation by hand is very
easy and requires less effort. However, human activities’ variance
is minimal, meaning that the data sets do not represent reality.
Performing such predefined laboratory experiments is labor
intensive and time-consuming.

2) In contrast, data sets such as Fine-Gym, UAV-Human,
HOMAGE (Shao et al., 2020; Li et al., 2021; Rai et al., 2021)
generated in real-world environments (such as road traffic and
crowds in public places) with uncontrolled action are more
challenging to annotate because the environment is too
cluttered, people may be obscured, camera perspectives are
not optimal, or the variance of human action is too different.

Datasets like as ActivityNet, AVA, Babel (Heilbron et al., 2015;
Gu et al., 2018; Punnakkal et al., 2021) have been labeled via
commercial crowdsourcing platforms such as Amazon
Mechanical Turk (AMT) (Amazon, 2021) for a charge to the
dataset creators. In some cases, the annotators from
crowdsourcing platforms influence the annotation quality
negatively due to a lack of expertise. The crowdsourcing method
may compromise confidentiality.
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There are different open-source tools for annotating objects
and features in image videos (da Silva et al., 2020; Dutta and
Zisserman, 2019; Biresaw et al., 2016; Riegler, 2014; Yuen et al.,
2009). Most of them require a manual annotation by an
annotator in every frame. Only some of them provide the
ability to track humans or objects across multiple image
frames using tracking functions (David, 2000; Vondrick et al.,
2012; Bianco et al., 2015; Intel, 2021). This feature makes it easier
for annotators to save time by automatically tracking the
annotations instead of labeling them frame by frame. Usually,
the marking is done by an Annotator manually or by an object
recognition algorithm before the tracking function tracks the
object or human over several frames. In ViPER, ground truths
are stored as sets of descriptors (David, 2000). Each descriptor
annotates an associated range of frames by instantiating a set of
attributes for that range. However, these attributes are not simple
and flexible enough to annotate time-varying (appearing and
disappearing) behaviors. VATIC is a simple, reusable, open-
source platform for labeling research videos (Vondrick et al.,
2012). To annotate human behavior, third parties have extended
VATIC with additional features. iVAT (Bianco et al., 2015)
presents a tool that allows the user to extract target states and
categorize the targets. To significantly minimize human effort,
iVAT uses automatic tracking and other computer vision
methods combined with interpolation to support manual
annotation. However, human interventions and verifications
are necessary to validate the quality of the annotation results.
JABBA (Kabra et al., 2013) is a semi-automatic machine
learning-based behavioral annotator that takes the already
annotated states (trajectories) as input to perform the task.
The purpose of these tools is to reduce human effort and time
and to preserve the annotation quality. Manual labeling effort is
reduced by automatically estimating states between selected
keyframes using linear interpolation and homography-
preserving techniques (Yuen et al., 2009; Vondrick et al.,
2012). The annotation quality of these tools depends on the
individual annotators or object detectors. It is very challenging to
mark objects correctly in crowded scenes, and annotators may
easily miss important details. Furthermore, no other
information, such as the human body pose or current activity,
is provided. In addition, it is necessary to perform a pose
estimation to get the skeleton data (Cao et al., 2016;
Andriluka et al., 2017; Güler et al., 2018; Kocabas et al., 2018;
Xiao et al., 2018; Cai et al., 2019; Cheng et al., 2019; Sun et al.,
2019; Jin et al., 2020; Contributors, 2021; Kreiss et al., 2021). The
HAVPTAT tool allows the annotation of body poses (“Walking”,
“Standing”, “Sitting”) and simple activities (“WalkingWhileCalling”,
“StandingWhileWatchingPhone”, “SittingWhileEating”) of several
people over a sequence of 2D images (Quan and Bonarini, 2022). A
separate algorithm OpenPifPaf (Kreiss et al., 2021), whose results are
reloaded and played in parallel with the video, does the estimation of
body poses. The annotator has to do the body pose assignment
manually.

Besides the above drawbacks, it is challenging to perform the
detection and tracking of multiple people in a video when dealing
with crowded and cluttered scenes. None of the approaches uses a
multi-sensor concept to fuse, and plausible the body pose estimation

and tracking, which guarantees that the results can be classified and
annotated much more clearly.

