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1 Introduction

Humanoid robots are built to resemble the human body and mimic human motion and
interaction (Hirai et al., 1998; Tikhanoff et al., 2010; Kajita et al., 2014). The recent research
in this field aims to integrate these robots in our daily life, e.g., collaborative robots
(Asfour et al., 2019; Ogenyi et al., 2021), social robots (Sandini et al., 2018), and service robots
(Van Pinxteren et al., 2019). However, integrating such robots in our daily life is challenging
because pre-programmed tasks and traditional control methods restrict the robots’ adaptability
and flexibility. This shifts the research focus toward new machine learning methods for lifelong
learning which enable autonomous online adaptation and continuous data-driven learning
(Nguyen and Oudeyer, 2014; Parisi et al., 2019). Since humanoid’s design is closely related
to humans, it is, therefore, essential to incorporate cognitive capabilities, learning skills and
human-like abilities, e.g., curiosity and self-learning in these robots.

Recent developments in robotics and cognitive science may lead to a new generation
of more versatile and adaptive robots, named Developmental Robots (Asada et al., 2001;
Lungarella et al., 2003). Developmental robotics is a highly interdisciplinary research field
linking natural and artificial systems. On the one hand, it aims to develop learning approaches
for humanoids inspired by developmental aspects and learning mechanisms observed in
children (Kim et al., 2008; Asada et al., 2009; Cangelosi et al., 2015). On the other hand,
humanoids also serve as experimental platforms for better understanding of biological
development (Asada et al., 2001; Asada et al., 2009; Cangelosi et al., 2015; Asano et al., 2017).

Developmental robots must autonomously develop, adapt and acquire their skills through
their life-time, i.e., lifelong learning (Lungarella et al., 2003; Mai, 2013; Forestier, 2019).
In contrast to industrial robots, which accomplish predefined tasks, developmental robots
must solve unpredictable tasks, learn new skills, adapt to new environments, and cope with
unforeseen challenges. Intrinsic motivation methods tackle these challenges through driving
the robot’s learning and exploration autonomously by internally generated signals in an
open-ended (i.e., unbounded) environment (Schmidhuber, 2010; Baranes and Oudeyer, 2013;
Santucci et al., 2016; Baldassarre, 2019; Rayyes et al., 2020a; Rayyes, 2020; Rayyes et al., 2021).
However, the high sample-complexity of these methods, i.e., the dense sampling required
to approximate the learned function with a reasonable accuracy, restrict their real-world
applications.Therefore, themajority of previouswork has been demonstrated only in simulation
as a proof of concept, and only a few were demonstrated in real robot experiments, e.g.,
(Tanneberg et al., 2018; Huang et al., 2019; Rayyes et al., 2020a; Rayyes et al., 2021).

In my opinion, increasing the sample-efficiency and the applicability of the
intrinsic motivation methods can be done by combining them with mental
replay (Andrychowicz et al., 2017; Rayyes et al., 2020b) and goal-directed methods,
e.g., Goal Babbling (Rolf et al., 2011), as shown in the literature so far.
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2 Intrinsic motivation

Intrinsic motivation in robotics has been inspired by
developmental psychology, in which curiosity-driven behavior has
been observed in children. Children get easily bored by known
items and seek new ones driven by their curiosity to improve their
knowledge and gain new experience (Schmidhuber, 2010). Intrinsic
motivation methods in the literature can be sorted into two categories
(Oudeyer and Kaplan, 2007; Santucci et al., 2013; Forestier, 2019;
Rayyes, 2020): 1) knowledge-based, where the intrinsic motivation
signal is devised based on the error between the prediction of the
robot and its real outcome; 2) competence-based, where the intrinsic
motivation signal is devised based on the learning progress of the
robot. However, an experiment in (Baranes et al., 2014) showed
that humans learn by maximizing their knowledge of a task and
their competence. Accordingly, a recent intrinsic motivation method
named “Interest Measurement” (Rayyes et al., 2020b) combined both
knowledge-based and competence-based signals.