3 Annotation framework

The realization of the annotation approach required the
development of an extensive framework, its architecture
consisting of a powerful AI server and an intuitive GUI, as seen
in Figure 1. The basic workflow is structured into three steps.

1) The user selects the desired action dataset via the GUI and passes
it to the automatic annotation step, where the data is
automatically segmented, tracked, and classified.

2) The raw results are then analyzed, filtered, and optimized in the
following automatic post-annotation step. The goal is to
determine and correct correlations based on a complete view
of the entire sequence of actions.

3) In the final manual post-annotation step, the user checks
whether the results are correct or whether a further manual
correction is necessary, based on the visualization that displays
the annotation results in the context of the 3D point clouds and
RGB images.

The development and implementation of this structure were
realized using the OpenCV library (Bradski, 2000) for the
backend framework, VTK library (Schroeder et al., 2006) for
3D visualization and the Qt library (Nasdaq Helsinki: QTCOM,
2021) for the GUI. The integration of the open-source AI
algorithms was done using Python since most approaches are
based on AI frameworks PyTorch (Paszke et al., 2019) or
Tensorsflow (Abadi et al., 2021), which are implemented in
the Python programming language. Each AI classifier is
encapsulated in a Docker container to avoid possible
inferences between the specific software dependencies. The
Docker containers are run on a separate Linux-based AI
server with two parallel GPU cards to enhance performance
and ensure parallel usage. A ZMQ interface based on UDP is
implemented between the Annotation Viewer and Docker
Container on the AI Server for data exchange (Hintjens, 2011).

3.1 Data structures

Because of the high raw data volume of the multi-sensor system
and the output of the multi-person tracking, it is necessary to
structure the data so that the system can clearly distinguish
between input data and the intermediate and end results. For this
purpose, a data structure with specific data types was developed,
which lists all data and information types and allows the user to
select the available visualization option. The data structure differs in
two basic categories, which are specified as follows:

Streams: The Streams category contains all image and 3D point
cloud data sets of the multi-sensor system for the entire acquisition
time of an action sequence, forming the basis for the automated
annotation process. One stream includes the acquired sensor data of
the scene from the perspective view of the single sensor. The intrinsic
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and extrinsic calibration parameters of every single sensor are
required to establish the relation between the 2D RGB camera
images, the 3D point clouds, and the sensor world coordinate

system. In addition to the reference to the sensor world coordinate
system, the reference to the world coordinate system should also be
given for a holistic view of the scene from different perspectives.

FIGURE 1
Schematic chart of the annotation framework.

FIGURE 2
Graphical user interface for displaying sensor data sets and annotation results.
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Object List: This category allows the summary of all objects
detected, tracked, and classified throughout the action sequence.
Besides the result representation of the automatic annotation
process, this structure is also used for the following steps of
automatic post- and manual annotation. The list contains a
separate data set (object data) for each object, which enables a
view of the temporal and spatial movement concerning the
whole sequence for the single object. The dataset contains
spatial information in the form of 2D and 3D bounding
boxes and the results of person/non-person classification and
human posture estimation for each frame, respectively.
Furthermore, global information about the object is also
stored, such as walking paths or the execution location of the
action.

Annotation Data: For training and verification of AI algorithms
for action recognition and action prediction, datasets are required
that represent human actions in a temporal context. The annotation
sets include point clouds and image patches with corresponding
labels related to human action, generated automatically based on
object data and specifications by the user.

In the user interface, the loaded and generating data structures
are visualized in the form of a tree model, shown in Figure 2 on the
right side of the user interface. The user can quickly distinguish
between raw data (streams), object data (object list), and annotation
data based on the structure and select the corresponding
visualization forms via the checkboxes.

3.2 Annotation viewer

An intuitive user interface has been designed and
implemented to merge annotations and raw data sets, allowing
the user to review, verify and adjust the action sequences. In the
interface, the 2D image data, 3D point clouds, and tracking and
classification results of an action sequence can be visualized in
correspondence to each other frame by frame. Various display
forms are implemented as separate visualizations for data
representation, defined as follows, as shown in Figure 2.

Workspace Viewer: For displaying the 3D object information of
the detected human to the 3D point cloud, a 3D visualization
environment is implemented, representing the multi-sensor
system surveillance space. The user can load and visualize 3D
CAD models of the plant with the machines, robots, and
protective fences to reference the sensor information to the
environment, as shown in Figure 3 (left). The precondition for
correct mapping of the 3D object information, 3D point clouds, and
CAD models is a precise extrinsic calibration and temporal
synchronization to each other. With the 3D workspace
visualization, the user can quickly check and verify the results of
the segmentation, tracking, and classification algorithms. In
complex scenes with many dynamic objects, the information
representation in 3D can be better than in 2D.

Image Viewer: Parallel to the 3D workspace visualization, the
user can review and analyze the action scene from every single
sensor perspective of the multi-sensor system. For this purpose, the
RGB images are visualized in combination in a separate tab, as
shown in Figure 3 (center). In addition to the perspective view of the
scene, the results of the tracking and classification are plotted in the
individual images. The detected persons are marked by a 2D
bounding box and a label so that the persons can be identified
over several frames. Furthermore, additional information about the
course of action can be displayed, such as the entire walking path or
the location where the action was performed. It is important to note
that the detected person may be covered due to the sensor
perspective, resulting in an incorrect display.

Chart Viewer: To summarize the whole sequence of actions, the
temporal series of the objects are displayed in the form of bars on a
time axis. The diagrams are available in a third tab, as seen in
Figure 3 (right). In the Raw Object chart, all detected objects in the
action sequence are displayed, allowing the quality of the
segmentation, and tracking to be evaluated. The algorithm could
not accurately segment and track the objects over the entire
sequence if there are many objects with short time segments. The
second chart details the objects by person and non-person. The user
can see here which objects can be assigned to the acting persons or
interaction objects and which objects are misdetections.

FIGURE 3
Workspace viewer (left), image viewer (center), chart viewer (right).
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Project Tree: In general, to give the user an overview of the
data being loaded or generated, the data structure is visualized as
a dynamic tree model, as shown in Figure 2 on the right side of
the user interface. In addition to the listing of the individual
sensor data sets and the detected objects of the action sequence,
the data types described in Section 3.1 are also displayed. By using
a dynamic tree model, additional data, information, and
control elements can be added or adapted very quickly,
making the user interface flexible depending on the size and
type of the data set.

Data Logger: A text browser was placed in an additional tab to
display status messages or system information on the annotation
process. The user can check which current step the process is or
which files have been loaded.

The user can replay the action sequence in its full context
through the intuitive user interface or analyze the scene in more
detail frame by frame. There are also functions for importing raw
data, exporting annotation results, and printing analysis results as
diagrams.

3.3 Annotation approach

A workflow approach was developed to ensure that the
automatic annotation tool generates action- and context-based
annotation data consistent with temporal and spatial
relationships. Figure 4 shows the schematic context of the

annotation approach. The single steps are explained in detail in
the following subsections.

The minimum requirement for the automatic action annotation
is that each dataset contains a complete action or a complex activity
with a series of actions of at least one person. This action or activity
should be represented as a sequence of corresponding RGB images
and 3D point clouds in the dataset. A further advantage is if multiple
sensors from different spatial perspectives capture the scene with the
action sequence time-synchronously. The condition for processing
these multi-recordings is that the setup between the sensors is
known. The extrinsic parameters must be precisely determined to
merge the 3D point clouds of the individual sensors and to ensure
the assignment of the detected persons and items. The action
sequences must be loaded into the annotation tool as a complete,
time-synchronous data set to guarantee successful processing and
annotation.

Data pre-analysis: The tool treats each annotation of an action
dataset as a session, whose results are stored and evaluated
separately. After the action sequence is loaded into the
annotation tool, a pre-data analysis is performed to check if there
is an equal number of RGB images and 3D point cloud or if there is a
large number of frame drops. In case of incompleteness or low
quality, the data set must be discarded or cropped so that a
successive action annotation is possible. In addition, data pre-
processing can also be optionally performed, such as the
rectification of RGB images or the conversion of depth images
from 3D point clouds.