2.1 Knowledge-based intrinsic motivation

The knowledge-based intrinsic motivation methods in the
literature are either novelty-based or prediction-based (Barto et al.,
2013; Baldassarre, 2019) Novelty-based learning refers to learning
from novel information and the intrinsic motivation signal is
generated by comparing newly acquired knowledge with previously
gained one (Baldassarre, 2019; Forestier, 2019), e.g., comparing
observed scenes (Huang and Weng, 2004) to guide the robot’s
exploration to discover new ones. Other examples are the intrinsic
motivation signal in (Benureau andOudeyer, 2016), whichmaximizes
the diversity of the robot’s behaviors, and the intrinsic motivation
signal in (Frank et al., 2014), which maximizes information gain by
comparing (action-state) distribution before and after learning update.
In (Oudeyer and Kaplan, 2007), novelty is detected based on a specific
error threshold (Oudeyer and Kaplan, 2007).

Prediction-based learning refers to learning from prediction
errors of the robot (Forestier, 2019), where high prediction errors
indicate a good opportunity to learn from (Chentanez et al., 2005;
Zhang et al., 2014). For example, the learning signal in (Rayyes et al.,
2020a) measures the error between the robot’s performance and
the robot’s prediction for reaching objects. The higher the error
is, the more interesting the object becomes. Other authors named
a prediction-based intrinsic motivation as surprise (Oudeyer and
Kaplan, 2007; Barto et al., 2013). Other examples are the penalty signal
(Huang et al., 2019), which is a dynamics-based surprise signal to
avoid applying high forces during learning, and Bayesian surprise
(Storck et al., 1994), which is used as a curiosity reward. In contrast,
the free energy principle (Schwartenbeck et al., 2013; Kaplan and
Friston, 2018; Ahmadi and Tani, 2019) assumes that humans try to
minimize the long-term average of surprise.Minimizing surprise leads
to maximizing model-evidence for intrinsically motivated agents in
the context of decision-making.

The difference between prediction-based and novelty-based
signals has been experimentally investigated (Caligiore et al., 2015).
The results showed that novelty-based signals were more effective
to drive the human learning. Still, there is no clear border between
these two categories since high prediction errors indicate novel
situations to learn from as shown recently in the novelty detection

method (Rayyes et al., 2021). Similarly, (Barto et al., 2004; Oudeyer
and Kaplan, 2007) considered high prediction error as a novelty-based
signal.

2.2 Competence-based intrinsic motivation

Competence-Based methods measure the robot’s performance
over time instead of instantaneous measures of the prediction
errors (Schmidhuber, 1991; Baranes and Oudeyer, 2013; Rayyes et al.,
2020a). For example, (Baranes and Oudeyer, 2013) monitored
the performance error over a sliding window during the robot’s
exploration. The most interesting regions of the workspace for the
robots are where the robot demonstrates high changes in the error
prediction regardless whether the error increases or decreases. In
other words, the robot’s exploration is guided through the intrinsic
motivation signal toward the regions where the robot’s performance
changes drastically, whether the robot’s performance enhancing
(learning) or deteriorating (forgetting).TheLearning progressmethod
in (Santucci et al., 2016) considered only when the error decreases
over a sliding window, i.e., when the robot learns. This method drives
the robot’s explorations toward easily learn-able tasks and avoids
to learn near the border of the workspace as shown in (Rayyes,
2020). However, the main advantage of this method is that, it can
avoid unreachable/unlearn-able objects/tasks (Santucci et al., 2016).
In contrast, the forgetting factor method in (Rayyes et al., 2020a)
monitors if the robot’s performance deteriorates. This allows the
robot to refocus on the previously learned forgotten experiences,
which might happens in the lifelong learning (Rayyes, 2020) due to
continuous model update.

Most recent intrinsic motivation methods are competence-
based methods (Schmidhuber, 2010; Baranes and Oudeyer, 2013;
Santucci et al., 2013; Nguyen and Oudeyer, 2014; Forestier and
Oudeyer, 2016; Santucci et al., 2016). (Santucci et al., 2013) showed
that competence-based methods often lead to better performance
than knowledge-based ones. A comparison between the methods was
demonstrated for learning several reaching tasks using a simulated
robot manipulator. However, how to transfer these results to more
complex real-world robot applications remains an open question.