FIGURE 4
Schematic workflow of the annotation approach.
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Annotation Setup: At the beginning of the annotation session,
the user has to provide additional information regarding the action,
the environment, and the interaction objects besides the raw data set.
The environment model contains all spatial information regarding
the action, like where the action takes place, what are possible
accesses or walkways in the monitoring area or where are the
interaction objects placed, etc. For this purpose, the
corresponding objects or regions will be defined using standard
shapes such as rectangles, circles, points, or polygons in a predefined
XML format. The action inference is based on body posture
estimation and object interaction recognition. It is necessary to
define the common postures and objects and to submit them as lists
to the tool. The final action labeling is done by specifying the action
sequence or the action type, which is to be predefined by the user as
an action/activity list. In this main list, links are used to refer to the
information in the sub-lists. It results in a tree structure with
different levels, describing the expected action in detail and
forms the basis for the automated annotation algorithm. The
user must configure all this information utilizing a parameter
catalog and provide it using parameter files.

Automatic Annotation: After all boundary conditions
regarding the annotation task have been set, and the pre-
analysis of the datasets is positive, the datasets can be passed
to the automatic annotation step. In the beginning, static objects
and environment structures must be removed from the 3D Point
Cloud. For this purpose, the background segmentation method
is used, which removes all 3D points from the point cloud that
are not included in the static background model. This
background model should be learned for each scene so that
all static objects and environmental structures are precisely
removed from the 3D point cloud. A prerequisite is that no
dynamic object is in the field of view of the sensors during the
teach-in or that there is no further change in the working space
of the system. After the segmentation of the static background in
the 3D point cloud of the current frame follows the
segmentation of all dynamic objects in the sensor’s field of
view. All 3D points with a certain Euclidean distance are
combined into a cluster, separated from the remaining part of
the point cloud by a 3D bounding box, and declared as an object.
These segmented objects are then tracked over single frames

using Kalman filters until they leave the field of view or the data
set with the action sequence is finished. The result of the 3D
object segmentation can be seen in Figure 5 (left). Due to
background segmentation and point cloud fusion, dynamic
objects can be segmented very well from the point cloud.

In order to enable the classification of the segmented objects
in the RGB images, it is necessary to project the 3D bounding box
from 3D space into the 2D camera plane of the single sensors. For
this purpose, the 3D object must be transformed from the world
coordinate system into the sensor coordinate system using
extrinsic parameters and then projected into the sensor plane
using intrinsic sensor parameters. The 3D to 2D projection result
can be seen in Figure 5 (right). The object can be segmented from
the rest of the RGB image using the 2D bounding boxes. Based on
the segmentation, human and object classification in 3D/2D is
feasible. The extracted 3D and 2D patches are transferred to the
AI server via the ZMQ interface. Various AI classifiers such as
OpenPose (Cao et al., 2018), Alpha Pose (Li et al., 2018), or
DarkNet (Redmon and Farhadi, 2018) can distinguish non-
persons from persons or identify specific items. Once a person
has been confidently classified, human body pose estimation is
performed based on the skeleton model of the OpenPose and
AlphaPose classifiers. With the help of the estimator, human
postures such as walking, standing, sitting, bending, and kneeling
can be detected and additionally used later to generate action-
related annotation data.

Automatic Post-Annotation: The objective of the automatic
post-annotation is to view the results of the automatic annotation
step over the entire sequence of actions and the overall
workspace. Input is the classified objects whose distribution
over all sequence frames can be seen in the form of a bar
chart in Figure 6 (left). Mainly there are two large objects
with a history spanning several frames, from which the plot
can be derived. All other objects are short-lived and have been
classified as undefined. The appearance can be reduced to
artifacts in the point cloud, which are caused by an
asynchrony of the sensor data.

The second step of Automatic Post-Annotation includes
filtering objects according to different criteria. Besides
undefined objects and objects with a small lifetime, all objects

FIGURE 5
Results of the automatic annotation step visualized in the 3D workspace (left) and RGB image (right) of Sensor 1. People are marked with (red) and
objects with (blue).
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with small sizes are removed. The threshold value here is set to a
length of 0.3 m per bounding box edge. The object is filtered out if
all three edges are below this threshold. The result of the filtering
is Figure 6 (center). All undefined objects with a too short lifetime
were removed.

After the list of objects has been roughly filtered, the single
objects are analyzed in detail. It is examined whether the
classification results of the objects are constant over the entire
sequence or whether there is a relationship between them.
Besides the classification results, the motion sequence in 3D
space and the object’s volume is another input for detailed
investigation. In the present case, the second object results
from the first object, only that the class assignment is
incorrect. To correct this, both objects are decompensated in
the third stage, rearranged, and reassembled. The result is shown
Figure 6 (right). The reordering shows that both object courses
are consistent, and a clear distinction between non-person and
person can be made.

Manual Post-Annotation: Finally, after the object data has
been generated and optimized, the final step is verifying and
selecting the annotation data to be exported. The user reviews the
results over the entire sequence of actions using the 3D
Workspace Viewer, 2D Image Viewer, and Chart Viewer by
replaying the data or examining it frame by frame. Objects
can be manually removed if it becomes apparent that the data
has been incorrectly segmented, classified, and mapped.
Furthermore, in case of inaccurate results, it is desirable to
adjust the segmentation, tracking, or classification parameters
and repeat the automatic annotation process.

The automatic annotation approach aims to generate specific
action and contextual object data whose spatial and temporal
changes are coherent. It ensures that the segmented, tracked, and
classified objects are based on the 3D/2D sensor data corresponding
to the natural dynamic objects represented by an object or a person.
The user can automatically create training and verification datasets
based on consistent object data for AI algorithm development. For
that purpose, the tool automatically extracts the point cloud or
image patches of the selected object or person with the
corresponding label using the 3D and 2D bounding boxes.

4 Experiments

4.1 Experiment setup

The performance of the annotation tool was examined and
verified in 6 specific test scenarios according to different criteria.
In these scenarios, a test person performs different complex
activities ranging from actions such as walking with an
object to interactions between two people. The test scenarios
cover expected human behaviors in industrial activities in
the automotive industry. One of the first actions in the event
of malfunctions in industrial robot systems is usually for the
worker to enter the robot cells to clear a fault. Therefore,
almost every test scenario includes walking with or without an
object.

Table 1 summarizes the 6 scenarios with the main actions and
the number of persons. The test scenarios range from very
simple to complex. Depending on the sequence, one or more
persons are in the robot cell, interacting with objects such as
ladders, suitcases, or transport carts. The test scenarios
cover expected human behaviors in industrial activities in the
automotive industry. One of the first actions in the event
of malfunctions in industrial robot systems is usually for the
worker to enter the robot cells to clear a fault. Therefore,
almost every test scenario includes walking with or without an
object.

The sensor data is collected in the HRC cell at Fraunhofer
IWU, whose design corresponds to a robot cell without a
protective fence in the industrial production
environment. The interior of the cell is large and barrier-free
and allows human activities and interactions in the robot
environment. The open area of the cell allows for the optimal
alignment of sensor technology to the scenery and a promising
field of view without being obscured by additional machine or
plant parts. Based on the described infrastructure, the access
area and the front working area of the cell were selected for data
acquisition of the multi-sensor system. The front view of the
HRC cell can be seen in Figure 7 (Left). In order to completely
cover the workspace and to avoid obscuring the person acting,

FIGURE 6
(left) Input: distribution of raw objects over the entire sequence, (center) Filtering: removal of all small undefined objects, (right) Optimization: object
decompensation and reordering by Non-Person/Person.
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four sensors were installed in the room, which records the scene
from various perspectives. The sensor layout can be seen in
Figure 7 (right).

In the execution of the experiment, data sets with 10 different
test subjects with five scenarios each were created based on the
test description. Because three scenarios were performed in

TABLE 1 Test scenarios to investigate the performance of the annotation tool.

Scenario-Nr.: Scenario title Action types Active subjects

1 Person walks into robot cell Standing (static), walking 1

2 Person walks with item Standing (static), walking, setting up ladder 1

3 Person pushes a transport cart Standing (static), walking, pushing transport cart 1

4 2 persons walk into robot cell Standing (static), walking 2

5 2 persons hand over an item Standing (static), walking, handing over item 2

6 2 persons with a transport cart Standing (static), walking, Pushing transport cart 2

FIGURE 7
(Left) Front view of HRC test cell at Fraunhofer IWU, (Right) Sensor layout with 4 sensors.