2.3 Combining knowledge-based with
competence-based intrinsic motivation

While most intrinsic motivation methods in the literature
are either knowledge-based or competence-based, an experimental
study (Baranes et al., 2014) showed that humans tend to learn by
trying to improve their knowledge about the tasks in hand and
their competence. Interest Measurement (Rayyes et al., 2020b) is a
recent intrinsicmotivationmethodwhich combines knowledge-based
with competence-based signals. The knowledge-based signal, named
relative error, drives the robot’s exploration toward difficult to attain
goals/tasks, e.g., goals near the border of the robot’s workspace.
The competence-based signal is the forgetting factor which monitors
where the robot’s performance deteriorates during lifelong learning.
This combination of different learning signals led to high sample-
efficiency which facilitates online data-driven direct learning on
real robots without any pre-training in simulation as shown in
(Rayyes et al., 2020a; Rayyes et al., 2020b; Rayyes, 2020).
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3 Intrinsic motivation in real
applications

The main challenge for intrinsic motivation is the applicability
due to the high sample-complexity of the proposed methods.
Therefore, only a fewmethods have been demonstrated on real robots,
e.g., (Oudeyer et al., 2007; Hart and Grupen, 2011; Duminy et al.,
2016; Forestier et al., 2017; Tanneberg et al., 2018; Huang et al.,
2019). However, not all of these methods have demonstrated
efficient learning or goal-directed exploration. For instance, in
(Forestier et al., 2017; Seepanomwan et al., 2017) the robot preformed
random movements during the exploration which is inefficient and
incompatible with humans’motion (von Hofsten, 2004). In contrast,
(Tanneberg et al., 2018; Huang et al., 2019; Rayyes et al., 2021; 2020a)
have demonstrated high sample-efficiency and goal-directed motion.
Theonlymethodswith notable high sample-efficiency are themethods
which integrated intrinsic motivation with mental replay methods
(Andrychowicz et al., 2017; Rayyes et al., 2020b).

3.1 Mental replay

Mental replay is an essential component in human learning (Foster
and Wilson, 2006). Mental replay methods have been proposed for
robotics to reduce sampling complexity and to speed up the learning
process (Lin, 1993; Mnih et al., 2013; Andrychowicz et al., 2017;
Riedmiller et al., 2018; Tanneberg et al., 2018; Gerken and Spranger,
2019; Rayyes et al., 2020b). Therefore, these methods are essential for
deploying data-driven learningmethods on real robots, since sampling
in real robot applications is very costly regarding time and hardware.
Additionally, Mental Replay has been used to overcome forgetting in
lifelong learning (Parisi et al., 2019).

4 Discussion

Intrinsic motivation is very promising to integrate humanoids
in our daily life. It is compatible with online and lifelong learning,
and it provides adaptability and flexibilities for the robots. Since the
main challenge of intrinsic motivation methods are the high sample
complexity for real robot applications due to tear and wear. The
question is how to increase the potential of thesemethods to be applied
in real-world scenarios.Theonly solution to pave theway for real robot
applications is to increase the sample-efficiency. On the one hand, the

mental replaymethods play a significant role to decrease drastically the
amount of required data to learn a model with a reasonable accuracy.
On the other hand, the learning and the exploration should be
organized as goal-directed motion, e.g., Goal Babbling (Rolf and Steil,
2014), active learning (Baranes and Oudeyer, 2013), interest-driven
Goal Babbling (Rayyes et al., 2020b), etc. Random exploration to
collect data is unrealistic for robots withmany degrees of freedom.The
respective high-dimensional spaces, e.g., formotor commands, cannot
be exhausted through random or systematic exploration owing to a
combinatorial explosion. Additionally, studies on infants have shown
that neonates do not behave randomly, but rather demonstrate goal-
directed motion a few days after birth (von Hofsten, 2004). Hence,
combining purely goal directed methods with mental replay and
intrinsic motivation can increase the sample-efficiency remarkably
and accordingly can be deployed on real robots.
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