FIGURE 8
Architecture for comparing Results of Annotation Tool and Reference System.
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cooperation with another subject, it is possible that in some data
sets, the same subject interacted several times or that the test
series of some subjects were combined. The data sets were divided
into single- and multi-subject groups for further processing and
analysis. Because of the experimental scenarios with two subjects,
the number of data sets in both groups is not the same. The
recordings resulted in 31 data sets for single-person and 27 for
multi-person scenarios.

4.2 Statistical assessment

Based on the data collection, an extensive static study was
conducted to demonstrate the performance of the automatic
annotation tool. The purpose of this evaluation was to determine
how accurately the Multilayer Structure of the various DNN
classifiers can classify and track human subjects in 2D and 3D.
For comparison, result data from a Multi-Sensor Reference System
was used, which provides similar results in 3D space. The
Architecture used for the evaluation is shown in Figure 8. The
reference system works with the same sensor data as the automatic
labeling tool but is limited in its function, the evaluation point cloud
data. The recognition of additional objects is not provided, which is
necessary for the further development and annotation of more
complex scenarios. Therefore, only the recognition of persons is
used to compare the systems.

The execution of the tests was automated so that the data sets
were replayed. Based on the image data and point clouds, the
algorithms classified and tracked people and objects in parallel.
Each frame counted the number of objects for each processing step,
and the intermediate results were stored.

Supplementary Appendix S1 shows the complete evaluation for
scenario 1 with all four sensors. For traceability, the entire process
was broken down into individual processing steps, and the number
of input and output data was listed for each step. Each row of the
table represents the summarized evaluation of a data set. The
individual cells represent the cumulative number of input and
output data of a processing step. The unit of the cell values is the
number of objects processed during the data set’s application. At the

table’s end, each column’s mean and median is calculated for
comparison against the other scenarios.

Supplementary Appendix S2 summarizes the results of the
separate evaluation of all six scenarios and is directly compared
with the reference system. In the beginning, average values of the
individual processing steps for each sensor are listed, which are then
merged in the multi-sensor fusion part. Based on this compact
representation, anomalies and high error rates of the individual
processing steps can be detected depending on the complexity of the
scenario.

The results of the automatic annotation tool and the multi-
sensor reference system for each scenario were summarized in
Table 2 for the final evaluation of the statistical assessment. The
values in the cells are the average number of processed objects. The
crucial columns (marked in green) for comparing the systems reflect
the number of detected persons. The average values show no
significant large differences between the systems. In the case of
the more complex scenarios, the number of detected persons is
higher for the entire scenario, which is not necessarily due to
incorrect classification. Instead, these differences can be
attributed to tracking errors or random persons at the edge of
the test environment, such as the recording supervisor. For a further
analysis of the error causes, the data sets must be looked through
randomly. For this purpose, various functions for replaying the data
sets are provided in the GUI of the annotation tool. The qualitative
assessment section will provide a detailed description of the
classification and tracking errors.

4.3 Qualitative assessment

The recorded data sets were then processed with the developed
annotation framework. Based on the results, an initial qualitative
assessment of performance can be made. Basically, it can generally
be concluded that the distinction between non-person and person is
accurate in 90% of the scenarios. However, in the case of more
complex actions, this leads to inaccurate tracking and classification
results. Table 3 summarizes the most significant assessment for the
corresponding scenario.

TABLE 2 Final summary of the statistical evaluation.

Dataset
information

3D person tracking
(average number of
processed objects)

Reference
(average number of
processed objects)

Scenario Number Number of Datasets Scenario Mode Number Subjects Frames Total Valid (Person) Invalid Raw Filtered Person Non
Person

Scenario 1 11 single 1 167 4,0 1.5 2.5 1.5 1.1 1.1 0.0

Scenario 2 10 single 1 182 3.9 1.4 2.5 4.8 1.8 1.4 0.4

Scenario 3 10 single 1 236 8.4 1.9 6.5 5.3 2.0 0.7 1.3

Scenario 4 9 multi 2 179 8.6 2.9 5.7 2.8 2.2 2.2 0.0

Scenario 5 8 multi 2 182 10.4 3.5 6.9 4.8 2.5 2.3 0.3

Scenario 6 8 multi 2 259 13.8 3.8 10.0 7.9 3.3 1.8 1.6
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4.4 Manual annotation vs. automatic
annotation

For a direct comparison of the automatic annotation versus
manual annotation, the elapsed times of the individual
processing steps during the automatic run were recorded and
accumulated for all data sets. Table 4 summarizes the results
according to the scenarios. The values from the columns for 2D
Pose Estimation refer to the processing of the entire image by the
pose classifier because the time is independent of the number of
objects. The remaining values in the table always refer to the
elapsed time per automatically annotated object. Table 4 shows
that the classification of the human pose takes the most time. The
times per image are about 84 ms for OpenPose and about 94 ms
for AlphaPose. In contrast, matching the 2D poses takes only a
short time of about 2 ms per object. The projection of the 2D
results into the 3D space requires an average time of 17–35 ms.
The reason for this is the additional object segmentation in the
3D point cloud, which lead to different times depending on the

TABLE 3 Summary of the qualitative assessment.

Scenario-
Nr.:

Scenario title Segmentation and tracking Classification

1 Person walks into robot
cell

Segmentation and Tracking is correct Classification is correct

2 Person walks with item Object ID of human changes to ladder and human is recognized
as new object (Figure 9)

Ladder is recognized as a person if the bounding box includes
the person (Figure 10)

3 Person pushes a
transport cart

Person is not detected in the point cloud (Figure 11) Person is classified as non-person because only the transport
cart is segmented (Figure 11)

4 2 persons walk into
robot cell

Segmentation and Tracking is correct Classification is correct

5 2 persons hand over an
item

Segmentation and Tracking is correct Classification is correct

6 2 persons with a
transport cart

Change of object IDs when turning and handing over the
transport cart

Transport cart is recognized as a person if the bounding box
includes the person

FIGURE 9
Object ID of human changes to ladder and human is recognized as new object: (Left) human and ladder interact before ID change, (Right) human
and ladder separate after ID change.

FIGURE 10
Ladder is recognized as a person if the bounding box includes the
person.
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object’s size. Similar to matching the 2D poses, the 3D object
tracking requires a short time of about 3 ms. In total, the average
elapsed time per object is 207 ms.

We use previously confirmed results from standard methods for
labeling images with object bounding boxes (Russakovsky et al.,
2014; Kuznetsova et al., 2020) or outlines (Lin et al., 2014) to
evaluate manual annotation, which is typically done in two steps.
In the first stage, annotators are asked to mark the presence or
absence of object classes in each image. In the second stage, the
annotators draw 2D bounding boxes corresponding to the class

labels in the image to segment the object. Another approach to fast
annotation uses speech and mouse interaction. By combining them,
the annotator can simultaneously draw a bounding box around the
object and specify its class by speech (Gygli and Ferrari, 2020). A
qualitative comparison is shown in Table 5 to estimate how efficient
the automatic annotation approach is. The values for both standard
approaches were taken from the existing publication (Gygli and
Ferrari, 2020) and were not quantified in an experiment. For the
estimation of the manual verification, as provided in the approach, a
time of 2.2 s was chosen, which was taken from the publication

FIGURE 11
(Left) undetected Person in point cloud, (Right) unclassified Person in RGB Image.

TABLE 4 Summary of the average time measured for each processing step per scenario.

Dataset information Elapsed time in ms

2D pose
estimation

2D person
matching

3D
projection

3D object
fusion and
tracking

Total
time

Scenario
number

Number
of

datasets

Scenario
mode

Number
subjects

Frames Open
pose

Alpha
pose

Scenario 1 11 single 1 167 84.0 92.9 0.9 25.6 2.3 205.6

Scenario 2 10 single 1 182 83.9 92.7 1.3 37.2 3.1 218.2

Scenario 3 10 single 1 236 84.0 93.2 1.4 30.9 3.0 212.5

Scenario 4 9 multi 2 179 83.7 95.4 1.4 18.7 5.4 204.7

Scenario 5 8 multi 2 182 83.8 95.6 1.1 17.5 3.1 201.1

Scenario 6 8 multi 2 259 83.9 95.6 1.2 19.4 3.1 203.2

Mean 207,6

Bold values are the average time over all scenarios.

TABLE 5 Qualitative comparison of the presented automatic annotation approach with standard methods.

Two-stage approach (Gygli
and Ferrari, 2020)

Box & speak (Gygli and
Ferrari, 2020)

Ours (DNN classifiers + human verification
(Papadopoulos et al., 2016))

Time/box 12.5 s 6.5 s 2.4 s (0.207 s + 2.2 s)

Acceleration of our approach
compared to standard methods

x5,2 x2,7 -
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(Papadopoulos et al., 2016). The proposed automatic annotation
approach can be estimated to be x5.2 faster in providing the class
and bounding box, including human verification, than the two-stage
approach.

5 Conclusion

We introduced the automatic annotation framework, an
approach capable of cost-effectively generating high-quality
annotations for 3D multi-sensor datasets with complex action
sequences.

1) Our work focused on designing a multi-layer structure with various
DNN classifiers to detect humans and dynamic objects using 3D
point clouds. The action sequences can be classified and tracked very
easily by using deep learning models for skeleton-based human
activity recognition. The annotator no longer needs to focus on the
complex annotation of the human pose and can take care of tracking
multiple people.

2) The empirical experiments with more than 10 subjects to capture
datasets of human actions and activities in an industrial
environment allowed us to have a reasonable basis for
developing and verifying the whole annotation framework.
The various complex scenarios allowed us to specify the
requirements for the annotation tool very well.

3) By developing an intuitive graphical user interface (GUI), the
user gets a tool to verify and correct the results of the automated
annotation process. The annotated action sequences can be
referenced over the entire sequence or frame by frame using
various 3D and 2D visualizations.

4) The design and implementation of a methodology for automatic
matching of human actions in 3D point clouds enable the automatic
correction of tracking and classification errors resulting from the
multi-layer structure. The decompensation and rearrangement by
non-person/person ensure that 3D objects are consistent.

A limitation of the approach is the presence of dynamic, non-
human objects such as robots or AGVs, which may need to be
clarified parts of the scene or lead to incorrect recognition.
Implementing additional AI classifiers or creating a complex
kinematic model for contextualization is necessary, especially
when annotating human-robot cooperation scenarios where
humans and robots work very closely together. This weakness
needs to be compensated in the future by using robotic AI
classifiers that extract accurately from the scene. To make the
approach robust against the described errors in Section 4.3.
Qualitative Assessment, several optimizations and tunings are
required, which are prioritized as follows.

1) 3D point cloud segmentation: This requires accurately
examining the sensor data for errors such as missing 3D
points or adjusting segmentation parameters to ensure the
segmentation of finer objects.

2) Tracking behavior: In addition to segmentation results,
classification results such as human body pose should also be
included in tracking to ensure that objects from the previous
frame are correctly assigned to the current frame.

3) Multi-layer structure: by using additional DNN classifiers,
additional object features should be detected, such as whether
the person is carrying or holding an item.

4) Methodology for automatic sequence matching: In addition to the
classification results, the interaction with the environment should
also be considered, e.g., whether the action is performed at a specific
location.

By using the tool, records from multi-sensor systems can be
processed synchronously to detect and track the activity of acting
individuals seamlessly. Observation from multiple perspectives
creates the advantage of having sufficient samples of the human
from various views in the sets of annotation data, ensuring that
the AI being trained covers a high variance of human behavior.
By using multi-modal data such as RGB images and point clouds
from multiple sensors, a larger workspace can be covered, and
tracking of multiple people can be guaranteed throughout the
activity. Especially in human-robot cooperation, where safety has
to be ensured during direct interaction in very confined spaces,
annotating multimodal sensor data observing a scene from
multiple perspectives can lead to a significant optimization of
the database for training AI classifiers. Furthermore, through
fusion and synchronization, annotation of the multi-modal data
in 2D and 2D is possible. The annotation framework was
developed to speed up the process of annotating action
records and reduce the manual task of the annotator. The
proposed approach can accelerate the process by up to
x5.2 through automation. The tool is intended to shift the
focus from viewing single images to viewing the whole
scenario and include the interaction with the environment
during the action. This paper is intended to stimulate the
creation of more large action datasets and lead to innovations
in data-driven computer vision in the coming years.
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